Leptoquark Searches at the LHC

Cesar Gonzalez Renteria

Physics 290E

04/17/19

Theoretical Motivation

- Originally seen in Pati-Salam SU(4) color model. Famously also seen in SU(5) and SO(10) GUTs.
- Include a term in the Lagrangian that provides a coupling to a quark and a lepton.
- This phenomenologically manifests itself as a leptoquark that can turn a quark into a lepton and vice versa.
- Since it also carries charge and color, it must interact with photons and gluons.
- If generation mixing is allowed, an additional 4 fermion vertex must exist.

Theory (cont.)

- Can help explain the baryon asymmetry in the universe.
- Would provide a BSM contribution to muon EDM.
- If included in Rparity violating SUSY theories, provides a bound on RPV processes.
- SM discrepancies found in B decays.

arXiv:1603.04993v3

(SU(3), SU(2), U(1))	Spin	Symbol	Type	F
$(\overline{\bf 3},{\bf 3},1/3)$	0	S_3	$LL(S_1^L)$	-2
$({f 3},{f 2},7/6)$	0	R_2	$RL(S_{1/2}^L), LR(S_{1/2}^R)$	0
(3, 2, 1/6)	0	\tilde{R}_2	$RL\left(\tilde{S}_{1/2}^{L}\right), \overline{LR}\left(\tilde{S}_{1/2}^{\overline{L}}\right)$	0
$(\overline{3},1,4/3)$	0	\tilde{S}_1	$RR\left(\tilde{S}_{0}^{R} ight)$	-2
$(\overline{3},1,1/3)$	0	S_1	$LL\left(S_{0}^{L} ight),RR\left(S_{0}^{R} ight),\overline{RR}\left(S_{0}^{\overline{R}} ight)$	-2
$(\overline{3}, 1, -2/3)$	0	\bar{S}_1	$\overline{RR}(\bar{S}_{0}^{\overline{R}})$	-2
(3, 3, 2/3)	1	U_3	$LL\left(V_{1}^{L} ight)$	0
$(\overline{3},2,5/6)$	1	V_2	$RL(V_{1/2}^L), LR(V_{1/2}^R)$	-2
$(\overline{\bf 3},{\bf 2},-1/6)$	1	\tilde{V}_2	$RL\left(\tilde{V}_{1/2}^{L}\right), \overline{LR}\left(\tilde{V}_{1/2}^{\overline{R}}\right)$	-2
$({f 3},{f 1},5/3)$	1	\tilde{U}_1	$RR(\tilde{V}_0^R)$	0
(3, 1, 2/3)	1	U_1	$LL(V_0^L), RR(V_0^R), \overline{RR}(V_0^{\overline{R}})$	0
$({\bf 3},{\bf 1},-1/3)$	1	\bar{U}_1	$\overline{RR}\left(ar{V_0^R} ight)$	з 0

Leptoquark Searches at LHC

CMS Search for 3rd gen coupling at 13 TeV

- Looking at Scalar LQ PP production.
- Here exclusively looking at tτ final state.
- Main Backgrounds:
 - Ttbar + jets
 - W + jets
- Large BG contribution due to jets mis-ID as τ.

CMS Event Selection

arXiv:1803.02864v2	Catego	ory A	Category B	
	OS $\ell \tau_h$ + jets	SS $\ell \tau_h$ + jets	OS $\ell \tau_h \tau_h$ + jets	
Jet selection	≥ 4 jets	\geq 3 jets	\geq 3 jets	
$p_{\rm T}^{\rm miss}$ selection	$p_{\rm T}^{\rm miss} > 100 { m GeV}$	$p_{\rm T}^{\rm miss} > 50 { m GeV}$	$p_{\rm T}^{\rm miss} > 50 { m GeV}$	
$\tau_{\rm h}$ selection	$p_{\rm T} > 100 { m GeV}$		$p_{\rm T}^{\tau 1} > 65 { m GeV}, p_{\rm T}^{\tau 2} > 35 { m GeV}$	
b tagging	$\geq 1 b tag$			
$S_{\rm T}$ selection			$S_{\rm T}>350{ m GeV}$	
Fit variable	$p_{\rm T}^{\rm t}$ in two $S_{\rm T}$ bins		number of events	

Process	$e\tau_h\tau_h$ + jets	$\mu \tau_{\rm h} \tau_{\rm h}$ + jets
LQ ₃ (300 GeV)	$97 \ ^{+25}_{-24}$	$167 \ ^{+36}_{-37}$
LQ ₃ (400 GeV)	$73 \ ^{+14}_{-13}$	$98 \ ^{+19}_{-17}$
LQ ₃ (500 GeV)	$34.1 \ ^{+6.6}_{-6.2}$	$44.9 \ ^{+8.5}_{-7.9}$
LQ ₃ (600 GeV)	$14.1 \ ^{+2.8}_{-2.7}$	$21.1 \ ^{+4.1}_{-3.8}$
LQ ₃ (700 GeV)	$7.3 \ ^{+1.5}_{-1.4}$	7.1 $^{+1.5}_{-1.4}$
LQ ₃ (800 GeV)	$3.2 \ ^{+0.7}_{-0.7}$	$4.4 {}^{+1.0}_{-0.9}$
LQ ₃ (900 GeV)	$1.5 \ ^{+0.4}_{-0.3}$	$1.9 \ ^{+0.4}_{-0.4}$
LQ ₃ (1000 GeV)	$0.8 {}^{+0.2}_{-0.2}$	$0.9 {}^{+0.2}_{-0.2}$
$t\bar{t}_{f}$	$2.5 \ ^{+0.8}_{-1.2}$	$3.2 {}^{+1.5}_{-1.2}$
$t\bar{t}_{p+f}$	$1.5 \ ^{+0.8}_{-0.8}$	$2.0 \ ^{+0.8}_{-0.9}$
Single t	$0.3 \ ^{+0.3}_{-0.3}$	$0.0 {}^{+0.2}_{-0.0}$
W+jets	$0.5 \ ^{+1.2}_{-0.5}$	$0.4 {}^{+0.7}_{-0.4}$
Z+jets	$1.4 \ ^{+0.5}_{-0.5}$	$1.0 \ ^{+0.4}_{-0.4}$
Diboson	$1.6 \ ^{+1.7}_{-1.6}$	$1.7 \ ^{+1.8}_{-1.7}$
Total background	$7.9 \ ^{+2.4}_{-2.5}$	$8.4 \ ^{+2.6}_{-2.3}$
Data	9	11

