
UNIVERSITY OF
CALIFORNIA

Current and Future
YARR in a Nutshell

ITk DAQ Workshop - 27.05.19

�1

Timon Heim - LBNL

Timon Heim �2 ITk DAQ Workshop

Outline

• Motivation and Goals

• Conceptual overview and design philosophy

• Hardware controller

• Front-End chip

• Scans

• Data processing: decoding, histogramming, & analysis

• Next development steps

Timon Heim �3 ITk DAQ Workshop

Motivation

• Example IBL: lab testing → USBPix, stave testing → RCE,
operation → ROD/BOC

• Each system had a different code base (sw + fw)

• SW entangled with fw, not easy to simply migrate

• Expert knowledge and maturity of sw lost or not available at
next stage

• Had a huge impact on DAQ for operation and how many
developers were needed to get it running

• Want to maintain a mature sw and have experts be able to
apply their knowledge over a broad spectrum of test scales

Timon Heim �4 ITk DAQ Workshop

Goals

• For ITk we should strive to have software base which can be
used for small scale lab tests as well full detector operation

• SW should be common to Pixels and Strips

• This results in certain requirements:

• Agnostic to hardware/firmware

• Somewhat agnostic to Front-End chip type

• Scalable in both senses (small and large)

Timon Heim �5 ITk DAQ Workshop

Where does

YARR come from?

• YARR was originally designed as readout system using PCIe
FPGA cards for FE-I4 (IBL)

• It tried to perform as much processing as possible in SW

• This resulted in minimum entanglement with FW, the PCIe card
simply acted as a FIFO

• After some abstraction of the hardware and chip interface YARR
seemed useable as a basis to be expanded and used as ITk SW

• However i.e. there are some remnant from the old days:

• Certain things are general but still in the FE-I4 class

• The hardware interface has certain functions which are driven
by the features of the YARR-FW for PCIe (primarily naming)

Timon Heim �6 ITk DAQ Workshop

Conceptual Overview
YARR SW core:

• Common sw core used in small lab systems up to full detector readout

• Improvements to core transfer to all DAQ systems

• Well defined interfaces required

YARR SW Core

ATLAS TDAQ 
Interface

Calibration 
Console

Testbeam 
Monitor

ROD/BOC

BDAQ

RCE

YARR PCIe

Config DB Result DB

...

User interface Hardware 
Interface

Config/Result 
Interface

Readout 
Hardware

✓
FELIX ✓

✓

✓

✓

✓

✓

...

FE-I3

FE-I4

RD53

HCC/
ABC130

Readout 
ASIC

✓
✓

✓

FE Interface

HCC/
ABCStar

Timon Heim �7 ITk DAQ Workshop

Design Philosophies

• Simple firmware, smart software: the more we do in software, the less
we are bound to specific features in hw/fw → hardware agnostic

• Keep it modular: the more often code and structures can be re-used,
the better → Front-End chips are more alike than you might think

• Simplicity can be key: carefully balance performance and simplicity, we
are bad at writing documentation and the code has to live for the next
10+ years, still don’t want it to be slow of course

• Pipeline it: wherever possible data should only travel in one direction,
avoid process interdependency → eases scaling

Timon Heim �8 ITk DAQ Workshop

Hardware Controller

Assumptions:

• Interaction with chip can be broken down into sending and receiving of data

• Represented by the Tx and RxCore in the interface

• Sending of commands:

• Small to medium bandwidth

• Primarily configuration data

• Broadcast wherever possible

• Some support from firmware, but not necessary for everything

• Receiving of data:

• Max. bandwidth

• One data stream per front-end object

• Will enter processing chain

• Only rudimentary decoding done in hardware

• Sending either to one or all chips*

• Receiving from all chips (demultiplexing in sw)*

*see future section

Timon Heim �9 ITk DAQ Workshop

TxCore
FiFo style sending of commands

Trigger interface

Interface to a buffer which can be send with a programmed frequency.
Can do this from either sw or fw (but better timing via fw).

writeFifo() can be buffered in  
SW to increase package size,  
until releaseFifo() is called

https://gitlab.cern.ch/YARR/YARR/blob/master/src/libYarr/include/TxCore.h

https://gitlab.cern.ch/YARR/YARR/blob/master/src/libYarr/include/TxCore.h

Timon Heim �10 ITk DAQ Workshop

RxCore
Reading data FiFo style

Raw data object

SW will read until FiFo is empty

If data give as pointer, does not copy data.

https://gitlab.cern.ch/YARR/YARR/blob/master/src/libYarr/include/RawData.h
https://gitlab.cern.ch/YARR/YARR/blob/master/src/libYarr/include/RxCore.h

https://gitlab.cern.ch/YARR/YARR/blob/master/src/libYarr/include/RawData.h
https://gitlab.cern.ch/YARR/YARR/blob/master/src/libYarr/include/RxCore.h

