

FLAVOR CHANGING NEUTRAL CURRENTS in top decays

Patrick McCormack

March 6, 2019

Oh no, is this a GIM Mechanism lecture?

- Well not exactly, I'm going to assume we all know the 6 quarks
- Let's just start from the Standard Model

Why are there no tree-level FCNC?

- Let's only worry about quarks for now
- Fermions acquire mass via Yukawa type coupling with a scalar with a vev so:

•
$$\mathcal{L} \supset \overline{Q}_L \phi q_R \supset (\overline{u}_L \ \overline{d}_L) \begin{pmatrix} 0 \\ v+h \end{pmatrix} d_R$$

• The left-handed fermions carry SU(2) charge so:

•
$$\mathcal{L} \supset g \bar{Q}_L \gamma^\mu \tau_i W^i_\mu Q_L \approx g (\bar{u}_L \ \bar{d}_L) \gamma^\mu \begin{pmatrix} W^3_\mu & W^+_\mu \\ W^-_\mu & -W^3_\mu \end{pmatrix} \begin{pmatrix} u_L \gamma^\mu \\ d_L \end{pmatrix}$$

• $\mathcal{L} \supset g (\bar{u}_L \gamma^\mu W^+_\mu d_L - d_L \gamma^\mu W^3_\mu d_L)$

Flavor changing charged current

Flavor conserving neutral current

- Q: Are the mass eigenstates and the flavor eigenstates the same?
- A: No

Flavor states are linear combinations of mass states

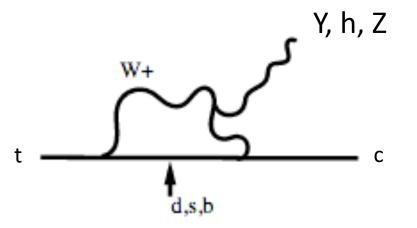
$$\bullet \begin{bmatrix} u' \\ c' \\ t' \end{bmatrix} = V_u \begin{bmatrix} u \\ c \\ t \end{bmatrix}$$

 $\left(\bar{u}'_L \gamma^{\mu} W^{+}_{\mu} d'_L - d'_L \gamma^{\mu} W^{3}_{\mu} d'_L\right) \rightarrow \left(\bar{u}_L V^{\dagger}_u \gamma^{\mu} W^{+}_{\mu} V_d d_L - d_L V^{\dagger}_d \gamma^{\mu} W^{3}_{\mu} V_d d_L\right)$

If $V_d^{\dagger}V_d = 1$, there are still no tree-level FCNC

$$V_{\rm CKM} = \begin{pmatrix} V_{\rm ud} & V_{\rm us} & V_{\rm ub} \\ V_{\rm cd} & V_{\rm cs} & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix}$$

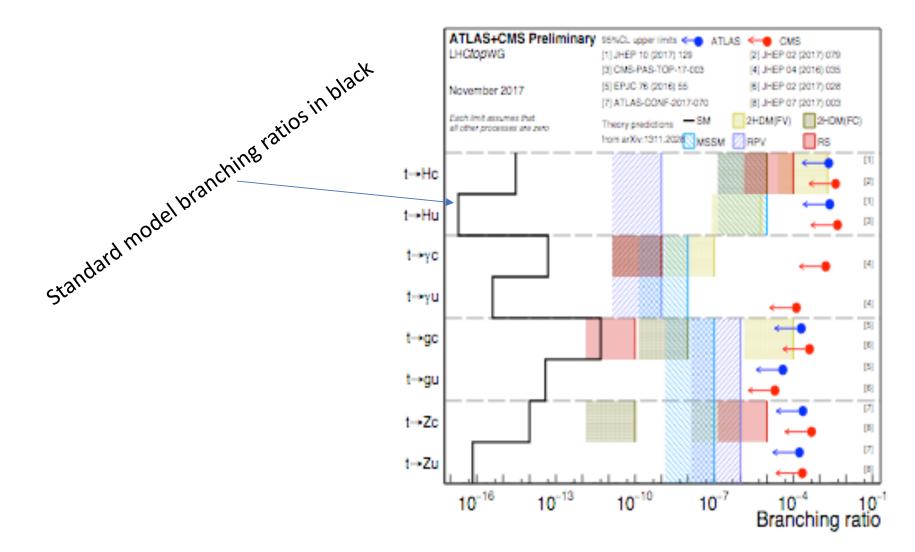
• We can get our top decays from $\overline{u}_L V_u^{\dagger} \gamma^{\mu} W_{\mu}^{+} V_d d_L$


