
Peter Sorensen / Physics Division Senior Scientist / Berkeley Lab / May 2019     #

The race to detect dark matter in the laboratory
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 (or hit the neutrino floor trying)

neutrino floor

radon rug
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Simplified contents of the universe
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graphic courtesy of NASA
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We know the baryon content of the universe
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Simplest model for evolution of the universe
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ΔT

ΔM

requires non-baryonic dark matter

380,000 y later
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The existence of dark matter is an observational result
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Nature 487 202 (2012)

15 Mpc/h

Y. Sofue et al., Publ. Astron. Soc. Japan 55 59 (2003) 

•Non-luminous matter is 
observable from gravitational 
interactions

•Its distribution follows ordinary 
matter
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Ap. J. 667 176 (2007)

dark matter

visible matter

Dark matter distribution follows ordinary matter
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stacked weak lensing galaxy profiles

cf. arXiv:1311.6524

galactic velocities: ~0.001c

a 100 GeV particle has: 
     E ~ 50 keV 

if it scatters elastically with 
a target atom on earth, 
typical energy deposits are 
O(10) keV

(galactic dark matter halo)
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Standard model of particle physics does not account
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wikipedia graphic

dm
???

dark matter

for non-baryonic dark matter
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Early seed of today’s WIMP-search experiments
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Predicted WIMP-nucleon scattering spectra
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Reprise of introduction
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More dark matter than ordinary matter in the universe

Distribution follows ordinary matter — eg a halo of DM 
surrounding the Milky Way

Electromagnetic interactions absent or highly suppressed

WIMPs are a prime candidate for dark matter.  Their cross 
section with ordinary matter is unknown

keV-scale scattering interactions expected, for all the simplest 
models

keV? No problem, right?
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A 0.7 kg germanium spectrometer
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Ahlen et al. Phys Lett B 195 603 (1987) 

1 cts/keV/kg/day

~100 GeV 
WIMPAnnals of Nuclear Energy 46 213(2012)

available signal: ~330 e-/keV
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Lay of the land: dark matter parameter space
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time
Snowmass CF1 Summary, arXiv:1310.8327

parameter space above 
solid curves is excluded



Peter Sorensen / Physics Division Senior Scientist / Berkeley Lab / May 2019     #

Evolution of detector technology
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Snowmass CF1 Summary, arXiv:1310.8327

community label my label
crystal has walls, single-channel energy reconstruction
cryogenic partial walls, dual-channel energy reconstruction
liquid xenon no walls! dual-channel energy reconstruction
liquid argon ibid, but loaded with radioactive 39Ar
back to crystal? just like the green triangles, except crystal

I propose to add
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“physicists confirmed dark matter in 1998”
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A 10 kg x 25 array of NaI scintillator (DAMA) —
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arxiv:1805.10486

detecting dark matter since ~1998

Cosine-100 Collaboratio
n

crystal

available signal: ~40 photons/keV
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Detection claim due to annual modulation signature
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“No systematic or side reactions 
able to mimic the exploited DM 
signature have been found or 
suggested by anyone over more than 
a decade.’’
                 —DAMA Collaboration

https://www.hep.shef.ac.uk/
research/dm/intro.php

cf.  Pradler et al, Phys Lett. B 720 (2013) 399
Nygren, arXiv:1102.0815
McKinsey, recently posted to arXiv

cf. COSINE experiment, Nature 564, p83–86 (2018)  
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CoGeNT tacit detection claim
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Aalseth et al. Phys Rev Lett 106 131301 (2011) 

“It is tempting to consider a cosmological 
origin. Past experience prompts us to exhaust 
less exotic possibilities. ” —CoGeNT, 2011

1 cts/keV/kg/day

crystal
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Discrimination of surface and bulk events in CoGeNT
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Aalseth et al. Phys Rev Lett 106 131301 (2011) 

“There is also the addition of a Pb-210 
[surface] background estimate” —CoGeNT, 
2012 (comments section of arXiv:1208.5737)



Peter Sorensen / Physics Division Senior Scientist / Berkeley Lab / May 2019     #

CRESST anomaly
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cryogenic

European Physical Journal C (2016) 76:25
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CDMS anomaly
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Phys. Rev. Lett. 111, 251301 (2013)

cryogenic
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XENON100 anomaly
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Phys. Rev. Lett. 109 181301 (2012)

PS, Phys. Rev. D 86 101301(R) (2012)
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—W. Pauli
as quoted in Growth, Dissolution, and Pattern Formation in Geosystems (1999)

“God made the bulk, surfaces were invented by the devil”

surfaces lead to:
•a dead layer in charge collection
•an opaque layer in scintillation detection

=> spurious events near energy threshold

meanwhile,
          xenon TPCs have no walls!!
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Liquid noble gas TPC
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Bolozdyna et al., IEEE Trans. Nucl. Sci. 42 (1995) 565 

liquid xenon

drift time 
indicates 
z coord.

arXiv:1310.8327
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LZ was designed to detect WIMPs
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lzdarkmatter.org
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(x,y,z) vertex reconstruction effectively removes the walls
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arXiv:1802.06039



Peter Sorensen / Physics Division Senior Scientist / Berkeley Lab / May 2019     #

One or Two?