CMS Results

- Different number of events are calculated for the different masses of the LQ.
- Here is shown how many events are expected for a given mass at a center of mass energy of 13 TeV.
- No significant excess found.

CMS Results (cont.)

 Overall, LQ masses can be excluded at the 95% CL for M < 900 GeV for B = 1 and M < 700 GeV for a full range of B.

ATLAS Search for 3rd gen coupling at 13 TeV

- Focus on scalar LQ pair production
- Decay channels:
 - tv/bτ
 - bv/tτ
- We'll only look at $\ensuremath{t\tau}$
- Main Backgrounds:
 - ttbar + jets
 - W + jets

ATLAS Event Selection

Category	tN_med	tN_high
Sensitivity	600 GeV	1 TeV
Lepton	1i	1i
Jet Selection	≥ 4	≥ 4
b-tagging	> 1	> 1
E_T^{miss}	> 250 GeV	-
Bin	E_T^{miss}	1-bin cut-and-
		count

Observed events Total SM	8 3.8 ± 1.0	ATLAS	Results		
$m(LQ_3^u) = 800 \text{ GeV}$ $m(LQ_3^u) = 900 \text{ GeV}$ $m(LQ_3^u) = 1000 \text{ GeV}$ $m(LQ_3^u) = 1100 \text{ GeV}$	11.9 ± 1.8 9.5 ± 1.2 6.7 ± 0.7 3.7 ± 0.3	 Different number of events are calculated for the different masses of the LQ. Here is shown how many events are expected fo a given mass at a center of mass energy of 13 			
arXiv:1902.08103v1	-	TeV.No significant	excess found.		
$E_{\mathrm{T}}^{\mathrm{miss}}$	[250, 350] GeV	[350, 450] GeV	[450, 600] GeV	>600 GeV	
Observed events Total SM	21 14.6 ± 2.8	17 11.2 ± 2.2	8 7.3 ± 1.7	$4 \\ 3.16 \pm 0.74$	
$m(LQ_3^u) = 400 \text{ GeV}$ $m(LQ_3^u) = 600 \text{ GeV}$ $m(LQ_3^u) = 800 \text{ GeV}$ $(LQ_3^u) = 1000 \text{ GeV}$	166 ± 44 21.0 ± 5.6 5.0 ± 1.5	58 ± 32 49.6 ± 8.8 10.6 ± 1.7 1.18 ± 0.24	11 ± 11 31.8 ± 5.5 11.2 ± 2.0 2.02 ± 0.40	5.7 ± 5.7 1.4 ± 2.1 6.3 ± 1.4	
$m(LQ_3^2) = 1000 \text{ GeV}$	0.40 ± 0.14	1.18 ± 0.24	2.92 ± 0.49	4.01 ± 0.04	11

ATLAS Results (cont.)

• Overall, M < 930 GeV can be excluded at the 95% CL for pair produced scalar LQ masses coupled to 3^{rd} gen quarks decaying to $tv\bar{t}\bar{v}$.

Conclusion

- BaBar, Belle and LHCb experiments have shown anomalies in $\overline{B} \rightarrow D\tau \overline{\nu}$ and $\overline{B} \rightarrow D^* \tau \overline{\nu}$ decay processes.
- These discrepancies can be explained by the Leptoquark model.
- Leptoquarks can also explain why there is more matter than antimatter in the universe.
- Experiments like ATLAS and CMS have found no excesses but have set limits.
- Higher COM Energies will push these limits further up.

References

- Leptoquarks PDG Review, <u>http://pdg.lbl.gov/2017/reviews/rpp2017-rev-leptoquark-quantum-numbers.pdf</u>
- I. Dorsner et. Al., "Physics of leptoquarks in precision experiments and at particle colliders", arXiv:1603.04993v3
- ATLAS Collaboration, "Searches for third-generation scalar leptoquarks in $\sqrt{s} = 13 TeV pp$ collisions with the ATLAS detector", arXiv:1902.08103v1
- CMS Collaboration, "Search for third-generation scalar leptoquarks decaying to a top quark and a τ lepton at $\sqrt{s} = 13 TeV$ ", arXiv:1803.02864v2
- V. Bansal, "ATLAS Sensitivity to Leptoquarks, W_R and Heavy Majorana Neutrinos in Final States with High- p_T Dileptons and Jets with Early LHC Data at 14 TeV proton-proton collisions", arXiv:0910.2215v1 ""
- P. Bandyopadhyay and R. Mandal, "Revisiting Scalar Leptoquarks at the LHC" Eur. Phys. J. C (2018) 78:491

BACKUP

ATLAS Overall Results

ATLAS Overall Results

Fig. 9 Required integrated luminosity for 5σ reach at the LHC with 14 TeV of center of mass energy for the final states defined in Table 10 (in panel **a**) and Table 11 (in panel **b**), where β_1 and β_2 are the branching fraction to $t \tau$ and $c \mu$, respectively