Timon Heim �11 ITk DAQ Workshop

Front-End Chip
Implementation

• Chip only needs to implement a config file interface and basic
configuration routines

• Advanced functions determined by scan needs which are not
generic

• There will be one object for each chip

• A virtual copy of the chip config is saved within the object

• Wherever possible register should be referred to by object and
not by string (can’t avoid this fully)

https://gitlab.cern.ch/YARR/YARR/blob/master/src/libYarr/include/FrontEnd.h

https://gitlab.cern.ch/YARR/YARR/blob/master/src/libYarr/include/FrontEnd.h

Timon Heim �12 ITk DAQ Workshop

Scans
• Scans typically do the following:

• Configure all activated chips

• Run a loop actions as nested structure:

• Loop over parameter

• Activate portion of pixels

• Inject & Trigger O(100) times

• Read data

• This is facilitated by the scan engine

• Most loop actions are custom for each chip, there are some
more general though

Timon Heim �13 ITk DAQ Workshop

Scans II
• All data from one innermost loop iteration is packaged and meta

data describing the current loop state is added

• These data packages are then run through the processing chain

• Most scans are fully described a-priori, except tunings:

• Tunings require a parameter change which depends on the
analysis outcome

• FeedbackLoops facilitate the interface to the analysis and
allow the analysis to change parameters

• Usually use a “hot or cold” scheme, where the analysis only
determines the direction and the LoopAction applies the
correct parameter change (LoopAction is in charge of tuning
Algorithm)

Timon Heim �14 ITk DAQ Workshop

An Example Scan
N

es
tin

g
di

re
ct

io
n

ou
te

rm
os

t
in

ne
rm

os
t

LoopAction name

LoopAction config

Fei4MaskLoop:
Enables an n-th of all pixel,
where n=max.

Fei4DcLoop:
Enables an n double columns,
where n is defined by max/
mode.

Fei4TriggerLoop:
Injects and triggers at
specified frequency for
specified number of times.

StdDataLoop:
Collect data during triggering.

Timon Heim 15 ITk DAQ Workshop

Data Processing

Bookkeeper

Raw Data

Scan Engine Data Processor Histogrammer Analyser

Configure

Scan Loop

Read Data

Pick up
Event

Histogrammer

Publish
Histogram

Pick up
Histogram

Analysis

Publish
Result

Pick up
Raw Data

Process and
build Event

Raw Data
Raw Data

Raw Data
Events

Raw Data
Events

Raw Data
Events

Histogram

Raw Data
Histogram

Raw Data
Histogram

Raw Data
Result

Raw Data
Result

Raw Data
Result

Tuning Feedback

Datacontainer

Thread

Algorithm

One thread per FE

ParallelisedMonolithic

Timon Heim �16 ITk DAQ Workshop

Data Pipeline

Timon Heim �17 ITk DAQ Workshop

scanConsole
• scanConsole is the main tool which will be used for calibration

Important command line arguments:

• -c : the connectivity tell scanConsole which chip is connected where and also points to

the right chip config

• -r : the controller config tell scanConsole which controller to use and how to configure it

• -s : the scan config contains all necessary information to construct the scan

Timon Heim �18 ITk DAQ Workshop

configs

Timon Heim �19 ITk DAQ Workshop

configs II

Timon Heim �20 ITk DAQ Workshop

Work In Progress

Timon Heim �21 ITk DAQ Workshop

Scaling It Up

• How to scale this up?

• Break pipeline into pieces distributed over multiple machines

• Have multiple scan engines delivering data to a central or
multiple central data processing servers

• Requires:

• Orchestration of scan engines and data processors,
distribution of configuration to all sub-processors (RPC)

• Serialisation of data in between processes (IPC)

https://indico.cern.ch/event/609081/contributions/2636091/attachments/1483038/2300644/ItkWeek_SW_20170626.pdf

https://indico.cern.ch/event/609081/contributions/2636091/attachments/1483038/2300644/ItkWeek_SW_20170626.pdf

Timon Heim �22 Meeting Name

Title Text

Hideyuki Oide 2017-06-26

The current scan operation model being assumed

For performing a scan, for each hardware, there is a software process which exclusively
governs the control of configuration and trigger (the one that TxCore() and RxCore()
are equipped). This part of the software module is referred to as “Scan Engine”.

Each scan engine is agnostic to the presence of the other hardwares.

Each hardware board works in parallel between the start and the end of the scan, but they
do the same scan task.

6

FE FE FE …

Hardware

FE FE FE …

Hardware

FE FE FE …

Hardware

ScanEngine ScanEngine ScanEngine

Tx Rx Tx Rx Tx Rx

Master
The organization of multiple scan
engines is synchronization of the
configuration and states (in terms of
slow control) via high-level
messaging.

