> ' A (N
;;4 PEXPRRIMENT. T oLy S (W “yiiroor

Current and Future
YARR in a Nutshell

ITk DAQ Workshop - 27.05.19

Timon Heim - LBNL

é YARR g

ST Outiine Z2)

e Motivation and Goals
e (Conceptual overview and design philosophy
e Hardware controller
e Front-End chip
e Scans
e Data processing: decoding, histogramming, & analysis

e Next development steps

Timon Heim 2 ITk DAQ Workshop

S

CERN ;§§ » | A€

Motivation ‘

e Example IBL: lab testing =& USBPix, stave testing = RCE,
operation = ROD/BOC

e FEach system had a different code base (sw + fw)
e SW entangled with fw, not easy to simply migrate

e Expert knowledge and maturity of sw lost or not available at
next stage

e Had a huge impact on DAQ for operation and how many
developers were needed to get it running

e \Want to maintain a mature sw and have experts be able to
apply their knowledge over a broad spectrum of test scales

Timon Heim 3 ITk DAQ Workshop

e For |ITk we should strive to have software base which can be
used for small scale lab tests as well full detector operation

e SW should be common to Pixels and Strips
e This results in certain requirements:
e Agnostic to hardware/firmware
e Somewhat agnostic to Front-End chip type

e Scalable in both senses (small and large)

Timon Heim 4 ITk DAQ Workshop

) GATLAS Where does N
YARR come from? =

e YARR was originally designed as readout system using PCle
FPGA cards for FE-I4 (IBL)

e |t tried to perform as much processing as possible in SW

e This resulted in minimum entanglement with FW, the PCle card
simply acted as a FIFO

e After some abstraction of the hardware and chip interface YARR
seemed useable as a basis to be expanded and used as ITk SW

e However i.e. there are some remnant from the old days:
e (ertain things are general but still in the FE-I14 class

e The hardware interface has certain functions which are driven
by the features of the YARR-FW for PCle (primarily naming)

Timon Heim 5 ITk DAQ Workshop

&) GATLAS = A
Ve EXPERIMENT » receeea| i

Conceptual Overview
YARR SW core:

- Common sw core used in small lab systems up to full detector readout
- Improvements to core transfer to all DAQ systems
- Well defined interfaces required

FE Interface Readout Readout
ASIC Hardware

FE-I13 User interface =~ Hardware
Interface

FE-14
J YARR SW Core

HCC/
ABCStar

- - & g
Config/Result

Interface
Timon Heim 6 ITk DAQ Workshop

G SALAS T ey |-
Design Philosophies

e Simple firmware, smart software: the more we do in software, the less
we are bound to specific features in hw/fw — hardware agnostic

e Keep it modular: the more often code and structures can be re-used,
the better = Front-End chips are more alike than you might think

e Simplicity can be key: carefully balance performance and simplicity, we
are bad at writing documentation and the code has to live for the next
10+ years, still don’t want it to be slow of course

e Pipeline it: wherever possible data should only travel in one direction,
avoid process interdependency — eases scaling

Timon Heim 7 ITk DAQ Workshop

\ N
D] GAILAS eeed)

Hardware Controller

Assumptions:
- Interaction with chip can be broken down into sending and receiving of data
* Represented by the Tx and RxCore in the interface
- Sending of commands:
- Small to medium bandwidth
 Primarily configuration data
« Broadcast wherever possible
« Some support from firmware, but not necessary for everything
 Receiving of data:
« Max. bandwidth
- One data stream per front-end object
« Will enter processing chain
« Only rudimentary decoding done in hardware
« Sending either to one or all chips*
+ Receiving from all chips (demultiplexing in sw)*

*see future section

Timon Heim 8 ITk DAQ Workshop

@] GAILAS

EXPERIMENT

virtual
virtual
virtual
virtual
virtual
virtual
virtual

Timon Heim

void
void
void
void
void
void
void

FiFo style sending of commands

virtual void writeFifo(uint32_t) = 0;
virtual void releaseFifo() = 0;

virtual void setCmdEnable(uint32_t) = 0;
virtual uint32_t getCmdEnable() = 0;
virtual bool isCmdEmpty() = 0;