• The CKM matrix value here is basically 1:
$$V_{CKM} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

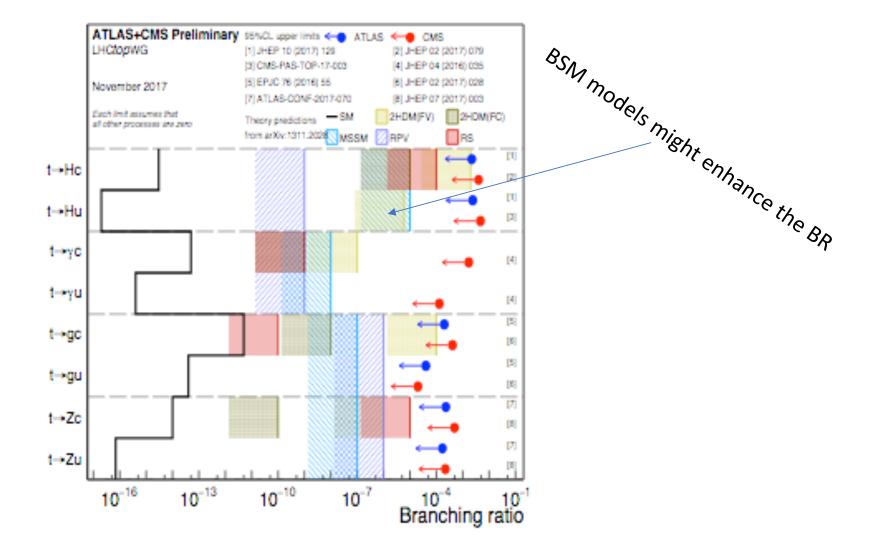
• So the only process that ever really happens in the SM is

$$t \qquad v, \overline{q'} \\ b$$

Top decays- with loops!


• Here's a diagram we could draw:

• But wait!


$$A \sim \propto \sum_{q} V_{tq}^* V_{cq} = 0$$

So why should I care?

You will (probably) never see something with a branching ratio that small

So why should I care?

Let's look at some models

- Preface: most of these models are meant to solve some open problem (e.g. CP violation, hierarchy problem, dark matter, grand unification)
- FCNC top decays end up being a testable prediction
- People aren't just making theories to explain some FCNC phenomenon that hasn't been observed yet

Let's look at some models – Just EFT

- We can generically think of the SM as an effective theory with some cutoff scale of applicability
- Terms in Lagrangian with mass dimension in fields > 4 flow to 0 as cutoff $\rightarrow \infty$ (see "renormalization group" in your fav QFT book)
- In our low energy regime, specifics of "UV completion" don't really matter than much

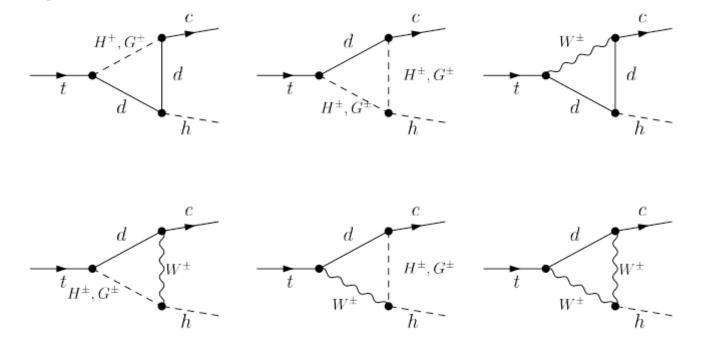
Let's look at some models – Just EFT

• Add terms like:
$$O_y = \frac{\tilde{y}_{ij}^d}{\Lambda^2} \bar{q}_{Li} H d_{Rj} (H^{\dagger} H) + h.c.$$
 $O_q = \frac{\kappa_{ij}^q}{\Lambda^2} \bar{q}_{Li} i \not D q_{Lj} (H^{\dagger} H) + h.c.$
 $O_q' = \frac{\kappa_{ij}'^q}{\Lambda^2} \bar{q}_{Li} H H^{\dagger} i \not D q_{Lj} + h.c.$
 $O_d = \frac{\kappa_{ij}^d}{\Lambda^2} \bar{d}_{Ri} i \not D d_{Rj} (H^{\dagger} H) + h.c.$

