Quark Compositeness

Alex Smith

Theory

- At various times we have thought that we had identified non-composite particles (atoms, protons), so what if quarks are composite too?
- Composite quarks could help us to better understand issues with the standard model

Theory - Contact Interactions

- If quarks have substructure, we expect new interactions
- These interactions stem from quarks exchanging their constituent particles, or exchanging the quanta of the force which binds the constituent particles
- The dominant effect comes from the contact terms, which look like:

 $\mathcal{L}_{\psi\psi} = (g^2/2\Lambda^2) [\eta_{\mathrm{L}\,\mathrm{L}}\overline{\psi}_{\mathrm{L}}\gamma_{\mu}\psi_{\mathrm{L}}\overline{\psi}_{\mathrm{L}}\gamma^{\mu}\psi_{\mathrm{L}} + \eta_{\mathrm{R}\,\mathrm{R}}\overline{\psi}_{\mathrm{R}}\gamma_{\mu}\psi_{\mathrm{R}}\overline{\psi}_{\mathrm{R}}\gamma^{\mu}\psi_{\mathrm{R}} + 2\eta_{\mathrm{R}\,\mathrm{L}}\overline{\psi}_{\mathrm{R}}\gamma_{\mu}\psi_{\mathrm{R}}\overline{\psi}_{\mathrm{L}}\gamma^{\mu}\psi_{\mathrm{L}}]$

Theory - Contact Interactions

 $\mathcal{L}_{\psi\psi} = (g^2/2\Lambda^2) [\eta_{\mathrm{L}\,\mathrm{L}}\overline{\psi}_{\mathrm{L}}\gamma_{\mu}\psi_{\mathrm{L}}\overline{\psi}_{\mathrm{L}}\gamma^{\mu}\psi_{\mathrm{L}} + \eta_{\mathrm{R}\,\mathrm{R}}\overline{\psi}_{\mathrm{R}}\gamma_{\mu}\psi_{\mathrm{R}}\overline{\psi}_{\mathrm{R}}\gamma^{\mu}\psi_{\mathrm{R}} + 2\eta_{\mathrm{R}\,\mathrm{L}}\overline{\psi}_{\mathrm{R}}\gamma_{\mu}\psi_{\mathrm{R}}\overline{\psi}_{\mathrm{L}}\gamma^{\mu}\psi_{\mathrm{L}}]$

- This Lagrangian is the most general flavor-diagonal color singlet chirally invariant contact interaction
- The parameter Λ is the compositeness energy scale; it suppresses contact interactions for energies much smaller than it
- Chiral invariance explains why quark masses are much smaller than Λ

Searching for Contact Interactions

- These interactions can interfere constructively or destructively with Standard Model predictions
- QCD tells us that quark contact interactions would lead to an angular distribution that is more isotropic than Standard Model predictions
 - This difference manifests as an excess at low values of the parameter χ

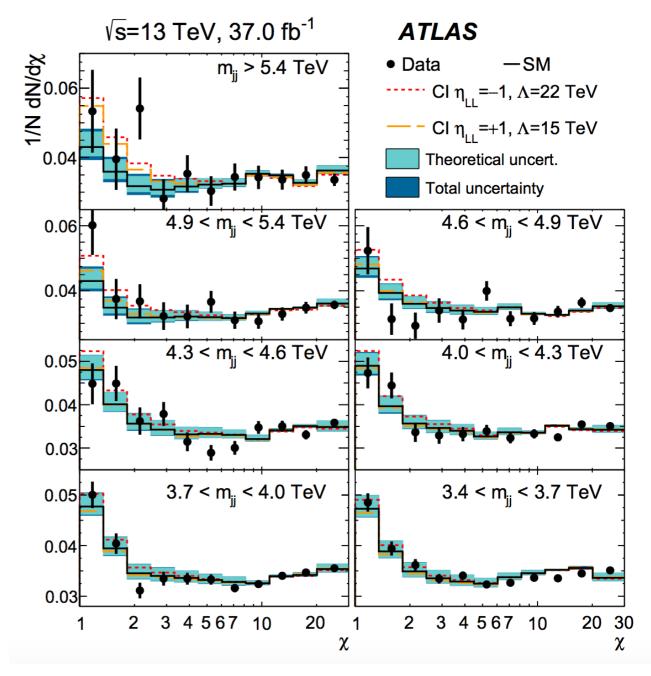
What is x?

