
Quark Flavor Physics

February 6, 2018
Yury Kolomensky



Phys226 Yury Kolomensky: CKM Physics

 2

Contents
• Flavor transitions in quark sector

! CKM Matrix
" Magnitudes of CKM elements: branching fractions

! Phases in CKM matrix
"CP violation (mostly Bd and Bs decays)

! Rare and forbidden processes: sensitivity to new 
physics

• Extremely rich and vibrant field
! Hundreds of measurements in the PDG booklet
" Will only cover key issues today
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Why Precision Flavor Physics ?
• Core properties of weak interactions

! Parameters not predicted within the Standard Model
" Mass hierarchy
" Mixing between generations
" Need measurements !

! Rich phenomenology with few parameters
" Standard Model measurements: the foundation
" Deviations: new physics searches

• LHC era: discoveries (or lack thereof) at the 
energy frontier
! Flavor physics provides important interpretation
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CP Symmetry Violation
• C,P,T: Discrete transformations of the Lagrangian

! P: parity reversal
! C: charge conjugation
! T: time reversal

• Any field theory Lagrangian is invariant under 
CPT 
! EM and strong interactions conserve all 3 symmetries
! Weak interactions violate parity, but CP and T are 

approximately conserved
✦CP symmetry is broken if  Lagrangian has complex 

couplings



Phys226 Yury Kolomensky: CKM Physics

 5

Cabibbo-Kobayashi-Maskawa Matrix

Measure magnitudes from rates:

*b
u

Measure phases through interference: CP violation. Need at least
two amplitudes, e.g. 2 decay amplitudes (“direct CPV”), or decay and mixing 

2

b d

d b
W W
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CKM Matrix
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Unitary mixing matrix: 4 parameters (e.g. 3 angles, 1 phase)
For quarks, conventional Wolferstein parameterization:

Aside: number of free parameters in a unitary mixing matrix is 
(n-1)2, so 2-flavor mixing does not have any phases. 3-flavor mixing 
produces a new phenomenon: CP violation
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Nobel Prizes in Physics

Yoichiro  
Nambu

Makoto  
Kobayashi

Toshihide 
Maskawa

2008: Kobayashi-Maskawa: 
"for the discovery of the origin of the  

broken symmetry which predicts  
the existence of at least three families  

of quarks in nature"

1980: Cronin-Fitch 
"for the discovery of 

violations of fundamental  
symmetry principles in 
the decay of neutral K-

mesons"

Omitted but not forgotten:
Nicola Cabibbo

(1935-2010)

James
Cronin

Val
Fitch
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Slides from F. Di Lodovico
@ ICHEP2008

CKM Magnitudes
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Roadmap
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Summary of CKM Magnitudes
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Matter and Antimatter in the Universe
• Matter-antimatter asymmetry is one of the 

great cosmological puzzles
! Need CP violation and 
baryon   number violation to 
create asymmetry from 
symmetric early Universe

" Standard Model effects do not 
generate enough matter-antimatter 
imbalance observed today

"This is perhaps a hint to search 
for new physics in CP sector 
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Mixing and CP Violation 

Interference between mixing 
and decay:
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System of Neutral B mesons
• In B system, mass difference between two 

eigenstates is significant, lifetime difference is not
! Define “Light” and “Heavy” states instead of “Long” 

and “Short” 

" For B mesons

•  Direct CP violation is predicted to be small, hence
|λCP|~1

and  |q/p| ~ 1
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Unitarity Triangle
Unitary mixing matrix: 4 parameters (c.f. MNSP matrix in neutrinos)
For quarks, conventional Wolferstein parameterization:

: unitarity relation for Bd decays

β/φ1

α/φ2

γ/φ3

Vtd Vtb
*

*Vcd Vcb

Vud Vub
*

*Vcd Vcb

(0,0) (1,0)

(ρ,η) : interfere b!u & mixing

: interfere b!u & b!c

: interfere b!c & mixing
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CP violating observables for B mesons
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• Need at least two amplitudes with different phases
• In B decays, we can consider  

two different types of amplitudes:
! Those responsible for decay
! Those responsible for mixing 

