A Novel Technique for Low Cost Imaging in Light-Deficient Environments

#### **EXPLOITING OF THE VERSATILITY OF CMOS**



JOHN RICHARDSON

# **Digital Imaging: History in Brief**

- **1960s**: Birth of solid-state visible image sensing
- Two distinct approaches: <u>With</u> / <u>without</u> in-pixel MOS transistors
- **Passive Pixel Sensor (PPS):** One transistor (switch) to read out the photocharge (*Weckler*, **1967**)
- <u>Active Pixel Sensor (APS)</u>: Amplifier and reset transistors added (*Noble*, **1968**). First "3T" sensor
- <u>Charge-coupled device (CCD)</u>: MOS capacitors used to accumulate and read out photocharge (*Boyle/Smith*, **1969**)

# **Digital Imaging: History in Brief**

- Passive Pixel Sensor: <u>High read-noise and offset dispersion</u> (pixel FPN). Poor final image quality. Used for OCRs etc. in the '60s
- Partly addressed by 3T architecture
- CCD: <u>Much better image quality</u>
- Reigned supreme over the solid state imaging world throughout the *'70s, '80s* and *'90s*
- Technology continued to be <u>honed throughout those decades</u>. Processing <u>highly specialized</u> and <u>exclusive</u>
- **<u>Dominated</u>** ~all visible imaging realms: Consumer, military, scientific, security, broadcast, studio, cinema, machine vision etc.

# **Digital Imaging: History in Brief**

- **1990s**: <u>New focus</u> on MOS transistor-based approach
- Prospect of better performance arising from processing refinements and greater integration (Imaging System on Chip concept, iSoC): <u>CMOS technology</u>
- Lower cost & Accessible: Pure-play foundry paradigm, MOSIS etc.
- *End of '90s:* Greatly improved performance but <u>still inferior</u> to <u>CCD</u>
- *2004*: Sony announces they "<u>have to win in CMOS</u>"
- *Late 'oos*: Huge capital injection from burgeoning high-volume markets drove greater refinement.
- **'10s: Explosion of CMOS**. Market dominance over CCD
- Today: Ubiquitous





# "Image Quality"

 A simple handle given to a <u>highly complex and highly</u> <u>convoluted concept</u>

• Two principal approaches, individually inadequate:

## Qualitative analysis:

- Quick and easy but requiring knowledge and experience
- Accounts for "human aspect" but inherently, highly subjective
- Difficult/impossible to benchmark

### Quantitative analysis:

- Demands a consensual, mathematical description of each quality aspect
- Demands much investment in infrastructure and *savoir-faire*
- Provides for target performance definitions and comparison metrics
- But, no intrinsic insight as regards final quality perception

## **Digital Camera System Considerations**

- <u>Image sensor</u>: Fundamental action: <u>relay spatial photon</u> <u>arrival rate information</u>
- Quality with which this action is performed may be quantitatively judged on the basis of <u>3 essential concerns</u>:
  - 1. How efficiently are the incident photons captured and converted within visible range, i.e. **Quantum Efficiency**
  - 2. To what extent and in what manner, the photon rate analog deviates from the ideal, i.e. **Noise and Dispersion**, and
  - 3. The quotient of the largest allowed signal and the smallest detectable signal, i.e. the **Dynamic Range**

# **Quantum Efficiency**

• Happy coincidence! Si has a spectral photo-response that quite neatly overlaps the human eye:



# **Quantum Efficiency**

- Typical quantum efficiency curve from a modern CMOS image sensor
- 4.2µm pixel, FSI, 4T



# **Deviancy in the Dark**

- Time/space deviations in the **absence of any photo-signal**
- Highly complex. Different phenomena have **<u>vastly varying consequences</u>**



# **Lit Deviancy**

• Deviations in time and space of the **representation of the photo-signal :** 



# **Target Performance**

 Target performance for artifacts such as pixel FPN etc., determined using psychophysics experiments, made possible by MC simulation



#### **Total Noise** as f(**ILLUMINATION**)

Three distinct zones:

- <u>Read noise</u> dominated: ~ Flat
- **<u>Shot noise</u>** dominated: Logarithmic
- PRNU dominated: <u>Linear region</u>