- In SM, mass eigenstates are flavor-diagonalized
- These terms allows some off-diagonalization
 - See https://arxiv.org/pdf/0906.1542.pdf for derivation

Let's look at some models – Composite Higgs

- In this model, our regular higgs doublet is a bound state (like a pion) of some new dynamics
- SM fermions couple to the new sector, e.g.: $\lambda_L \bar{\psi}_L O_R + \lambda_R \bar{\psi}_R O_L + h.c.$
- Then you end up with coefficients like


 $y^{d} \sim y_{*} \frac{\lambda_{L} \lambda_{R}}{16\pi^{2}} \qquad \tilde{y}^{d} \sim y_{*}^{3} \frac{\lambda_{L} \lambda_{R}}{16\pi^{2}} \qquad \kappa^{q}, \kappa'^{q} \sim y_{*}^{2} \frac{\lambda_{L}^{2}}{16\pi^{2}} \qquad \kappa^{d} \sim y_{*}^{2} \frac{\lambda_{R}^{2}}{16\pi^{2}}$ for last slide's EFT (see <u>https://arxiv.org/pdf/0906.1542.pdf</u> again)

Let's look at some models – Extra Dimensions

- Common extra dimensional models result in a "Kaluza-Klein tower" of particles, essentially giving heavy copies of SM particles
- There's shift in the top's coupling to heavier Z's
 - See <u>https://arxiv.org/pdf/hep-ph/0606293.pdf</u>
 - Involves branes?
- Get a term like $\mathcal{L}_{FC}^t \ni \left(g_1 \bar{t_R} \gamma_\mu c_R + g_2 \bar{t_L} \gamma_\mu c_L\right) Z^\mu g_Z$

Let's look at some (super) models – 2 Higgs Doublets

- If a theory involves 2 Higgs doublets, that's 8 KG fields
 - 3 eaten by W's and Z
 - 5 real scalar particles left!
- These introduce many new loops to e.g. t->hc
 - Don't necessarily suffer from GIM-type suppression, leading to enhanced branching ratio!

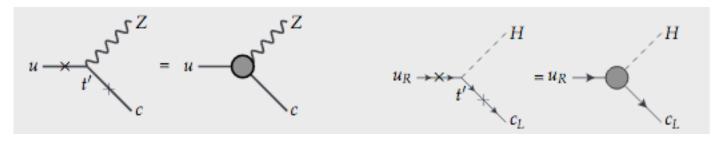

Let's look at some (super) models

Table 1-7. SM and new physics model predictions for branching ratios of top FCNC decays. The SM predictions are taken from [119], on 2HDM with flavor violating Yukawa couplings [119, 120] (2HDM (FV) column), the 2HDM flavor conserving (FC) case from [121], the MSSM with 1TeV squarks and gluinos from [122], the MSSM for the R-parity violating case from [123, 124], and warped extra dimensions (RS) from [125, 126].

Process	\mathbf{SM}	$2 \mathrm{HDM}(\mathrm{FV})$	2HDM(FC)	MSSM	RPV	\mathbf{RS}
$t \to Z u$	$7 imes 10^{-17}$	_	_	$\leq 10^{-7}$	$\leq 10^{-6}$	_
$t \to Zc$	1×10^{-14}	$\leq 10^{-6}$	$\leq 10^{-10}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-5}$
$t \to g u$	4×10^{-14}	_	_	$\leq 10^{-7}$	$\leq 10^{-6}$	-
$t \to gc$	$5 imes 10^{-12}$	$\leq 10^{-4}$	$\leq 10^{-8}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-10}$
$t \to \gamma u$	4×10^{-16}	_	_	$\leq 10^{-8}$	$\leq 10^{-9}$	-
$t\to \gamma c$	$5 imes 10^{-14}$	$\leq 10^{-7}$	$\leq 10^{-9}$	$\leq 10^{-8}$	$\leq 10^{-9}$	$\leq 10^{-9}$
$t \to h u$	$2 imes 10^{-17}$	$6 imes 10^{-6}$	_	$\leq 10^{-5}$	$\leq 10^{-9}$	_
$t \rightarrow hc$	$3 imes 10^{-15}$	$2 imes 10^{-3}$	$\leq 10^{-5}$	$\leq 10^{-5}$	$\leq 10^{-9}$	$\leq 10^{-4}$

Let's look at some models – Vector Quarks


- See Jennet's talk from last week for actual description of vector quarks
 - Main takeaway for this: we get heavy quark
- You can generically get couplings like:

• You can also make loops with these vertices, which might get around the GIM mechanism

Actually looking for FCNC top decays

- At any pp (or $p\bar{p}$) collider of adequate energy, you'll make a lot of $t\bar{t}$ pairs
 - LHC produces ~1,000,000 per year
- Fairly distinct experimental signature: 2 b-jets and 2 W's

Actually looking for FCNC top decays

- Since we're looking for FCNC top decays, the main channel of interest is tt

 t t
- You want to get as distinct a signal as possible, so probably look for higgs decays with multiple leptons (WW*, ZZ*, $\tau \overline{\tau}$)
- Main backgrounds end up being:
 - $t\bar{t}W, t\bar{t}(Z/\gamma^* \to \ell\ell), t\bar{t}H$, and $t\bar{t}WW$;
 - ttt and tttt;
 - single top quark production in the s- and t-channels, tW, tZ, tWZ, tHb, and tHW;
 - production of two or three W or Z/γ^* bosons.

- How hard can it be to just find an event with e.g.
 - A charm jet
 - A b-jet
 - A lepton and neutrino that add up to an on-shell W
 - Four leptons that add up to an on-shell h

- How hard can it be to just find an event with e.g.
 - A charm jet
 - A b-jet
 - ALL OF THESE OBJECTS SUFFER FROM SOME KIND OF SMEARING • A lepton and neutrino that add up to an on-shell W
 - Four leptons that add up to an on-shell h

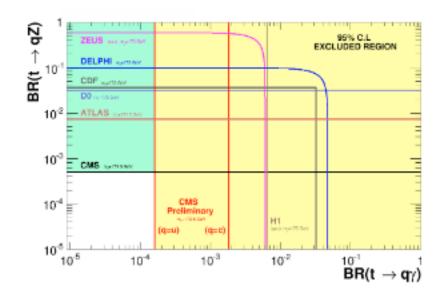
- How often will the background signals really contaminate your signal?
 - That's a good question-> you have to estimate
- The same smearing effects that make the signal hard to tag will make the background look like signal!

- How often will the background signals really contaminate your signal?
 - That's a good question-> you have to estimate
- The same smearing effects that make the signal hard to tag will make the background look like signal!

Process	Cross section [pb]
$t\bar{t}W$	0.60
$t\bar{t}(Z/\gamma^* \rightarrow \ell\ell)$	0.12
tīH	0.51
tītī	0.0092
$t\bar{t}W^+W^-$	0.0099
tHqb	0.074
tHW	0.015
tΖ	0.61
tWZ	0.16
s-, t-channel,	10, 217
Wt single top	72
tī	832
$t\bar{t}\gamma$	5.7
$VV(\rightarrow \ell\ell XX)$	37
$Z \to \ell^+ \ell^-$	2070

Catego	ory	Non-prompt	tīV	tīH	Diboson	Other	Total SM	FCNC	Data
		leptons				prompt SM			
				t	→ Hu				
2ℓSS	Pre-fit	266 ± 40	165 ± 19	43 ± 4	25 ± 15	28 ± 6	526 ± 39	61 ± 13	514
	Post-fit	240 ± 37	167 ± 18	43 ± 4	24 ± 14	28 ± 6	502 ± 33	13 ± 21	
3ℓ	Pre-fit	126 ± 31	84 ± 8	23 ± 3	20 ± 11	24 ± 5	276 ± 33	32 ± 6	258
	Post-fit	104 ± 20	84 ± 8	23 ± 3	19 ± 10	24 ± 5	254 ± 18	7 ± 11	
$t \rightarrow Hc$									
2ℓSS	Pre-fit	266 ± 40	165 ± 19	43 ± 4	25 ± 15	28 ± 6	526 ± 39	62 ± 13	514
	Post-fit	264 ± 41	165 ± 18	42 ± 4	20 ± 11	28 ± 6	520 ± 36	-3 ± 25	
3ł	Pre-fit	126 ± 31	84 ± 8	23 ± 3	20 ± 11	24 ± 5	276 ± 33	30 ± 6	258
	Post-fit	116 ± 21	84 ± 8	23 ± 3	15 ± 8	23 ± 5	262 ± 19	-1 ± 12	

ATLAS trained a BDT to distinguish FCNC events from background


Yields if BR(t->hc) = 0.2%

- With SM, you don't expect to see direct evidence of FCNC top decays
- The "smoking gun" would be an excess in the number of observed events in the signal region
- If you don't see it, all you can do is give an upper limit to the BR based on your sensitivity

Historical results

Table 1. The most stringent experimental upper bounds on the top quark FCNC branching ratios at 95% CL obtained in CDF, D0, ATLAS and CMS from different channels.