• This gives rise to three possible  
manifestations of CP violation:
! Direct CP violation

• (interference between two decay amplitudes)
! Indirect CP violation

• (interference between two mixing amplitudes) 
! CP violation in the interference  

between mixed and unmixed decays

d

b
W−

d

u
u

d

π+

π−

B0

B0 B0

b

b d

d
u,c,t

u,c,t

W− W−
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Common Definitions

Time-dependent CP Observable:

CP violation in interference between  
       decays with and without mixing

CP eigenvalue

amplitude ratio

CP phase
ηCP = ± 1;    φCP = α,β,γ

m
ixing dec

ay
fCP

(t=0)

(t)

Phys226 CKM Physics
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Common Definitions

Time-dependent CP Observable:
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B Meson Production
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• Electron-Positron collider:  e+e- → ϒ(4S) → B0B0 

! Only 4s resonance can produce B meson pair 
! B0 production cross-section: ~1 nb (1 fb-1 ~ 1M B0 decays )
! Clean environment, coherent B0B0 production

B-Factory
approach

Off On

PEP-II  
BABAR

BB
 t

hr
es

ho
ld

CESR 
CLEO
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ϒ(4S): Coherent B0B0 production
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• B0B0 system evolves coherently  
until one of them decays
! CP/Mixing oscillation clock only starts  

ticking  at the time of the first decay,  
relevant time parameter Δt: 
 

" B mesons have opposite flavor at time Δt=0
" Half of the time CP B decays first (Δt<0)

• Integrated CP asymmetry is 0:  
 

# Coherent production requires time-dependent analysis

At tcp=0

B0

B0

At Δt=0

B0

B0 Coherent

Incoherent

-∞

+∞ +∞

-∞

Δt(ps)

t(ps)

 

ϒ 
• B0B0 system evolves coherently

until one of them decays
 CP/Mixing oscillation clock only starts 

ticking  at the time of the first decay, 
relevant time parameter Δt:

 B mesons have opposite flavour at time Δt=0
 Half of the time CP B decays first (Δt<0)

• Integrated CP asymmetry is 0:

 Coherent production requires time-dependent analysis
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The Asymmetric B Factory Concept
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9GeV e- on 3.1GeV e+ : 
  

• boost of Y(4S)  

  in lab frame : βγ=0.56

PEP-II Asymmetric B Factory @ SLAC
 20

 

9GeV e- on 3.1GeV e+ :

• boost of Y(4S)

in lab frame βγβγβγβγ=0.56



00- BB  Y(4S)  ee →→+
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DIRC (PID) 
144 quartz bars 

11000 PMs

1.5T solenoid EMC 
6580 CsI(Tl) crystals

Drift Chamber 
40 stereo layers

Instrumented Flux Return 
iron / RPCs  (muon / neutral hadrons)

Silicon Vertex Tracker 
5 layers, double sided strips

e+ (3.1GeV)

e- (9GeV)

BaBar Detector
 21
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LHCb Detector
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The LHCb detector

Acceptance 2<h<5, with excellent vertexing, tracking, PID
Lint = 1 fb�1 @ 7 TeV in 2011, & 2 fb�1 @ 8 TeV in 2012

250mra
d

100mrad

M1

M3
M2

M4 M5

RICH2
HCAL

ECAL
SPD/PS

Magnet

T1T2
T3

z5m

y

5m

− 5m

10m 15m 20m

TTVertex
Locator

RICH1

Vertex Locator sPV,x/y ⇠ 10 µm, sPV,z ⇠ 60 µm
Tracking (TT, T1-T3) �p/p: 0.4% at 5 GeV/c, to 0.6% at 100 GeV/c
RICHs e(K ! K ) ⇠ 95%, mis-ID rate (p ! K ) ⇠ 5%
Muon system (M1-M5) e(µ ! µ) ⇠ 97%, mis-ID rate (p ! µ) = 1�3%
ECAL sE/E ⇠ 10%/

p
E �1% (E in GeV)