 $\sigma_{Total} = \sqrt{\left[\sigma_{Sensor}^{2} + N_{e} + (PRNU_{\%} \times N_{e})^{2}\right]}$ 

 $N_e$  = signal in e-, *PRNU* = Pixel-Response-Non-Uniformity

- <u>Shot noise</u> looks <u>natural</u>
- <u>**PRNU</u> is <u>ugly</u>!</u>**

#### *TOTAL-NOISE\_vs\_ILLUMINANCE*



**Dark Noise** as  $f(\underline{EXPOSURE TIME})$ 

Two zones:

- <u>Temporal noise</u> dominated: ~ Flat
- **<u>FPN</u>** dominated: Linear

$$\sigma_{Dark} = \sqrt{\left[\sigma_{Temporal}^{2} + \sigma_{Spatial}^{2}\right]}$$
$$\sigma_{Spatial} = \sqrt{\left[A^{2} + t^{2} \times DSNU^{2}\right]}$$

*t* = exposure time, *DSNU* = Dark-Signal-Non-Uniformity

 <u>DSNU</u> can become very <u>problematic</u> for long exposures



#### **Dark Noise** as *f* (**TEMPERATURE**)

Two zones:

- <u>Temporal noise</u> dominated: ~ Flat
- **<u>FPN</u>** dominated: Exponential!

 $\sigma_{Spatial} = \sqrt{[A^2 + t^2 \times DSNU_T^2]}$  $DSNU_T = DSNU_{60} \times 2^{[(T-60)/8]}$ 

T = temperature (°C),  $DSNU_{60}$  = DSNU at 60°C

DSNU critical for elevated temperatures!



DARK-NOISE vs TEMPERATURE

**Dark Temporal Noise** as f(**ANALOG GAIN**)

Two zones:

- <u>Analog chain+ADC</u> dominated
- **<u>Pixel</u>** dominated (source follower 1/f)

$$\sigma = \sqrt{\left[\sigma_{Pixel}^2/g_c^2 + \sigma_{Chain}^2 \times g_f^2\right]}$$

 $g_f$  = conversion factor in e/DN  $g_c$  = conversion gain in  $\mu$ V/e (=1/C<sub>fd</sub>)





DARK-NOISE vs GAIN

# **Anatomical Origins of Deviance**



# **CMOS Sensor: Principles of Operation**



- Usually NMOS (in pixel)
- <u>Read State Machine:</u>
- Visits each row in turn (rolling shutter)



RESET (Hard->Soft)

• Facilitates double-sampling (not correlated)



# **CMOS: Principles of Operation**

#### • <u>3T Pixel</u>

#### <u>Advantages</u>

- <u>**Higher fill-factor</u>**: ~negated by addition of microlens and by transistor sharing schemes for 4T (2.5T, 1.75T)</u>
- <u>**Higher full-well**</u> (charge capacity) >100,000e-: but dynamic range and S/N not necessarily better than 4T

#### <u>Disadvantages</u>

- Read noise completely <u>dominated by kTC noise</u> at photodiode since <u>CDS not</u> <u>possible</u>. <u>~30e-(hard-soft)</u>
- Surface contacted photodiode has <u>much higher dark current</u>, therefore DSNU (and subsequently pixel-wise FPN) is much higher

# **CMOS: Principles of Operation**

- <u>4T Pixel</u>: Two reset nodes (photodiode and floating diffusion), so potentially two sources of <u>kTC noise</u>
- kTC noise at floating diffusion **<u>resolved by CDS</u>**
- kTC noise at photodiode <u>resolved by pinned photodiode</u> (buried diffusion): Total depletion. Full well~10-20ke-
- <u>Buried diffusion greatly reduces dark current</u>, therefore much better FPN performance
- Read noise now <u>dominated by 1/f noise</u> from the source follower. ~1e-
- Pixel engineering focused on leakage reduction at F/D and *1/f* noise reduction at S/F etc.