Trigger interface

virtual void setTrigEnable(uint32_t value) = 0;
virtual uint32_t getTrigEnable() =
virtual void maskTrigEnable(uint32_t value, uint32_t mask) = 0;
virtual bool isTriaDone() = 0:

93

setTrigConfig(enum TRIG_CONF_VALUE cfg) = 0;

setTrigFreq(double freq) = 0;
setTrigCnt(uint32_t count) = 0;
setTrigTime(double time) = 0;
setTrigWordLength(uint32_t length)
setTrigWord(uint32_t s*word, uint32_
toggleTrigAbort() = 0;

t

0;
length) = 0;

Interface to a buffer which can be send with a programmed frequency.
Can do this from either sw or fw (but better timing via fw).

https://gitlab.cern.ch/YARR/YARR/blob/master/src/libYarr/include/TxCore.h

E A
TxCore

writeFifo() can be buffered in

SW to increase package size,
until releaseFifo() is called

ITk DAQ Workshop

https://gitlab.cern.ch/YARR/YARR/blob/master/src/libYarr/include/TxCore.h

) CAILAS = A
S~ EXPERIMENT rFreccoeococ| i
RxCore _

Reading data FiFo style

virtual void setRxEnable(uint32_t val) = 0;
virtual void maskRxEnable(uint32_t val, uint32_t mask) = 0;

virtual RawDatax readData() = 0;
virtual void flushBuffer() {} SW will read until FiFo is empty

virtual uint32_t getDataRate()
virtual uint32_t getCurCount()
virtual bool isBridgeEmpty() = 0;

9;
9;

Raw data object
class RawData {

RawData(uint32_t arg_adr, uint32_t xarg_buf, unsigned arg_words);
~RawData();

uint32_t adr;
uint32_t *xbuf;
unsigned words;
LoopStatus stat;

If data give as pointer, does not copy data.

https://gitlab.cern.ch/YARR/YARR/blob/master/src/libYarr/include/RxCore.h
https://gitlab.cern.ch/YARR/YARR/blob/master/src/libYarr/include/RawData.h

Timon Heim 10 ITk DAQ Workshop

https://gitlab.cern.ch/YARR/YARR/blob/master/src/libYarr/include/RawData.h
https://gitlab.cern.ch/YARR/YARR/blob/master/src/libYarr/include/RxCore.h

@) GAILAS Front-End Chip %
Implementation

e Chip only needs to implement a config file interface and basic
configuration routines

e Advanced functions determined by scan needs which are not
generic

e There will be one object for each chip
e A virtual copy of the chip config is saved within the object

e \Wherever possible register should be referred to by object and
not by string (can’t avoid this fully)

https://gitlab.cern.ch/YARR/YARR/blob/master/src/libYarr/include/FrontEnd.h

Timon Heim 11 ITk DAQ Workshop

https://gitlab.cern.ch/YARR/YARR/blob/master/src/libYarr/include/FrontEnd.h

28 b Scans e

e Scans typically do the following:
e (Configure all activated chips
e Run a loop actions as nested structure:
e | oop over parameter
e Activate portion of pixels
® |[nject & Trigger O(100) times
e Read data
e This is facilitated by the scan engine

e Most loop actions are custom for each chip, there are some
more general though

Timon Heim 12 ITk DAQ Workshop

Scans I

e All data from one innermost loop iteration is packaged and meta
data describing the current loop state is added

e These data packages are then run through the processing chain
e Most scans are fully described a-priori, except tunings:

e TJunings require a parameter change which depends on the
analysis outcome

e FeedbackLoops facilitate the interface to the analysis and
allow the analysis to change parameters

e Usually use a “hot or cold” scheme, where the analysis only
determines the direction and the LoopAction applies the
correct parameter change (LoopAction is in charge of tuning
Algorithm)

Timon Heim 13 ITk DAQ Workshop

CERN gﬁ AT A € ~
N GATLAS ceeec)

