

B_0 and B_s mixing $|V_{td}/V_{ts}|$

Sai Neha Santpur 20 March 2019 290E presentation

Bigger picture!

- Matter-antimatter asymmetry
 - Visible universe is made out of matter
 - In the early universe, without CP violation, we expect equal number of baryons and anti-baryons
 - To explain the asymmetry, following Sakharov conditions need to be met:
 - Baryon number violation
 - C and CP violation
 - Departure from thermal equilibrium

Bigger picture!

- Matter-antimatter asymmetry
 - Visible universe is made out of matter
 - In the early universe, without CP violation, we expect equal number of baryons and anti-baryons
 - To explain the asymmetry, following Sakharov conditions need to be met:
 - Baryon number violation
 - C and CP violation
 - Departure from thermal equilibrium

CP violation in Standard Model

- The mass and weak eigen states of quarks are not the same
- Historical note:
 - This was first proposed for first and second generation
 - Goal was to explain why the G_F was different for us $(K+ \rightarrow \mu+v_{\mu})$ and ud $(\pi+ \rightarrow \mu+v_{\mu})$ vertices
 - Explained by Cabibbo hypothesis

Weak
eigenstates
$$\left(\begin{array}{c} d' \\ s' \end{array} \right) = \left(\begin{array}{c} \cos \theta_c & \sin \theta_c \\ -\sin \theta_c & \cos \theta_c \end{array} \right) \left(\begin{array}{c} d \\ s \end{array} \right) \xrightarrow{\text{Mass}}{\text{eigenstates}}$$

Extending to three generations

 Mixing in three generations is described by unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

Explains the G_{F} mystery

Ref: Thomson, Figure 14.5

S Santpur

Near diagonal matrix

$$\begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| \\ |V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}| & |V_{ts}| & |V_{tb}| \end{pmatrix} \approx \begin{pmatrix} 0.974 & 0.225 & 0.004 \\ 0.225 & 0.973 & 0.041 \\ 0.009 & 0.040 & 0.999 \end{pmatrix}$$

- Today's talk will focus on how we measure $|V_{td}|$ and $|V_{ts}|$
- Note: Cannot use direct top decays as almost always it decays to W and b

CKM Magnitudes

S Santpur

A little theory

- B° and B°bar mixing dominated by two top quarks in the loop as $\left|V_{tb}\right| \sim 1$
- If you produce B^o in an experiment, then it oscillates into B^obar and vice versa

See Thomson for complete discussion

A little more theory

• Using CKM matrix physical B meson states can be written as

$$|\mathbf{B}_L\rangle = \frac{1}{\sqrt{2}} \left(|\mathbf{B}^0\rangle + e^{-i2\beta} |\overline{\mathbf{B}}^0\rangle \right) \quad \text{and} \quad |\mathbf{B}_H\rangle = \frac{1}{\sqrt{2}} \left(|\mathbf{B}^0\rangle - e^{-i2\beta} |\overline{\mathbf{B}}^0\rangle \right).$$

where

$$V_{\rm td} = |V_{\rm td}|e^{-i\beta}$$
, and $\xi = e^{-i2\beta}$

Tad bit more theory

• If you produce B0 in an experiment at t=0:

$$|\mathbf{B}^{0}\rangle = \frac{1}{\sqrt{2}} \left(|\mathbf{B}_{L}\rangle + |\mathbf{B}_{H}\rangle\right)$$

Mass eigen states

Flavor eigen state

• Over time,

$$|\mathbf{B}(t)\rangle = \frac{1}{\sqrt{2}} \left[\theta_L(t)|\mathbf{B}_L\rangle + \theta_H(t)|\mathbf{B}_H\rangle\right]$$

 $m(B_{H})-m(B_{L})$ proportional to $|(V_{td}V_{tb}^{*})^{2}|$

where

$$\theta_L = e^{-\Gamma t/2} e^{-im_L t}$$
 and $\theta_H = e^{-\Gamma t/2} e^{-im_H t}$.