- **<u>Surface photodiode</u>** (3T) dark current:
  - <u>~2000e-/s</u> at 60°C (UMC)
- **<u>Pinned photodiode</u>** (4T) dark current:
  - <u>~0.5e-/s</u> (Sony, Panasonic, Samsung) at 60°C
  - ~100e-/s (IBM, TSMC, Tower) at 60°C

# **Surgical Visualization**

#### • **Laparoscope:** Top-level Schematic:



# 19<sup>th</sup> Century Endoscopy

- **Originally** a means to examine via **natural orifices**
- First device: Lichtleiter (Bozzini, 1806)
- Illumination via **<u>candlelight</u>** through mid-1800s
- Introduction of alcohol/turpentine lamp enabled operative endoscopy (*Desormeaux*, **1853**)
- First practical <u>esophagoscope</u> made possible by water-cooled, <u>galvanized</u> wire illuminant (*Mikulicz/Leiter*, 1881)
- Greater impact from the introduction of **<u>platinum-wire</u>** light source by *Trouve* in **1873** (urethra, bladder etc.)
- Application of <u>microscopy optics</u> and miniature Edison-style light bulb illuminant: <u>Huge improvements in image quality</u>
- 1 death reported from 150 bladder tumor removals reported in (*Nitze /Leiter*, *final decade*)

# 20<sup>th</sup> Century Laparoscopy/Arthroscopy

- Air-based insufflation makes first laparoscopy procedures a reality. 1901: dog, 1910: first humans (*Kelling*)
- **<u>First arthroscopy</u>** also around this time with saline (*Nordentoeft*)
- <u>CO<sub>2</sub> insufflation</u>: Major development (*Zollikofer*, 1924)

- Image transmission via fiber bundles was introduced in 1953 and improved using the rod-lens system by *Hopkins* in 1959
- Light transmission via optical fibers provided for strong, cold light operation in 1967
- <u>CCD invention</u> in *1969* led, arguably, to the most impactful breakthrough when it was introduced in the first video endoscope in *1983* (by *Welch Allen*, then *Olympus* and *Pentax*)
- <u>Highly incremental evolution</u> of Laparoscopy and Arthroscopy, eventually becoming mainstream by the **1990s** (*Storz, Fujinon et al.*)

# **CMOS in Surgical Imaging**

- <u>CCDs revolutionized surgical visualization</u>, providing the means for monitor-based color viewing and electronic recording
- Market domination for ~1/4 century, very high quality but very <u>expensive</u> and <u>complex</u> to operate
- By the mid-'00s, <u>CMOS</u> sensors starting to become a <u>more</u> <u>attractive</u> alternative.
- Much cheaper to procure, integrated design, much lower voltage/power, RF immune

# **Olive Medical Corporation**

- <u>Olive Medical Corp.</u> founded in 2008 in Salt Lake City by 4 engineers from *Stryker* (one of the 3 biggest Worldwide players)
- They had worked on Stryker's <u>3-sensor CCD</u> systems and risked proving a <u>single chip CMOS</u> system could compete on image quality for << \$</li>
- Developed their own camera head (*TCK1*) and camera system (*OVB1*) and enjoyed some success, esp. in the developing World
- <u>Holy grail</u> for laparoscopy and arthroscopy at that time was for a fully <u>disposable endoscope</u>.
- Olive system still relied on established, <u>very expensive rod-lens</u> <u>endoscopes</u> which unavoidably require sterilization and frequent repair operations



# **Three-Chip Killer!**

- TCK1 Camera head based on <u>AltaSens 3372</u> CMOS sensor, designed by *Blanquart, Meddeler, Richardson* et al.
- **<u>1920X1080</u>** (full HD), 4T, color (*Bayer*)





# **Single-Use Endoscopy**

- <u>Acquaintanceship</u> of Olive Medical and AltaSens Inc.
- *Laurent Blanquart* and myself **joined Olive in 2010** with *Gerrit Meddeler* working as a consultant
- Brought with us <u>CMOS image sensor design capability</u>, unique for a medical device company. Also high-end imaging knowledge and experience
- Leveraged our capabilities and know-how to develop a solution to the "holy grail" and create a <u>truly disposable</u> lapara/arthro-scope solution (\$6000 → \$30)
- Impossible to achieve a color, high definition quality system with any offthe shelf sensor at that cost

### **Disposable HD Surgical Endoscopy: Approach**



- Light-deficient environment
  - → <u>Total control</u> of illumination
- **<u>Eliminate</u>** expensive <u>rod-lens</u> assembly (several k\$)
- <u>Create custom image sensor design</u>, small enough to fit on the tip of a 4mm scope, with a cheap (plastic) lens assembly (few \$)
  - → Figure out how to get <u>HD-equivalent resolution</u> with smaller pixel count (and reasonably big pixels to meet the dynamic range and quality demands)
  - → <u>Reduce the pad count</u> to an absolute minimum
- Develop a strong relationship with an R&D-friendly foundry!