An Example Scan
"loops": |
4 {
8 "config": :
= "enable_lcap": true, Fei4MaskLoop:
o ;gzﬁle—gggg7 true, Enables an n-th of all pixel,
= "max": 16, < LoopAction config where n=max.
(@) “min": 0,
"step": 1
}, -
"loopAction": "FeidMaskLoop" <«—— LOOpACtIOﬂ name
’
C { :
ol 1 "config": { Fei4DclLoop:
g AR Enables an n double columns,
= "mode": 1, where n is defined by max/
© step": 1 mode.
(@) "y
c "loopAction": "Feid4DclLoop"
g },
P ¢
m b 11} f' n {
config": . : \
= wcount™: 100, Fei4TriggerLoop:
"delay": 30, Injects and triggers at
"extTrigger": false, .
"frequency”: 1000, specified frequency for
"noInject": false, specified number of times.
) L "time": 0
(7p) Ty
CE) "loopAction": "Feid4TriggerLoop"
’
GC) "loopAction": "StdDatalLoop" SthataLoop. ; , :
- } Collect data during triggering.
=y 1,
“"name": "DigitalScan",

Timon Heim 14 ITk DAQ Workshop

Monolithic

Read Data

I Raw Data

Timon Heim

Parallelised

!

Data Processor

Pick up
Raw Data

Process and
build Event

~
~
~
~
~
~
~
~
~

E

Data Processing

Pick up
Histogram
Publish
Result

Histogrammer

Pick up
Event

Publish
Histogram

---- Histogram

—

> Histogram

—

vents > Histogram

Bookkeeper

One thread per FE

N

A

frreeeer ‘m

BERKELEY LAB

Algorithm

|5

Tk DAQ Workshop

\ ATLAS -

A
‘?’ A EXPERIMENT F(reeere ‘m

Data Pipeline

ScanEngine Hardware

»| Data In

Config/Trigger

I |

Data
Out

Data Out Wrapping RXCOf'e

|

BitStream

RawDataContainer Current YARR: a monolithic SW
(instance)

Histogrammer Histogram | Apalysis

DataProcessor (instance)

(instance)

EventData
In Decoding — Fill Out | ——p In Accum

Histogrammer Analysis

Fill Out Accum

Histogrammer Analysis

Fill Accum

Hideyuki Oide 2017-06-26

Timon Heim ITk DAQ Workshop

CERN S\’\jﬁ AT A ¢ =
@) GAILAS o :

scanConsole

e scanConsole is the main tool which will be used for calibration
[theim@Epsilon src]$ bin/scanConsole -h

-> Parsing command line parameters ...
Help:
-h: Shows this.
-s <scan_type> : Scan config
-c <cfgl.json> [<cfg2.json> ...]: Provide connectivity configuration, can take multiple arguments.
-r <ctrl.json> Provide controller configuration.
-t <target_charge> [<tot_target>] : Set target values for threshold/charge (and tot).
-p: Enable plotting of results.
-0 <dir> : Output directory. (Default ./data/)
-m <int> : @ = pixel masking disabled, 1 = start with fresh pixel mask, default = pixel masking enabled
-k: Report known items (Scans, Hardware etc.)

Important command line arguments:

 -c : the connectivity tell scanConsole which chip is connected where and also points to
the right chip config

- -r: the controller config tell scanConsole which controller to use and how to configure it

 -s : the scan config contains all necessary information to construct the scan

Timon Heim 17 ITk DAQ Workshop

ATLAS

EXPERIMENT

1 example_rd53a_setup.json

configs

N
frreeeer ‘m

1 specCfg.json

"ctriCfg" : {
lltypell : llspecll .
"cfg" : {

"specNum" :

1 {
2

3

4

5

6

7

8

9
10 ’s
11
12
13

14 }

"spiConfig" :
fautozZero” :
"word" :
"interval" :

"cmdPeriod" :

0,

541200,
{
1549575846,
500

6.25e-9

2 "chipType" : "RD53A",
3 "chips" : |
4 {
5 "config" : "configs/rd53a_test.json",
6 "tx" : 0,
7 "rx" : 0,
8 "enable" : 1,
9 "locked" : 0@
10 }y
11 {
12 "config" : "configs/rd53a_test_1.json",
13 S ol
14 M 0l
15 "enable" : 0,
16 "locked" : 0@
17 +
18 |
19]
Timon Heim 18