HCAL sE/E ⇠ 70%/
p

E �10% (E in GeV)

Jibo HE (CERN) Electroweak penguins at LHCb July 5, 2014 2 / 15

[JINST 3 (2008) S08005]
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Example of a Fully Reconstructed Event
• B0!ψ(2S)   Ks 

         → µ+µ-   → π+π- 

• B0!D*+ π-

         → D π+

               →K-π+

 23

One of ~500 million
recorded decays
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Angle β/φ1 : “Golden” Channel b!ccs   
S=sin2β 
C=0

ICHEP-2008

Belle: PRL98, 031802 (2007)

CP-even

CP-odd
bkg

bkg

C. Chen

K. Vervink
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Angle β/φ1 : “Golden” Channel b!ccs

Most precise measurements of CPV
in B decays to date
BaBar results for the final dataset
Still statistically-limited measurements
Theoretical uncertainty for sin2β from 
charmonium modes below 0.01: 
further improvements from LHCb and Super B factories
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B-Factories vs LHC-B
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Figure 2: Time-dependent signal-yield asymmetry (NB0�NB0)/(NB0+NB0). Here, NB0 (NB0) is
the number of B0! J/ K0

S decays with a B0 (B0) flavor tag. The data points are obtained with
the sPlot technique [32], assigning signal weights to the events based on a fit to the reconstructed
mass distribution. The solid curve is the projection of the signal PDF.

and �0.005 for C are applied to account for CP violation in K0–K0 mixing and for the
di↵erence in the nuclear cross-sections in material between K0 and K0 states [31]. The
correction is negligible for the result for S with C = 0.

Various sources of systematic uncertainties on the CP observables are examined,
in particular from mismodeling PDFs and from systematic uncertainties on the input
parameters. In each study, a large set of pseudoexperiments is simulated using a PDF
modified such as to include the systematic e↵ect of interest; the relevant distributions
from these pseudoexperiments are then fitted with the nominal PDF. Significant average
deviations of the fit results from the input values are used as estimates of systematic
uncertainties. The largest systematic uncertainty on S, ±0.018, accounts for possible tag
asymmetries in the background; for C the largest uncertainty, ±0.0034, results from the
systematic uncertainty on �m. Systematic uncertainties on the flavor tagging calibration
account for the second largest systematic uncertainty on S, ±0.006, and on C, ±0.0024.
The third largest uncertainty on S, ±0.005, arises from assuming �� = 0 and is evaluated
by generating pseudoexperiments with �� set to the value of its current uncertainty,
0.007 ps�1 [9], and then neglecting it in the fit. Remaining uncertainties due to neglecting
correlations between the reconstructed mass and decay time of the candidates, mismodeling
of the decay-time resolution and e�ciency, the systematic uncertainty of the production
asymmetry, and the uncertainty on the length scale of the vertex detector are small and are
given in the Appendix. Adding all contributions in quadrature results in total systematic
uncertainties of ±0.020 on S and ±0.005 on C.

Several consistency checks are performed by splitting the data set according to di↵er-
ent data-taking conditions, tagging algorithms, and di↵erent reconstruction and trigger
requirements. All results show good agreement with the nominal results.

In conclusion, a measurement of CP violation in the interference between the direct
decay and the decay after B0–B0 oscillation to a J/ K0

S final state is performed using
41 500 flavor-tagged B0 ! J/ K0

S decays reconstructed with the LHCb detector in a

6

B0 → J/ψ K0
S

sin(2β)
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Overall γ (or φ3) results
Frequentist interpretation Bayesian interpretation

http://www.utfit.orghttp://ckmfitter.in2p3.fr

µ supremum method used to combine HFAG

averages of experimental inputs (conservative, but

guarantees coverage).

See Karim Trabelsi’s talk at CKM 2008 for details.

Slides by Owen Long, Moriond EW 2010

PRL 115, 031601 (2015)
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FIG. 4: a) Number of B0 candidates in the signal region with a B0 tag (NB0) and with a B0 tag (NB0), and b) the corresponding
raw asymmetry, (NB0 −NB0)/(NB0 + NB0), as functions of ∆t for each B0 decay modes. The solid (dashed) curves represent
the fit projections in ∆t for B0 (B0) tags. The right-hatched (left-hatched) shaded regions represent the estimated background
contributions in B0 (B0) tagged events.