# **Sensor: Optical Front End**

- Modern image sensors have organic <u>microlenses</u> above each pixel to alleviate fill factor (FSI: typically 40%)
- Color sensors used in single-chip cameras also have color filter arrays (CFA), arranged in the <u>Bayer pattern</u>. RGB info. is recovered for each pixel digitally in the image signal processer (ISP): <u>Demosaic</u>





- Had to **target** a **spatial resolution** that could defensibly be called **HD**
- Two popular HD progressive formats: <u>1080P</u> and <u>720P</u>
- Color discrimination based on Bayer pattern sacrifices some spatial resolution (factor  $1/\sqrt{2}$ ), but cameras based on a <u>single color sensor</u> with <u>1280×720</u> pixels are <u>marketed as HD</u>
- Therefore we <u>targeted</u> the MTF of a <u>720P Bayer</u> sensor-based camera





- But! <u>Desire/need</u> for relatively <u>large pixels</u> (~3µm) and space constraints (2.4mm □) would inevitably mean <u>fewer than 720 rows</u>
  - <u>How to get HD equivalent resolution?</u>

- First step was to **dispense with the Bayer pattern** and go with monochrome sensor
- Since we control the illumination, realized we could <u>derive the color information</u> <u>temporally</u> instead of spatially
- That meant illuminating different frames with different color components of light, i.e. monochromatic pulsing





Time

- <u>Conventional</u> illuminants are <u>continuous</u> and <u>broad-spectrum</u> (Xe)
- New approach would **<u>require fast pulsing</u>** capability
- Further complicated by **rolling-shutter** readout:



- Pulsed illumination → <u>LEDs</u> or <u>Lasers</u>
- Limited available time to pulse & only one component at a time pushed us toward lasers
   (collimated → efficient transfer of energy through fibers)
- However, <u>no prior experience</u>, so developed a relationship with *Necsel Inc*. to prototype a laser illumination system
- Also needed an <u>alternative approach to auto-exposure</u>! Used <u>global Tx</u> operation to dictate the effective beginning of the integration period



- Final displayed image is 1080P so wanted simple scaling factor; simulated 360 and 540 row count. Settled on 405×405 =1080 \* 3/8
- Striving for 2.4mm chip edge required several innovations, e.g.
- Pad count reduced to absolute minimum (10): (US 2014/0275783A1)
  - Single bi-directional data port; 1Gbps sub-LVDS out / 2-pin I2C in
  - Image data ping-pong between 2 ADCs (DDR)
  - **<u>No clock out</u>**, special serial data encoding & CDR at receiving FPGA
  - **<u>Consolidation of</u>** analog and digital **<u>supplies</u>** (DC-DC up-converter)
  - Encoding of register readback into image (readback mode)
- Minimization of digital logic (US 2013/052423)
  - Normal iSoC sensor datapath processes such as Blackclamp moved to FPGA ("Front-End ISP")



## **Sensor and Camera Evaluation: ARES**

- Two large C/C++ applications: <u>ARES</u> and <u>ARTEMIS</u>
- <u>ARES</u>: <u>Application for <u>R</u>&D of <u>Endoscopic</u> <u>Systems</u></u>
- Automated scanning and image data analysis
- Used for <u>characterization</u> and <u>parametric tuning</u> of e.g. pixel biases for optimal FPN, temporal noise and lag
- Automatic <u>deconvolution of</u> all 13 <u>noise spatial and temporal components</u> (per Bayer channel, ADC etc.)
- Fully tunable **<u>defective pixel identification</u>** and counting
- Uses <u>XML files</u> to dictate physical system protocol, GUI layout, settings and scan conditions:
- This facilitates easy reproduction of old scans
- Online, **<u>real-time plotting</u>** of data (histograms, projections, maps)
- Various output formats for digestion by specific offline analysis scripts