 27

1. Having figured out how to avoid spurious low-energy signals, 
we can build a larger a liquid xenon TPC for a discovery-
class experiment to search for dark matter. The End!

2. As sensitivity improves, new pathologies and backgrounds 
have an opportunity to transition from sub-dominant to 
dominant 
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LUX: state of the art in 2014
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Phys. Rev. Lett. 112, 091303 (2014)

sub-dominant
1e-4 events/keV/kg/day 
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LZ: aiming for state of the art in 2020
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NOT
sub-dominant
2e-5 events/keV/kg/day 

arXiv:1802.06039
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LZ will be deployed at SURF, one mile underground
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(Two flights down)
LZ water tank shield

The Black Hills of South Dakota: Sanford Underground Research Facility

(One mile down, the Davis Campus)
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Building LZ at the surface in a reduced-radon cleanroom
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Why radon is such a tricky issue
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1. Radon diffuses out of 
detector construction 
materials

2. It dissolves into the liquid 
xenon

3. Its daughter 214Pb has a 
10.6% branching beta decay 
directly to ground
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LZ has good, but imperfect discrimination
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background 
leakage

background band

signal band

1150 BG events 
  832 from Rn
  200 from solar nu
   <1 atm. nu
  40 8B+ hep nu

Internal 
backgrounds !! 

LZ 5600 kg x 1000 days search:
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LZ radon mitigation strategy is comprehensive

 35

1. Massive material screening campaign. Build out the 238U
2. Massive cleanliness campaign. Build LZ clean
3. Charcoal trap radon reduction loop on gas-phase radon 
emanation
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Comment on radon reduction results to date
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XENON1T prediction w/o cryogenic distillation (dash) 
and measured w/ cryogenic distillation (shaded)

Active area of R&D.  

HARD.
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Projected LZ sensitivity in 2025
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LZ will detect a 
significant number of 
solar neutrinos, but 
radon is going to keep 
LZ from reaching the 
neutrino floor

“radon rug” (?)
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“Every problem has an instrumentation solution”
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Refinement of the problem
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218Po 
3.1 min

α
214Pb 
26.8 min

β
214Bi 
19.9 min

β
214Po 
164 us

α

210Pb 
22.2 year

β
210Bi 
5.0 day

β
210Po 
138 day

α
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Convective fluid flow in liquid xenon
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~mm/s  =>  ~6 cm/min

i.e.  too fast

Phys. Rev. D 95, 072008 (2017)
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Instrumentation solution: crystallize
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• crystalline xenon TPC instead 
of liquid xenon TPC

• Radon isn’t soluble in a 
crystal

• In a crystal, radon decay 
daughters would stay at the 
same (x,y,z) as the parent

arXiv:1410.6496
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Similar particle detection properties
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• Solid and liquid xenon 
have similar physical 
properties
• electron mobility
• electron emission
• band gap (hence W-value)
• density (20% bonus!)

• cf. arXiv:1410.6496 and arXiv:
1508.05903

Phys Rev B 10 4464 (1974)

JETP 55 860 (1982)
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Similar cryogenic requirements
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Crystal growth will be a key technical challenge
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• Need to retain high purity while 
crystalizing

• would take O(1 year) to 
crystallize LZ

• Need to control outgassing 
of impurities

• Need more precise temperature 
control to maintain crystal growth 

arXiv:1410.6496
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Radon events in LZ and in crystaLiZe
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LZ crystaLiZe
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crystaLiZe projected result
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370 BG events 
  17 from Rn
  200 from solar nu
   <1 atm. nu
  40 8B+hep nu

crystaLiZe 5600 kg x 1000 days search:

three hypothetical WIMP events at 1e-48 cm2

R&D underway in B70A
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Thank you
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LZ, XENONnT 
0.001 MeV

BOREXINO 
0.16 MeV SNO 

3.5 MeV

0.010.005 0.05

(blob area ∝ detector mass)

Homestake 
0.81 MeVSAGE 

0.22 MeV

superK 
4 MeV

0.02

LUX