VIII. CONCLUSIONS

We report improved measurements of the time-
dependent CP asymmetry parameters. The results in
this paper supercede those of our previous publication [5].
We report our measurements in terms of Cf and Sf . We

find

Cf = 0.024 ± 0.020 (stat)± 0.016 (syst),

−ηfSf = 0.687 ± 0.028 (stat)± 0.012 (syst),

providing an independent constraint on the position of
the apex of the Unitarity Triangle [17]. Our mea-
surements agree with previous published results [5, 18]

BABAR, PRD79:072009,2009

6 Conclusion161

Observables measured by LHCb using decays that have sensitivity at tree-level to the162

CKM angle � are combined to determine an improved constraint. Several updates and163

new inputs are used for the first time, as described in Sections 2 and 3. The combination164

gives a best fit value of � = 74.0� and the confidence intervals165

� 2 [68.2, 79.0]� at 68.3% CL ,

� 2 [61.6, 83.7]� at 95.5% CL .

Taking the best fit value and the 68.3% CL interval, � is found to be166

� = (74.0 +5.0
�5.8)

� ,

where the uncertainty includes statistical and systematic contributions. The result for �167

is in agreement with the world averages � = (73.2 +6.3
�7.0)

� [35], � = (68.3± 7.5)� [36] and168

� = (73.5+4.2
�5.1)

� [29], and the previous LHCb average, � = (76.8+5.1
�5.7)

� [3]. This combination169

supersedes the previous measurement [3] as the most precise determination of � from a170

single experiment to date.171

13

S= 0.731 ± 0.035 ± 0.020
sin 2β = 0.687 ± 0.028

Mat Charles
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Angle α/φ2   

Tree Color-suppressed “Penguin” loop

• Time-dependent CPV in b!u transitions
• Problem: 2-3 amplitudes, additional interference

" “Penguin” pollution:  
• Isospin analysis to measure Δα

"4-fold ambiguity in Δα
"Small branching fractions

• Most useful modes: 
"B!ρρ, ππ, ρπ Gronau, London, PRL65, 3381 (1990)   
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Penguin Diagrams
 28

R. Ellis, M.-K. Gaillard, D. Nanopoulos
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Summary of α/φ2   

SM solution: α=(91±8)o α ∈ [83.5 ; 94.0]o @ 68% CL

M. Pierini

O. Deschamps
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Angle γ/φ3   
• Hardest angle of all to tackle

"  γ=−arg(Vub), and Vub is small

• Direct CPV in B!D(*)0K(*) decays  
! 3-body Dalitz Decays (Giri,Grossman,Soffer,Zupan)

"  D0!Ksπ+π−   
! CP eigenstates (Gronau,London,Wyler)

"  D0!ππ,KK,…
! Doubly Cabibbo-suppressed (Atwood,Dunietz,Soni)

"  D0!K+π− vs D0!K−π+   

• Several complementary techniques
! Time-dependent CPV in B0!D(*)π, D(*)ρ  

"  Measures sin(2β+γ)

• Key parameter: rB, ratio of |A(b!u)/A(b!c)|
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Dalitz method for γ/φ3  
• Most precise method to this point

"  Direct CPV in B![KSπ+π−]D(*)0K(*)

"  Self-tagging: charge (B±) or K* 
       flavor (for B0 decays) 

• Measure interference across Dalitz plot

• Main challenge: D0 decay model
"  18 quasi-twobody states: fit D*+!D0π  
"  Measure at CLEO-c or BES in

      to reduce model uncertainty 

Belle
 B!DK+

(signal)

BABAR
 D*!Dπ+

(control)

G. Marchiori

S. Bahinipati

P. Naik

P. Naik, D.Asner
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Summary of γ/φ3  

γ=(81±13)o

Difficult, statistics-limited measurements ! Combination of constraints: 
uncertainty of ~20o . Larger statistics needed (LHCb, SuperBelle) 