#### ARES Current Stage: 0 0 Time Remaining: 0 : 00 : 00 Results Pixel Distributions Profiles Signal Map Noise Map Defect Counts Information • Region of Interest selection and online plots: MEAN SIGNAL 27 242 0.00 Range Mode Peak to Peak \* Current Stage: 0 0 Time Remaining: 0 : 00 : 00 \$ 31.36 Results Pixel Distributions Profiles Signal Map Noise Map Defect Counts Information 1 1 Region of Analysis 0 All Pooels Raster Order: Horizontal 🛥 Vertica \$ 38.64 MEAN SIGNAL Range Mode 1 38.64 1. 3 Stop Scan Auto Repeat Start Scan Restore Scan Regions of Analysis Output Options Input Images Instrumentation 37.00 1000-800-600-36.00 35.00. Load RoA File Save RoA File 400 200 32.00 On/Off Draw Double-click below to display an example monochrome image Width Height 31.36-31.36 38.00 38.6 37.00 6 128 108 Mean Signal **I**1 49 137 86 138 NOISE Range Mode Peak to Peak T From 2 101 140 124 Γ3 0 0 0 0 Γ4 0 Γ5 0 0 0 ge: 0 0 Time Remaining: 0 : 00 : 00 F 6 0 -0.5-1 Pixel Distributions Profiles Signal Map Noise Map Defect Counts Information Γ7 6000 8000 0 0 0 Pixel Raster Piyel Noise Γ8 NOISE 0.00 0 Γ9 0 0 Current Stage: 0 0 Time Remaining: 0 : 00 : 00 □ 10 Results Pixel Distributions Profiles Signal Map Noise Map Defect Counts Informa Range Mode Peak to Peak V 0 Region of Analysis F 11 0 0 0 0 COLUMNS . 33.33 1 -0.46 From F 12 0 Highest 0 1 1 65 34.56 34.52 2.60 F 13 \$ 3.51 0 0 To 0 1 1 F 14 0 0 0 □ 15 Restore 0 0 0 0 33.3 - 1 4 10 ROWS Range Mo Highest 3474 34.57 2.20

34.4-, 10 20 30



- **Sensor tuning** examples
- <u>2D scanning capability</u> used to build up <u>maps of e.g. noise and</u> <u>image lag</u> versus pixel voltages



## **Full Camera C-Model: ARTEMIS**

- <u>ARTEMIS:</u> <u>Appa</u>RaTus for <u>EM</u>ulating <u>I</u>maging <u>Systems</u>
- **<u>Phenomenological C-model</u>** of full camera chain
- <u>Optics</u> + <u>Sensor</u> + <u>ISP</u>
- Used to
  - <u>Simulate</u> different <u>sensor design</u> options
  - **Develop** and evaluate **ISP architectures**
  - <u>Create</u> and test image <u>processing algorithms</u>
  - Test ARES
- May take <u>real</u> images <u>or</u> create <u>synthetic</u> image <u>data</u>
- Monte Carlo noise generation drawn from realistic PDFs
- Facilitates **<u>bit-correct C-Model</u>** representations  $\rightarrow$  RTL



## **ARTEMIS: IMAGE SIGNAL PROCESSING (ISP)**

#### • ARTEMIS **ISP Model**:

- Top 2 rows: Low level
  <u>sensor corrections</u> (normally iSoC resident)
- Red blocks are <u>color</u>
  <u>processes</u>
- Green: <u>spatial/filtering</u> <u>processes</u>



#### **ARTEMIS: MONTE CARLO PROCESSES**

• **<u>Data</u>**, *v*, from a given pixel (for column c, row r and frame f)

$$v_{c,r,f} = d_{c,r,f} + p_{c,r,f}$$

• Dark offset, d:

$$d_{c,r,f} = o + C_c^s + C_{c,f}^t + R_r^s + R_{r,f}^t + P_{c,r}^s + P_{c,r,f}^t$$

• <u>Photosignal, p</u>:  $p_{c,r,f} = (q_{c,r} + \delta_{c,r,f}) \cdot G \cdot C_c^g \cdot R_r^g \cdot P_{c,r}^g$ 