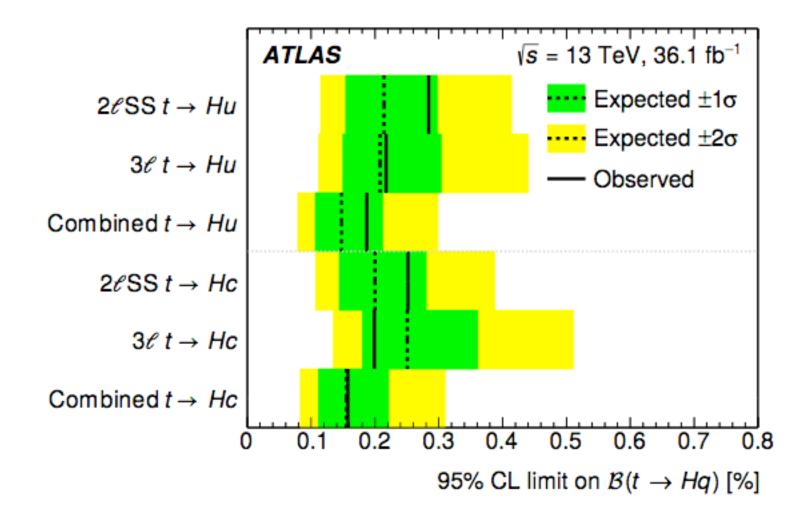

EXP	\sqrt{s} TeV	$\mathcal{L}(fb^{-1})$	Br	(q=u)%	(q=c)%	Ref
ATLAS CMS	7&8 8	$\begin{array}{c} 25\\ 19.5 \end{array}$	$t \to q H$	0.79 0.56		[9] [10]
CDF CMS	1.8 8	0.11 19.1	$t \to q \gamma$	3. 0.0161	.2 0.182	[15] [19]
CDF D0 CMS CMS ATLAS	1.96 1.96 7 7 8	$2.2 \\ 2.3 \\ 4.9 \\ 4.9 \\ 14.2$	t o qg	$\begin{array}{c} 0.039 \\ 0.02 \\ 0.56 \\ 0.035 \\ 0.0031 \end{array}$	0.57 0.39 7.12 0.34 0.016	[20] [28] [26] [25] [21]
CDF D0 CMS ATLAS CMS	1.96 1.96 7 7 7&8	$1.9 \\ 4.1 \\ 4.9 \\ 2.1 \\ 24.7$	t ightarrow qZ	3. 3. 0.51 0.' 0.0	.2 11.40 73	27 [28] [26] [29] [30]

Figure 3. The observed 95% C.L. upper limit on the $BR(t \rightarrow q\gamma)$ vs $BR(t \rightarrow qZ)$ for the DELPHI, ZEUS, H1, D0, CDF, ATLAS and CMS collaborations.

https://arxiv.org/pdf/1412.2524.pdf

2018 ATLAS paper

https://arxiv.org/pdf/1805.03483.pdf

Summary and conclusions

- SM predicts that we should not see FCNC top decays
- If we DID, that'd be a sign of BSM physics
- As of now, current experiments aren't really able to rule out popular models that would give FCNC enhancements
- With increasing statistics, BR constraints should be come stronger

References

- Theory:
 - EFT and composite higgs: https://arxiv.org/pdf/0906.1542.pdf
 - Extra dimensions: <u>https://arxiv.org/pdf/hep-ph/0606293.pdf</u>
 - MSSM: <u>https://arxiv.org/pdf/hep-ph/9906268.pdf</u>
 - General 2HDM: <u>https://arxiv.org/pdf/hep-ph/0011091.pdf</u>
 - Vector quarks:

http://www.ectstar.eu/sites/www.ectstar.eu/files/talks/Panizzi.pdf

- Experiment:
 - Top quark studies: <u>https://arxiv.org/pdf/1311.2028.pdf</u>
 - Contains historical results: <u>https://arxiv.org/pdf/1412.2524.pdf</u>
 - 2018 ATLAS paper: <u>https://arxiv.org/pdf/1805.03483.pdf</u>