M. Pierini

O. Deschamps

γ=(71±20)o
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Current Precision
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Figure 2: Time-dependent signal-yield asymmetry (NB0�NB0)/(NB0+NB0). Here, NB0 (NB0) is
the number of B0! J/ K0

S decays with a B0 (B0) flavor tag. The data points are obtained with
the sPlot technique [32], assigning signal weights to the events based on a fit to the reconstructed
mass distribution. The solid curve is the projection of the signal PDF.

and �0.005 for C are applied to account for CP violation in K0–K0 mixing and for the
di↵erence in the nuclear cross-sections in material between K0 and K0 states [31]. The
correction is negligible for the result for S with C = 0.

Various sources of systematic uncertainties on the CP observables are examined,
in particular from mismodeling PDFs and from systematic uncertainties on the input
parameters. In each study, a large set of pseudoexperiments is simulated using a PDF
modified such as to include the systematic e↵ect of interest; the relevant distributions
from these pseudoexperiments are then fitted with the nominal PDF. Significant average
deviations of the fit results from the input values are used as estimates of systematic
uncertainties. The largest systematic uncertainty on S, ±0.018, accounts for possible tag
asymmetries in the background; for C the largest uncertainty, ±0.0034, results from the
systematic uncertainty on �m. Systematic uncertainties on the flavor tagging calibration
account for the second largest systematic uncertainty on S, ±0.006, and on C, ±0.0024.
The third largest uncertainty on S, ±0.005, arises from assuming �� = 0 and is evaluated
by generating pseudoexperiments with �� set to the value of its current uncertainty,
0.007 ps�1 [9], and then neglecting it in the fit. Remaining uncertainties due to neglecting
correlations between the reconstructed mass and decay time of the candidates, mismodeling
of the decay-time resolution and e�ciency, the systematic uncertainty of the production
asymmetry, and the uncertainty on the length scale of the vertex detector are small and are
given in the Appendix. Adding all contributions in quadrature results in total systematic
uncertainties of ±0.020 on S and ±0.005 on C.

Several consistency checks are performed by splitting the data set according to di↵er-
ent data-taking conditions, tagging algorithms, and di↵erent reconstruction and trigger
requirements. All results show good agreement with the nominal results.

In conclusion, a measurement of CP violation in the interference between the direct
decay and the decay after B0–B0 oscillation to a J/ K0

S final state is performed using
41 500 flavor-tagged B0 ! J/ K0

S decays reconstructed with the LHCb detector in a

6

B0 → J/ψ K0
S

sin(2β)
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Overall γ (or φ3) results
Frequentist interpretation Bayesian interpretation

http://www.utfit.orghttp://ckmfitter.in2p3.fr

µ supremum method used to combine HFAG

averages of experimental inputs (conservative, but

guarantees coverage).

See Karim Trabelsi’s talk at CKM 2008 for details.

Slides by Owen Long, Moriond EW 2010

PRL 115, 031601 (2015)
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FIG. 4: a) Number of B0 candidates in the signal region with a B0 tag (NB0) and with a B0 tag (NB0), and b) the corresponding
raw asymmetry, (NB0 −NB0)/(NB0 + NB0), as functions of ∆t for each B0 decay modes. The solid (dashed) curves represent
the fit projections in ∆t for B0 (B0) tags. The right-hatched (left-hatched) shaded regions represent the estimated background
contributions in B0 (B0) tagged events.

VIII. CONCLUSIONS

We report improved measurements of the time-
dependent CP asymmetry parameters. The results in
this paper supercede those of our previous publication [5].
We report our measurements in terms of Cf and Sf . We

find

Cf = 0.024 ± 0.020 (stat)± 0.016 (syst),

−ηfSf = 0.687 ± 0.028 (stat)± 0.012 (syst),

providing an independent constraint on the position of
the apex of the Unitarity Triangle [17]. Our mea-
surements agree with previous published results [5, 18]

BABAR, PRD79:072009,2009

6 Conclusion161

Observables measured by LHCb using decays that have sensitivity at tree-level to the162

CKM angle � are combined to determine an improved constraint. Several updates and163

new inputs are used for the first time, as described in Sections 2 and 3. The combination164

gives a best fit value of � = 74.0� and the confidence intervals165

� 2 [68.2, 79.0]� at 68.3% CL ,

� 2 [61.6, 83.7]� at 95.5% CL .