• Distilled expression containing important components:

$$v_{c,r,f} = o + (C_c^s + P_{c,r}^s) + (R_{r,f}^t + P_{c,r,f}^t) + G \cdot C_c^g \cdot P_{c,r}^g \cdot (q_{c,r} + \delta_{c,r,f})$$

#### **ARTEMIS: MONTE CARLO PDFs**

- Example **PDFs**:
- Photon shot noise, δ (Poisson)

Photocharge, q = 1e-



Photocharge, q = 6e-



#### **ARTEMIS: MONTE CARLO PDFs**

- Example **PDFs**:
- **<u>Pixel offset dispersion</u>**, **<u>PS</u>** (FPN): (Gaussian + Gaussian + Exponential)

 $P^{s} = P^{s}_{1} + P^{s}_{2} + P^{s}_{3}$ 

#### "Minimal" pixel FPN





#### DSNU (dark current tail)



### **ARTEMIS: MONTE CARLO PDFs**

- Example **PDFs**:
- Random Telegraph Signal (RTS) AKA "Flashing Pixels"



#### **ARTEMIS: GUI**

#### Artemis: GUI

#### "Optical" tab

| itart Simulation                      | Stop Simulation        | Frames                                  | to Process 🛢   | 4 Current Fram   | e: 0                    |                  |                 |
|---------------------------------------|------------------------|-----------------------------------------|----------------|------------------|-------------------------|------------------|-----------------|
| Color Corrections Edge Enha           |                        | incement Transformatio                  |                | sformations      | ns Gamma                |                  | Contrast        |
| Corrections Distortion Correct        |                        | tion WDR                                |                | Super Resolution | RGB Synthesis           |                  | White Balance   |
| General                               | Scene Ou               | ıtput                                   | Optical        | Pixel            | Analog                  | ADC              | Digital         |
| Enable                                | Add Perspective        | 🗖 Spati                                 | ial Distortion | Fine Tune        | T Dual Exposure         |                  |                 |
| Number                                | Sensitivity (e./lux.s) | Radial Model                            |                | Radial Scale (%) | Flux (lux)              | Exp Time 1 (s)   | Exp Time 2 (s)  |
| 2.8                                   | 18000.0                | Tangent 💌                               |                | \$ 100.000000    | 10.0000                 | 0.1              | 0.1             |
| ield of View (degrees)                | ) Sensor Position (mm) | 1st Radial (A)                          |                |                  | ) Comertine             | <u></u>          |                 |
| 80.0                                  | 2.083                  | 0.000000E+0                             |                |                  | On                      |                  | Vignette Option |
| ptimal Focus Distance                 | e (Scene Distance (mm) | 2nd Rad                                 | lial (B)       |                  | Ĵoff [                  | Flat field image |                 |
| 50.000                                | \$ 50.000              | 0.000                                   | 0000E+0        |                  |                         |                  |                 |
| Optical Smear: HorizontaVertical (um) |                        | 3rd Radial (C)                          |                |                  |                         | Focal Length     | n (mm)          |
| 0.1                                   | 0.1                    |                                         | 0000E+0        |                  | Computed                | : 2.00           | 0 Computed      |
| First Pixel Color                     |                        | 4th Radi                                | ial (D)        |                  | Stated:                 | 2.00             | 0 Stated        |
| Green before red (Gr)                 | <b>v</b>               | \$ 0.000                                | 0000E+0        |                  |                         |                  |                 |
| esponse Factor: 0                     | Response Factor: 1 5th |                                         | ith Radial (E) |                  | Circle of Confusion Dia |                  | n Diameter (um) |
| 1.0                                   | \$ 1.0                 | \$ 0.000                                | 0000E+0        |                  | Computed                | l: 4.00          | 0 Computed      |
| esponse Factor: 2                     | Response Factor: 3     | Rth Badi                                | al (E)         |                  | Stated:                 | \$ 4.00          | 0 J Stated      |
|                                       |                        | A I I I I I I I I I I I I I I I I I I I |                |                  |                         |                  |                 |

