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Why machine learning?

* Much of particle physics and cosmology is about dealing
with very large data sets, and ML can help

e Distinguish BSM(signal) from SM(background)
* Model independent analyses

e Simulating the detectors

* Real time analysis / triggers

* ML learning research ranges from applying state of the art
techniques to developing new methods

We have several people involved in machine learning for HEP

Andreasen (Theory), Bhimji (NERSC), Calfiura (CRD), Farrell (NERSC), Gray
(ATLAS), Moult (Theory), Nachman (ATLAS), Seljak (Cosmo), Wang (ATLAS)



Why quantum computing?

e HEP is continuously pushing the computing frontier
* Need to obtaining precise theory predictions
* Analyzing and reconstructing data
* |Important calculations often lack computing resources

e Scaling up resources by linear factors does not get us
where we would like to be

* Hope is that guantum computing could eventually provide
exponential increase in computing power

Rapidly growing field, with very strong roots in Berkeley (too many
people to list).

Efforts range from building quantum hardware, building quantum
sensors and developing quantum algorithms



A few examples...



Machine learning in HEP
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Machine learning in HEP
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Machine |

These are just a few examples!

We have a broad and deep
program, with a close connection to

full supervis our colleagues at NERSC.

Cla

Always looking for students in this endeavor
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Cosmology initial condition reconstruction

Initial Dark Matter Dark Matter Today Galaxy Light Today
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We use optimization that finds the best solution in terms of final
data (optimal filter). This 3-d example optimizes in 2 million
dimensions. Galaxy are sparse tracers, so we loose small scale info 27

MACHINE LEARNING AND PHYSICS WORKSHOP UROS SELJAK



Track Pattern Recognition

* The High-Luminosity LHC (HL-LHC) is expected to pose a challenge for
computing

* Increased luminosity
* Increased read-out rates (trigger+detector upgrades)
* Increased pile up
* Currently project to need more CPU time than will be available

* Dominated by track reconstruction: algorithms to reconstruct the
trajectories of charged particles passing through the detector

Vital to explore new algorithms
and technologies

HEP.QPR: can quantum
computers play a role
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Quantum Pattern Recognition (HEP.QPR) @}1

* Project exploring algorithm for pattern recognition on currently available
quantum computers

IBM 20Q D Wave

Tokyo

* Recent publications on quantum annealing (D-VVave) and quantum
associative memory

* Berkeley/LBL Team: Heather Gray (Pl), Paolo Calafiura, Wim Lavrijsen, Wahid
Bhimji, Alex Smith and collaborators in Switzerland, Canada and Japan

* More details: https://sites.google.com/lbl.gov/hep-gpr/

* Openings for graduate students (including this summer!)


https://arxiv.org/abs/1902.08324
https://arxiv.org/abs/1902.00498
https://arxiv.org/abs/1902.00498
https://sites.google.com/lbl.gov/hep-qpr/

Quantum computing for simulations

Can quantum algorithms allow more precise calculations?

s Inherently Simulations for scattering can
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Main limitation is that quantum interference effects can not be
included for high multiplicity

Goal to develop quantum algorithms that can do high multiplicity
simulations including quantum interference effects



Quantum computing for simulations

Consider simple toy model which exhibits quantum interference
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Can be simulated on quantum computer with N4 scaling
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Exciting cutting edge research with opening for graduate students



If you have any more gquestions, you
can talk to a few of us in a little bit
during the “lab tour”