- χ= exp(|y_1 y_2|), where y_1 and y_2 are the rapidities of our two jets
 - We choose the jets with highest transverse momentum
- χ is approximately $(1+\cos(\theta))/(1-\cos(\theta))$
- Why χ?
 - Rutherford scattering, which is proportional to:
 - $1/(1-\cos(\theta))^2$, is independent of χ

Experimental Details

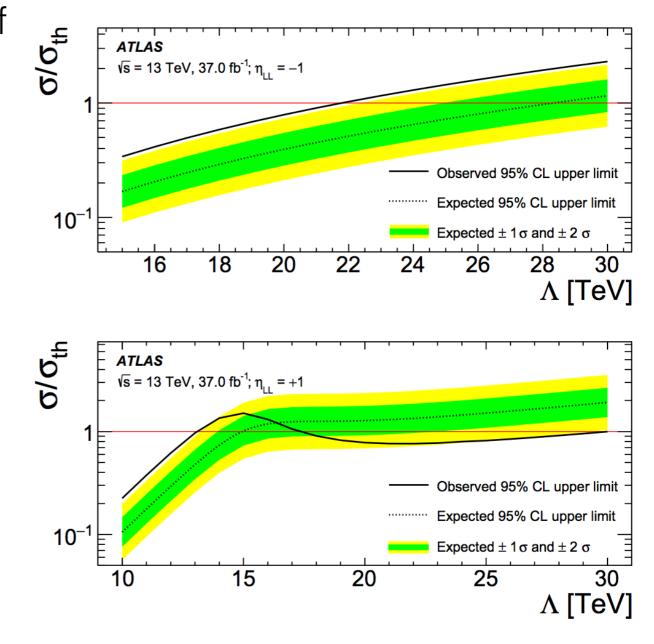
- Will focus on ATLAS experiment
- Analyzed events with 2 jets if the leading jet had transverse momentum of 440 GeV
 - Leads to 99.5% efficiency for analyzed events
- Ignore events if any of the jets with transverse momentum greater than 60 GeV could be explained with calorimeter noise or non-collision background