#### "<u>Pixel</u>" tab

| start simulati                                      | on Stop        | Simulation       | Frames to     | Process 🚽 | 4 Current Fram   | ne: 0   |          |                    |
|-----------------------------------------------------|----------------|------------------|---------------|-----------|------------------|---------|----------|--------------------|
| Color Corrections Edge<br>Corrections Distortion Co |                | Edge Enhar       | hancement     |           | sformations      | Gamma   | HSL      | Contrast           |
|                                                     |                | rtion Correction |               | DR        | Super Resolution | RGB Syn | nthesis  | White Balance      |
| General Scene                                       |                | Out              | put           | Optical   | Pixel            | Analog  | ADC      | Digital            |
| Pixel Pitch (um)                                    | Full Well (e)  | C. Gain (uV/e)   | Read Noise (e | ,         |                  |         | Si<br>Ad | hot Noise Enable 👿 |
| \$ 3.3                                              | 20000.0        | \$80.0           | \$ 500.0      |           |                  |         |          | 0                  |
| Dark Current                                        | DSNU (e/s)     | MPFPN (e)        | Crosstalk (%) |           |                  |         |          | Flutter (%)        |
| 100.0                                               | \$ 100.0       | \$ 1.0           | 0.5           | -         |                  |         |          | 0.0                |
| PRNU (%): e,e                                       | PRNU (%): o,e  |                  |               |           |                  |         |          |                    |
| 1.0                                                 | \$ 1.0         |                  |               |           |                  |         |          |                    |
| PRNU (%): e,o                                       | PRNU (%): 0,0  |                  |               |           |                  |         |          |                    |
| 1.0                                                 | 1.0            |                  |               |           |                  |         |          |                    |
| Hot Rate (ppm)                                      | Hot Mean (e/s) |                  |               |           |                  |         |          |                    |
| \$ 5000.0                                           | \$ 150000.0    |                  |               |           |                  |         |          |                    |
| RTS Rate (ppm)                                      | RTS Mean (e)   |                  |               |           |                  |         |          |                    |
| 20000.0                                             | \$ 100.0       |                  |               |           |                  |         |          |                    |



Artemis use case: Development of <u>Noise-aware edge-</u> <u>enhancement algortihm</u> (US 2014 0267653A1)

 $0.0, s_1 = 2.0, s_2 = 4.0$  $\sigma = 4.3 \, \text{DN}$ 255 Count 5555 Min: 134 Mean: 153.605 Max: 185 StdDev: 4.304 Mode: 154 (535) 100 Gray Value 50 10 30 40 20 Distance (pixels)

#### ARTEMIS

- <u>Artemis</u> used to simulate proposed arthroscope approach
- Key result: overall **<u>spatial resolution</u>** of system, (HD or not)
- **<u>MTF</u>**: Fourier transform of system response to a step function
- <u>Slanted-Edge</u> method:



#### **MTF: RESULTS**

- **<u>Bayer</u>**-based sensors have <u>colored sampling artifacts</u>
- Addressed by **<u>spatially low-passing</u>**
- This is done digitally if the lens assembly is "too good" for the sensor



#### **MTF: RESULTS**

- 405×405 array <u>comparable to 720-</u> <u>Bayer</u> with 2 μm of Gaussian blur
- Optimal blur determined to be 2.8 μm
- Solution therefore <u>quantitatively</u> <u>competitive with</u> single-sensor, color <u>HD</u> system!

Bicubic\_Scaled\_To\_1080X1080



# **Black Widow: Overview**

- Tower-Jazz **<u>180 nm</u>** CIS Epi technology (8"). 1.8V/3.3V.
- Square array: <u>424×405</u>, <u>3.3μm</u> 4T pixel, 2:1 horizontal sharing ("2.5T")
- <u>**Two Tx buses</u>** serving pixels in a chessboard pattern (for WDR)</u>
- Monochrome (no CFA)
- <u>**2.05** × **2.4** mm</u>area
- <u>10 pads</u>total
- $1 \times horizontal and 4 \times vertical state machines$
- Programmed via two-pin <u>I<sup>2</sup>C</u>
- 2 × PGA-ADC (OTA+11-bit pipeline, ≤45MHz each)
- $\rightarrow$  1 serial dataport (1 Gbps)