The data processing (histogramming
and analysis) may be performed
locally, or delegated to the
specialized computing farm
allocated in the downstream.
(Arbitrarieness of the arrangement
should be ensured.)

sync.
states sync.

states

sync.
states

these work independently (asynchronously)

Expected to be applicable
to most use-cases in the lab.

Timon Heim �23 Meeting Name

Title Text

Hideyuki Oide 2017-06-26

Data flow design
Wish to have flexibility of grouping of the function modules within a process.

Object data need to support serialization.

14

TxCore Data In

Hardware

RxCore Data
OutBitStream

Config/Trigger

ScanEngine

DataProcessor Histogrammer

OutEventDataIn

Data Out

In

Analysis

Out

RawDataContainer

Wrapping

Decoding Fill Accum

Tx
Rx

FE

Tx
Rx

FE

Tx
Rx

FE

InOut

Histogrammer

Out In

Analysis

OutFill AccumIn

Histogrammer

Out In

Analysis

OutFill AccumIn

ScanCrew
AnaCrew

Data needs serialization!

(instance)

(instance)

Timon Heim �24 ITk DAQ Workshop

Generic Data Processor

• Already heavily rely on nlohmann::json, convenient format also for serialisation

• Use msgpack to serialise json object

• Where json is too costly in terms of memory or bandwidth, usually already have handy
RawData format

• By performing some optimisation to nlohmann::json could even be used as a histogram
container (see recent work from Matthias)

https://msgpack.org/index.html

Timon Heim �25 ITk DAQ Workshop

FELIX Integration

• FELIX is in many ways similar to YARR-PCIe as it is trying to
stay agnostic and just shuffle data from and to the chip

• However primarily difference is that one does not interact
directly with FELIX, but rather NetIO

• NetIO is an IPC package and enables subscription to single
data channels

• NetIO has been successfully implemented as a hardware
controller, however the interface is somewhat unoptimised
towards it

Timon Heim �26 ITk DAQ Workshop

NetIO optimisation
e-link0

e-link1

e-link2

...

RxCore DataProcessor

Histogrammer

Histogrammer

Histogrammer

...

Currently assuming
data comes through

single interface,
hence demultiplexing

in DataProcessor.
For NetIO we have
to aggregate again

because of this.

e-link0 DataProcessor Histogrammer

RxCoree-link1 DataProcessor Histogrammer

If data is available
already demultiplexed,
should just pass it on

Otherwise hw specific
RxCore takes care of

demux

Timon Heim

YARR

�27 ITk DAQ Workshop

Database

local DB Production DB

Viewer

YARR
QC Analysis

Retriever

Configs Scans

local DB:

• Possibly gitDB based (prototype exists

but needs some scrutinisation)

• Via git features can be used to sync

configs over multiple machines or even to
other institutes (aka remotes)

• All stored files are json based, plane file
editing still possible

Production DB:

• Should only store good and interpreted

QC data (result based on input from
multiple scans)

• Can retrieve configs from last step (or
before) to local DB

• QC Analysis can also take other source of
data into account (e.g. pictures)

Multiple  
scans/configs

QC result

Config from 
last step

Viewer\
Editor

Other sources 
of data

Timon Heim �28 ITk DAQ Workshop

Further Outlook
• Target supporting larger system tests:

• Distributed processing

• O(100) chip operation

• FELIX

• Develop and document routines for QC

• Interaction with database

• Also interesting for Strips as we will run surface tests with FELIX and have to
compare to previous QC

• Test and benchmark detector-level operation of the code

• Pulling/Pushing configurations from DB

• Crashing sub-processes

• Develop and implement SW ROD

Timon Heim �29 ITk DAQ Workshop

Backup

Timon Heim �30 ITk DAQ Workshop

References

• Gitlab: https://gitlab.cern.ch/YARR/YARR

•

https://gitlab.cern.ch/YARR/YARR

Timon Heim �31 ITk DAQ Workshop

An example

Computer

Kintex7FMC Adapter
Card

PCIe Card

PCIe

CPU

Memory

YARR SW
ModuleModuleModuleModules

RD53A, FE-I4,
FE65P2

YARR FW

HW: https://gitlab.cern.ch/YARR/YARR-FW

DisplayPort
Cable

RD53A

Ohio Adapter
PCIe FPGA

https://gitlab.cern.ch/YARR/YARR-FW

Timon Heim �32 Meeting Name

Loop Actions

init()

execPart1()

execPart2()

end()

init()

execPart1()

init()

execPart1()

execPart2()

end()

execPart2()

end()

Loop 1 Loop 2 Loop 3

has inner

has inner

done

done

done

!(has inner)
!done

!done!done