Experimental Details

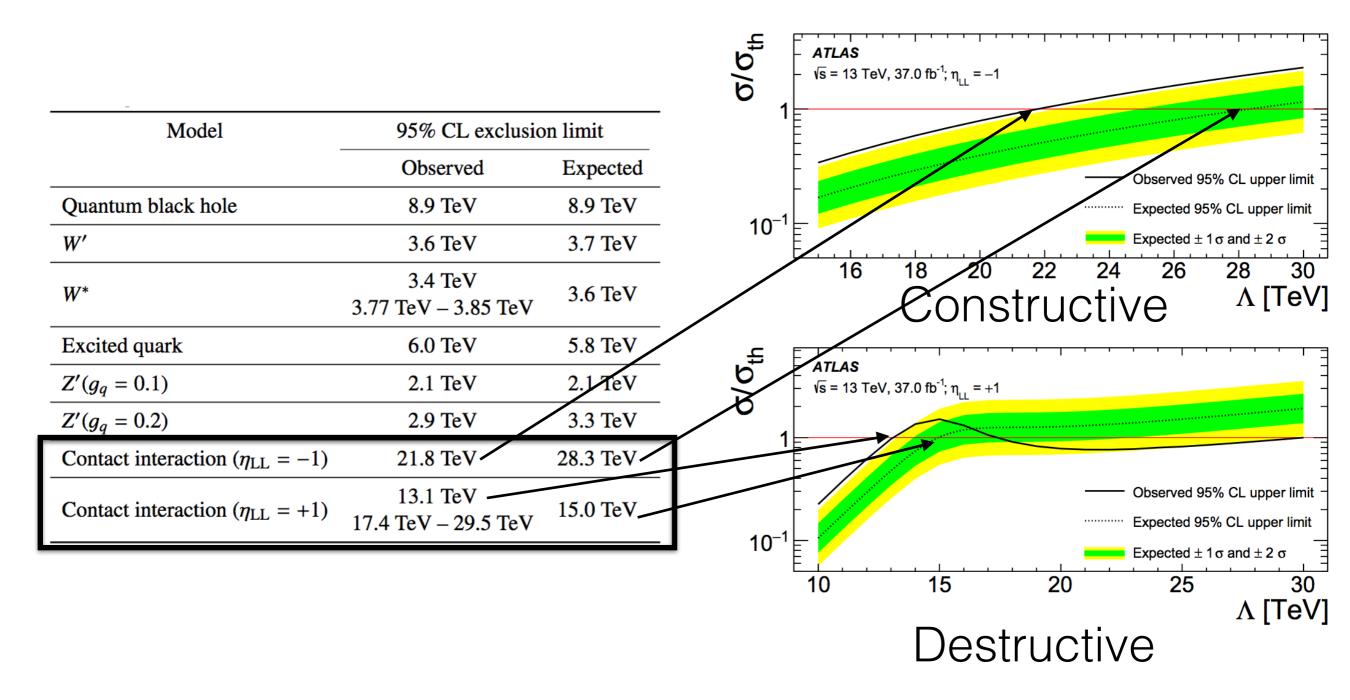

- Monte Carlo multijet events from Standard Model physics are generated with Pythia
- Contact Interaction signals are also generated with Pythia, and they are found to have a more isotropic χ distribution

Uncertainty

- Theoretical uncertainty in the simulations comes from choice of PDF (< 1%) and renormalization (12%) and factorization scales (8%), where the renormalization and factorization uncertainties shown are the largest values they take on at high mass and small χ
- The signal uncertainty includes jet energy scale (1.5%-3%), choice of PDF (1%), and luminosity (3.2%)
- The dominant experimental uncertainty for the χ distribution is the jet energy scale, which is at 15% for high masses


Experimental Results -Angular Distribution

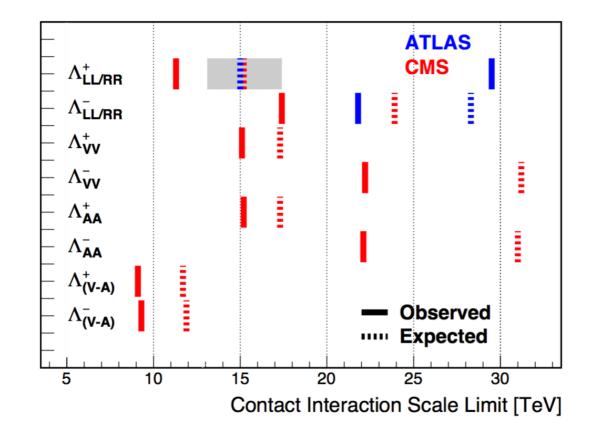
- Data well described by Standard Model predictions
- We can use this result to set limits on the contact interaction scale Λ



Experimental Results -Limits

- By doing fits for different values of Λ, we can see how well they correspond to the previous histogram
- These show the limits on the CI cross section divided by the theoretical cross section for constructive interference (top) and destructive interference (bottom)
 - Values of Λ where lines are below 1 are excluded