• Oscillation probability:

$$P(\mathbf{B}_{t=0}^{0} \to \mathbf{B}^{0}) = |\langle \mathbf{B}(t) | \mathbf{B}^{0} \rangle|^{2} = \frac{1}{4}e^{-\Gamma t}|\theta_{+}|^{2} = e^{-\Gamma t}\cos^{2}\left(\frac{1}{2}\Delta m_{d}t\right),$$

$$P(\mathbf{B}_{t=0}^{0} \to \overline{\mathbf{B}}^{0}) = |\langle \mathbf{B}(t)|\overline{\mathbf{B}}^{0}\rangle|^{2} = \frac{1}{4}e^{-\Gamma t}|\xi\theta_{-}|^{2} = |\xi|^{2}e^{-\Gamma t}\sin^{2}\left(\frac{1}{2}\Delta m_{\mathrm{d}}t\right).$$

B factories

- 🖌 m~5.3 GeV
- $e+e- \rightarrow Y(4S) \rightarrow B^{0}B^{0}bar$
- Center-of-mass energy needed ~ 10.6 GeV
- Why are asymmetric B factories a thing?
 - Colliding at 10.6 GeV implies B mesons produced with low velocities
 - τ ~10E-12 s → B mesons will travel small distance before decaying
 - So we cannot distinguish between both B mesons
 - Hence we need asymmetric B factories to get boosted B mesons

Boosted B mesons

• B meson decays:

$$B^{0}(\overline{b}d) \to D^{-}(\overline{c}d)\mu^{+}\nu_{\mu}$$
 and $\overline{B}^{0}(\overline{b}d) \to D^{+}(c\overline{d})\mu^{-}\overline{\nu}_{\mu}$

BaBar experiment

- Used high luminosity PEP II and KEKB collider at SLAC
- 9 GeV e- and 3.1 GeV e+ beams give B mesons $\beta\gamma$ ~0.56
- Mean distance between two B decays in $\Delta z{\sim}200\mu m$
- Detector has high precision silicon vertex detector to measure this

Belle experiment

- Used KEKB collider in Japan
- 8 GeV e- and 3.5 GeV e+ beams give B mesons $\beta\gamma \sim 0.425$
- Upgraded Belle II working from 2018 and expected to collect 50x more data compared to Belle

How to calculate $|V_{td}|$?

Mass difference is measured from lepton flavor asymmetry

$$A(\Delta t) = \frac{N_{OF} - N_{SF}}{N_{SF} + N_{OF}}$$

$$A(\Delta t) = \frac{\left[P(\mathbf{B}_{t=0}^{0} \to \mathbf{B}^{0}) + P(\overline{\mathbf{B}}_{t=0}^{0} \to \overline{\mathbf{B}}^{0})\right] - \left[P(\mathbf{B}_{t=0}^{0} \to \overline{\mathbf{B}}^{0}) + P(\overline{\mathbf{B}}_{t=0}^{0} \to \mathbf{B}^{0})\right]}{\left[P(\mathbf{B}_{t=0}^{0} \to \mathbf{B}^{0}) + P(\overline{\mathbf{B}}_{t=0}^{0} \to \overline{\mathbf{B}}^{0})\right] + \left[P(\mathbf{B}_{t=0}^{0} \to \overline{\mathbf{B}}^{0}) + P(\overline{\mathbf{B}}_{t=0}^{0} \to \mathbf{B}^{0})\right]}$$
$$A(\Delta t) = \cos^{2}\left(\frac{1}{2}\Delta m_{\mathrm{d}}t\right) - \sin^{2}\left(\frac{1}{2}\Delta m_{\mathrm{d}}t\right) = \cos\left(\Delta m_{\mathrm{d}}t\right)$$

Experimental measurement

• Not a perfect cosine because of background, lepton charge misidentification and experimental Δt resolution

Determining $|V_{td}|$

 $\Delta m_{\rm d} = (0.507 \pm 0.005) \,\mathrm{ps}^{-1} \equiv (3.34 \pm 0.03) \times 10^{-13} \,\mathrm{GeV}.$

- Recall $\Delta m_d = m(B_H) m(B_L)$ proportional to $|(V_{td}V_{tb}^*)^2|$
- Using $V_{tb} \sim 1$, we get

$$|V_{\rm td}| = (8.4 \pm 0.6) \times 10^{-3}$$

What about |V_{ts}|?

• Similar analysis follows

Instead of d quark, we have s quark here

• From experiment,

$$\Delta m_{\rm s} = 17.72 \pm 0.04 \, {\rm ps}^{-1}$$

• We get

$$|V_{\rm ts}| = (4.3 \pm 0.3) \times 10^{-2}$$

Summarize so far..

• Results:

$$|V_{\text{td}}| = (8.4 \pm 0.6) \times 10^{-3}$$

 $|V_{\text{ts}}| = (4.3 \pm 0.3) \times 10^{-2}$

• The uncertainties are dominated by theoretical calculations

$|V_{td}|/|V_{ts}|$

- Ratios are preferred for precision measurements.
- For example, $\Delta m_d / \Delta m_s$ is more reliably calculated in theory
- So measuring this will be a better handle to probe CP violation
- Using earlier results,

 $|V_{td}/V_{ts}| = 0.210 \pm 0.001 \pm 0.008.$

Alternate methods (Penguins!)