ITk DAQ Workshop

ATLAS K

EXPERIMENT F(reeeeer ‘uﬁ

configs |l eyl

42 "loops": |
43 {
44 "config": {
45 "max": 64,
46 "min": 0,
47 "step": 1
— : 48 Fy
1 std_digitalscan.json 49 "loopAction": "Rd53aMaskLoop"
14 50 i
2 "scan": { 51 {
3 "analysis": { 52 "config": {
4 "o': { 55 "max": 50,
5 "algorithm": "OccupancyAnalysis", gg "min"= 01
6 "config": { :S ep"ﬂl.
7 "createMask": true gg S nSteps™: 25
’
g } ; 58 "loopAction": "Rd53aCoreColLoop"
u'u 59 }I
10 1": { 60 {
11 "algorithm": "LlAnalysis" 61 "config": {
12 i 62 "count": 100,
13 "n_count": 2 63 "delay": 56,
14 | 64 "extTrigger": false,
15 "histogrammer": { 65 "frequency": 18000,
16 "e': { 66 "noInject": false,
17 "algorithm": "OccupancyMap", 67 “time": 0,
18 "config": {} gg) edgeMode": true
’
;g 3iu: { 70 "loopAction": "Rd53aTriggerLoop"
21 "algorithm": "TotMap", ;; i'
- “config": {} 73 "loopAction": "StdDatalLoop"
23 sy 74 }
24 uzu: { 75]'
76 "name": "DigitalScan",
77 “"prescan": {
78 "InjEnDig": 1,
79 "InjAnaMode": 0,
80 "LatencyConfig": 58,
81 "GlobalPulseRt": 16384,
82 "SyncVth": 500,
83 "LinVth" : 500,
84 "Diffvthl": 500
85 }
86 }
87)

Timon Heim 19 ITk DAQ Workshop

(@) ATLAS

EXPERIMENT

Work In Progress

Timon Heim 20

ITk DAQ Workshop

G SALAS . o
Scaling It Up

e How to scale this up?
e PBreak pipeline into pieces distributed over multiple machines

e Have multiple scan engines delivering data to a central or
multiple central data processing servers

e Requires:

e QOrchestration of scan engines and data processors,
distribution of configuration to all sub-processors (RPC)

e Serialisation of data in between processes (IPC)

https://indico.cern.ch/event/609081/contributions/2636091/attachments/1483038/2300644/ItkWeek_SW_20170626.pdf

Timon Heim 21 ITk DAQ Workshop

https://indico.cern.ch/event/609081/contributions/2636091/attachments/1483038/2300644/ItkWeek_SW_20170626.pdf

The current scan operation model being assumed INFN

@ For performing a scan, for each hardware, there is a software process which exclusively
governs the control of configuration and trigger (the one that TxCore() and RxCore()
are equipped). This part of the software module is referred to as “Scan Engine”.

@ Each scan engine is agnostic to the presence of the other hardwares.

@ Each hardware board works in parallel between the start and the end of the scan, but they
do the same scan task.

Expected to be applicable

@ The organization of multiple scan toincotisestaesnithela s
: : . sync. sync.
engines is synchronization of the states sync. states
configuration and states (in terms of states
slow control) via high-level j/ y N
messaging. [ScanEngine [ScanEngine] [ScanEnginej
® The data processing (histogramming Tx l T Rx Tx l T Rx Ty l T Ry

and analysis) may be performed
locally, or delegated to the

specialized computing farm i
allocated in the downstream.
(Arbitrarieness of the arrangement FE | FE | FE
should be ensured.)

““Hardware - ““Hardware - ““Hardware -

Hideyuki Oide 0017-06-26 these work independently (asynchronously))

Data flow design

INFN

@ Wish to have flexibility of grouping of the function modules within a process.

® Object data need to support serialization.