Exclusion Limits



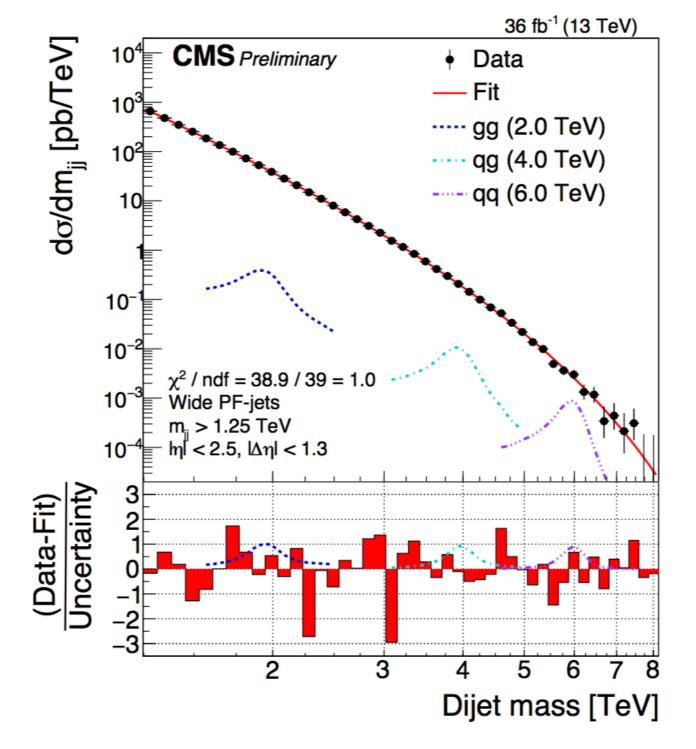
ATLAS/CMS Results

$$\begin{split} \Lambda &= \Lambda_{LL}^{\pm} \quad \text{for} \quad (\eta_{LL}, \eta_{RR}, \eta_{LR}) = (\pm 1, 0, 0) , \\ \Lambda &= \Lambda_{RR}^{\pm} \quad \text{for} \quad (\eta_{LL}, \eta_{RR}, \eta_{LR}) = (0, \pm 1, 0) , \\ \Lambda &= \Lambda_{VV}^{\pm} \quad \text{for} \quad (\eta_{LL}, \eta_{RR}, \eta_{LR}) = (\pm 1, \pm 1, \pm 1) , \\ \Lambda &= \Lambda_{AA}^{\pm} \quad \text{for} \quad (\eta_{LL}, \eta_{RR}, \eta_{LR}) = (\pm 1, \pm 1, \pm 1) , \\ \Lambda &= \Lambda_{V-A}^{\pm} \quad \text{for} \quad (\eta_{LL}, \eta_{RR}, \eta_{LR}) = (\pm 1, \pm 1, \pm 1) , \\ \Lambda &= \Lambda_{V-A}^{\pm} \quad \text{for} \quad (\eta_{LL}, \eta_{RR}, \eta_{LR}) = (0, 0, \pm 1) . \end{split}$$

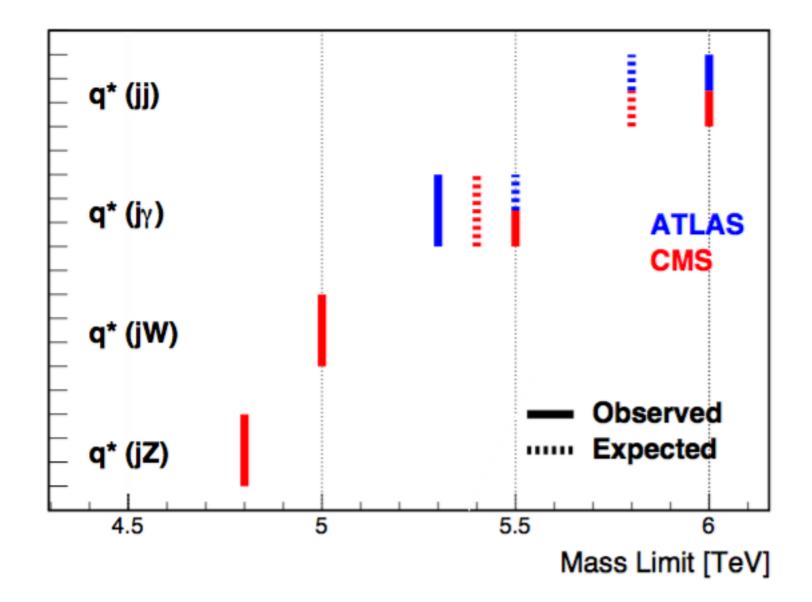
ATLAS/CMS Results

 The gray shaded region is a region that ATLAS didn't exclude due to statistical fluctuations

Excited Quarks


- If quarks are composite particles, then we could expect to see excited quarks, where their constituent particles are bound in a higher energy state
- We can get excited quarks from pair production, or from their coupling to ordinary quarks via contact interactions
- Excited quarks could also couple with gluons

Looking for Excited Quarks


- Excited quarks can be seen at hadron colliders from a narrow resonant peak in the invariant mass distribution of their decay products
- Both ATLAS and CMS have searched for decay of excited quarks via coupling to gluons by looking at dijet final states

Excited Quark Limits

 ATLAS and CMS excluded excited quarks in dijet resonances up to 6.0 TeV

Excited Quark Limits for Other Final States

References

- PDG, 112. Searches for Quark and Lepton Compositeness
- ATLAS Collaboration, Search for new phenomena in dijet events using 37 fb^(-1) of pp collision data...