- $b \rightarrow d\gamma \,and \, b \rightarrow s\gamma \,are \,\,not \,tree \,\,level \,\,processes \,\,in$ the standard model

Ref: Wikipedia

- The inclusive decay of d vs. s quark is supressed by $(|V_{td}|/|V_{ts}|)^2$
- Ratio is sensitive to new physics coupling differently to d and s quarks

Measure all decay modes

Particle ID is essential

Charged particle identification

Identified using silicon vertex detector in 1.5T magnetic field. Pions and Kaons are differentiated using dE/dx and Cherenkov light

For pion of 1 GeV, pion identification efficiency is 85% while Kaon mis-identification rate is 3%

Measure all decay modes

Analysis details

- Identified particles are combined to form B meson candidates consistent with one of the 7 decay modes
- Background: $e+e- \rightarrow qqbar$ and photon from ISR or FSR
- Angles, rates of K and lepton production are different in signal and background
- Use a neural network (NN) to distinguish signal from background

Uncertainties

Systematic	$M(X_s)$		$\overline{M(X_d)}$		X_d/X_s
Error Source	0.6-1.0	1.0-1.8	0.6-1.0	1.0 - 1.8	Ratio
Tracking	1.7%	1.7%	1.7%	1.7%	
High-energy photon	2.5%	2.5%	2.5%	2.5%	
π^0/η reconstruction	1.7%	1.7%	1.7%	1.7%	
π^0/η veto	1.0%	1.0%	1.0%	1.0%	
K/π identification	2.0%	2.0%	2.0%	2.0%	2.0%
Neural network	5.0%	5.0%	5.0%	5.0%	
$B\overline{B}$ pair counting	1.1%	1.1%	1.1%	1.1%	
Fit PDFs	2.4%	3.6%	7.0%	8.3%	8.7%
Backgrounds	0.3%	0.4%	2.4%	6.1%	5.4%
Fit bias	0.4%	1.7%	0.4%	3.3%	3.0%
Fragmentation		3.6%		7.7%	8.5%
Partial \mathcal{B}	7.0%	11.4%	10.0%	14.8%	13.8%
$Missing \ge 5 body$		5.6%		25.8%	21.0%
Other missing states		17.0%		23.8%	7.1%
Spectrum Model		1.8%		1.6%	
Total \mathcal{B}	7.0%	21.2%	10.0%	38.1%	26.1%

Result

• Measuring ratio of *total widths of d and s decay modes*, we get

- Using cross-check with exclusive decays of $B \to (\rho, \omega) \gamma$ and $B \to K^* \gamma,$ we get

$$V_{td}/V_{ts}| = 0.214 \pm 0.046 \pm 0.028$$

Summary

- $B^{0}-B^{0}$ bar oscillations let us measure $|V_{td}|$ and $|V_{ts}|$ separately
- The ratio of these CKM matrix elements gives us more reliable measurement
- $|V_{td}/V_{ts}|$ is measured from penguin diagrams in various B decays
- Stay tuned for more precision measurements from Belle II and other experiments
- To conclude, B-physics provides a great experimental handle to study diverse physics phenomena

References

- Most pictures and equations from Modern particle physics textbook
- Physics 226 lecture slides by Heather Gray (Fall 2017) https://sites.google.com/lbl.gov/gray-ph226-2017/home
- |V_{td}/V_{ts}| measurement: http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-13340.pdf

Measuring the sides of the CKM Matrix

- Nuclear beta decays: $|V_{ud}| = 0.97417 \pm 0.00021$
- Semileptonic kaon and hyperon decays: $|V_{us}| = 0.2248 \pm 0.0006$.
- Semileptonic charm decays+form factors: $|V_{cd}| = 0.220 \pm 0.005$.
- Semileptonic D or leptonic D_s decays: $|V_{cs}| = 0.995 \pm 0.016$
- Semileptonic exclusive and inclusive B decays: $|V_{cb}| = (40.5 \pm 1.5) \times 10^{-3}$
- Endpoint spectrum in semileptonic B decays $|V_{ub}| = (4.09 \pm 0.39) \times 10^{-3}$
- The terms involving top quarks are more challenging
 - Unlikely to measure $|V_{td}|$ and $|V_{ts}|$ from tree-level processes with top quarks

• Use B-B oscillations with top quarks in box diagrams $|V_{td}| = (8.2 \pm 0.6) \times 10^{-3}, \qquad |V_{ts}| = (40.0 \pm 2.7) \times 10^{-3}.$

- Clean measurement from $K^+ \rightarrow \pi^+ \nu \nu$
- |Vtb|: ratios of br. fractions in top decays or single top $|V_{tb}| = 1.009 \pm 0.031$