ScanEngine Hardware Tx
Rx
TxCore p-| Data In
| Config/Trigger
I
__| Data Out Wrapping RxCore ¢ %atta
BitStream Y
I |
RawDataContainer ScanCrew
(instance) AnaCrew
DataPr or . Histogrammer Analysis
ataProcess (instance) g y
EventData

3 In Decoding Out In Fill Out T pf In Accum Out
| I |

Histogrammer Analysis
—— In Fill Out ——p In Accum Out
| I |

Histogrammer Analysis
| In Fill Out L —pf In Accum Out
| I |

Hideyuki Oide 2017-06-26

Data needs serialization!

14

< AT . -

Generic Data Processor
Communication thread

Interpret and switch Return, formatting
CallBack
Functions

Network

Network
serialization)

(serialization)

(S S
Main
. Data Out - Data In
Process

Push Data 4 ' Process Thread . Push Data

e Already heavily rely on nlohmann::json, convenient format also for serialisation

e Use msgpack to serialise json object
e Where json is too costly in terms of memory or bandwidth, usually already have handy
RawData format
e By performing some optimisation to nlohmann::json could even be used as a histogram
container (see recent work from Matthias)
Timon Heim 24

ITk DAQ Workshop

https://msgpack.org/index.html

-~

)] GATLAS ceeeen) m
FELIX Integration

e FELIX is in many ways similar to YARR-PCle as it is trying to
stay agnostic and just shuffle data from and to the chip

e However primarily difference is that one does not interact
directly with FELIX, but rather NetlO

e NetlO is an IPC package and enables subscription to single
data channels

e NetlO has been successfully implemented as a hardware
controller, however the interface is somewhat unoptimised
towards it

Timon Heim 25 ITk DAQ Workshop

N

frrreeere ‘m

NetlO optimisation

Histogrammer

Histogrammer ¢rrently assuming

data comes through

Histogrammer single interface,
hence demultiplexing
in DataProcessor.

. For NetlO we have
: to aggregate again
because of this.

If data is available
Histogrammer already demultiplexed,
should just pass it on

Histogrammer Otherwise hw specific
RxCore takes care of
demux

Timon Heim 26 ITk DAQ Workshop

S

@ %ATLAS A
Ve EXPERIMENT reeecec|
Other sources D ata b aS e

of data

Multiple
scans/configs
local DB Config from
.......... | 4 IaSt Step

QC result

Production DB

Configs Scans

local DB: Production DB:

+ Possibly gitDB based (prototype exists - Should only store good and interpreted
but needs some scrutinisation) QC data (result based on input from

- Via git features can be used to sync multiple scans)
configs over multiple machines or even to - Can retrieve configs from last step (or
other institutes (aka remotes) before) to local DB

- All stored files are json based, plane file « QC Analysis can also take other source of
editing still possible data into account (e.g. pictures)

Timon Heim 27 ITk DAQ Workshop

-~

N O ATLAS /\l A
S\ JAEXPERIMENT rreeeee ‘m

Further Outlook

e Target supporting larger system tests:
e Distributed processing
e (O(100) chip operation
e FELIX
e Develop and document routines for QC
®* |[nteraction with database

e Also interesting for Strips as we will run surface tests with FELIX and have to
compare to previous QC

e Test and benchmark detector-level operation of the code
e Pulling/Pushing configurations from DB

e (Crashing sub-processes

e Develop and implement SW ROD

Timon Heim 28 ITk DAQ Workshop

&) CAILAS =

A
Ve % EXPERIMENT g S ‘III

BERKELEY LAB

Backup

Timon Heim 29 ITk DAQ Workshop

< AT . -]

References

o Gitlab: https://qitlab.cern.ch/YARR/YARR

Timon Heim 30 ITk DAQ Workshop

https://gitlab.cern.ch/YARR/YARR

" EXPERIMENT JLLLL L ‘m

PCle FPGA

Ohio Adapter An example

HW: https://qgitlab.cern.ch/YARR/YARR-FW

Timon Heim 31 ITk DAQ Workshop

https://gitlab.cern.ch/YARR/YARR-FW

N
4 EXPERIMENT - LALRLARN
Loop Actions

I

execPart1

execPart1()
execPart2()

execPart2()

execPart2()
Id

Timon Heim 32 Meeting Name