# **Black Widow: Architecture**

#### • Block Diagram



# **Black Widow: Characterization**

- First stage in characterization is <u>calibration (DN  $\rightarrow$  e-)</u>
- Exploit the fact that photon arrival rates are **Poissonian**
- Poisson distribution:

• **Variance = mean** (in base number units)

# **Photon Transfer**

- Plot noise<sup>2</sup> vs. signal in digital number (DN)
- Gradient is 1/K, where K = conversion from e- to DN
- Conversion gain derived to be <u>61</u> μV/e-
- <u>**Pixel capacity</u>** (full well) also revealed to be 17ke-</u>



All\_Gains



# **Read Noise**

BlackWidow-L3A:C1::Pixel-Temporal-Noise

- Input-referred temporal noise at high gain = <u>11.5 e-</u>
- <u>Output referred</u> noise at low gain = <u>0.75 DN</u>



# **ADC INL/DNL**

- <u>INL: +2.0 / -2.7 DN</u>
- <u>DNL: +0.37 / -0.42 DN</u>



# **Intellectual Property**

### Overall system solution yielded 18 patents

- 1. Continuous Video in a Light Deficient Environment
- 2. Camera System with Minimal Area Monolithic CMOS Image Sensor
- 3. Wide Dynamic Range using Monochromatic Sensor
- 4. Super Resolution and Color Motion Artifact Correction in Pulsed Color Imaging Systems
- 5. Comprehensive FPN Cancellation
- 6. Noise Aware Edge Enhancement
- 7. Image Sensor Synchronization without Input Clock and Data Transmission Clock
- 8. White Balance and FPN Frame Calibration using Distal Cap
- 9. YCbCr Pulsed Illumination Scheme in a Light Deficient Environment

- **10.** Minimize Image Sensor I/O and Conductor Counts in Endoscope Applications
- 11. Controlling the Integral Light Energy of a Laser Pulse
- 12. Mechanical Image Rotation for Rigidly Coupled Image Sensor and Endoscope
- 13. Safety Protocol for a Scope in a Light Controlled Environment
- 14. Switching Between Disposable Endoscopes During Use
- **15.** Removing Speckle from a Scene Lit by a Laser Light Source
- 16. Viewing Trocar with Integrated Prism for Use with Angled Endoscope
- 17. Image Rotation using Software for Endoscopic Applications
- 18. Videostroboscopy of Vocal Chords with CMOS Sensors



# **CMAC: Color Motion Artifact Correction**

 Color motion artifacts due to color components displaced in time



# **CMAC: Color Motion Artifact Correction**

- Observed that <u>color errors</u> have a <u>signature</u> when plotted as chrominance-red shift vs. chrominance-blue shift
- <u>Tagged pixels</u> may thus be restored to <u>correct chroma</u>





# Wide Dynamic Range

- <u>Two flavors of pixel</u> arranged in chessboard pattern with independent Tx buses
- Provides for <u>two exposures in the same image</u>
- **<u>Ratio</u>** of exposures = dynamic range <u>**extension**</u>, e.g. ×4 = +12dB



# **YCbCr Light Pulsing**

- Realized that full control of pulsed laser light allowed for <u>luma-</u> <u>chroma space illumination</u>
- For <u>Luma</u>: Just use ratios of red, green and blue established in the YCbCr standard for HD
- <u>Chroma</u> components have negative coefficients, therefore make linear sums of luma and chroma, tuning the amount of luma to make -ve coefficients =0 or positive
- <u>Subtract</u> appropriate quantity of <u>luma from "chroma"</u> frames in ISP
- <u>Better</u> perceived <u>spatial resolution</u> and <u>less</u> egregious <u>CMAC</u>

# **Parallel and Future Directions**

- **<u>4K</u>** imaging
- **<u>Hyperspectral</u>**; NIR: Special epi & filters etc.
- III-V 3D Stacking e.g. InGaAs (1.5 μm), UV, TSV...
- <u>65 nm</u>
- Wafer thinning / <u>Back-Side Illumination</u> (BSI)
- Pixel Light-Guide engineering
- <u>Stereo</u> vision
- <u>Robotic surgery</u>
- Quantum dots
- **<u>Depth perception</u>**: TOF, Structured Light
- **<u>Computer vision</u>** methods