Taking the best fit value and the 68.3% CL interval, � is found to be166

� = (74.0 +5.0
�5.8)

� ,

where the uncertainty includes statistical and systematic contributions. The result for �167

is in agreement with the world averages � = (73.2 +6.3
�7.0)

� [35], � = (68.3± 7.5)� [36] and168

� = (73.5+4.2
�5.1)

� [29], and the previous LHCb average, � = (76.8+5.1
�5.7)

� [3]. This combination169

supersedes the previous measurement [3] as the most precise determination of � from a170

single experiment to date.171

13

S= 0.731 ± 0.035 ± 0.020
sin 2β = 0.687 ± 0.028

Mat Charles
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The year BABAR was shut down...

• Start �s “anomaly”, excluded by LHCb
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2007:

D mixing > 5�

[only HFAG comb.]
Many papers on how Bs ! µ+µ� will discover NP

Z L – p. 3

Circa 2007
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Circa 2016

Learned a lot, plenty of room for new physics

• Before BABAR & Belle, only CP viola-
tion in kaons, SM could be way off
[I agree with Guy Wormser, 2004 was critical: ↵, �, penguins]

SM dominates CP viol. ) Nobel 2008
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• The implications of the consistency of the measurements are often overstated

Z L – p. 4
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Loop observables

Learned a lot, plenty of room for new physics

• Larger allowed region if the SM is
not assumed

• Loop-level (top) vs. tree-dominated
(lower plot) measurements crucial

• LHCb: even better constraints, also
in Bs sector (2nd–3rd generation)
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• O(20%) NP contributions to most loop-level processes (FCNC) are still allowed

Z L – p. 4

Tree observables
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CPV in Bs Decays
• CPV in Bs!J/Ψφ measures the phase of Bs mixing amplitude    

"  Predicted to be nearly zero in the Standard Model
"  New Physics may enter through mixing box
"  Angular analysis determines fractions of CP-odd and CP-even 

eigenstates; simultaneous fit for ΔΓs   

D. Tonelli

J. Ellison
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Hint of new physics in Bs mixing ? 

βs Results from 2008
# New CDF results

D0: arXiv:0802.2255
CDF: PRL100, 161802 (2008)

p-value = 0.07 (1.8σ from SM)

Official CDF+D0 Average

D. Tonelli

J. Ellison
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𝛽s anomaly ? New Physics ???

βs Results from 2008

The year BABAR was shut down...

• Start �s “anomaly”, excluded by LHCb
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[only HFAG comb.]
Many papers on how Bs ! µ+µ� will discover NP

Z L – p. 3
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 40

Consistent with the Standard Model.
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Rare Decays
• Look for processes suppressed in SM

" Deviations are signatures of new physics
! Rare or forbidden decays
" Forbidden by symmetry in SM
" Symmetry can be badly broken for NP: enhancement

! Interference effects: P, CP violation, angular 
distribution
" Interference between SM and NP can enhance NP
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B(s,d)→𝜇+𝜇-
 42

B0(s)→µ+µ–

Branching fractions well predicted in the SM:

A bit of theory

• B0
d,s ! µ+µ� decays expected to be very rare in Standard Model

• Branching fractions very well predicted, most up to date values are⇤:

B(B0
s ! µ+µ�)CP = (3.34± 0.27) · 10�9

B(B0 ! µ+µ�)CP = (1.07± 0.05) · 10�10

• Due to finite B0
s system width di↵erence CP average at time zero are di↵erent

from time-integrated B

B(B0
s ! µ+µ�)hti =

1 + ysA��

1� y2
s

⇥ B(B0
s ! µ+µ�)CP SM

= (3.56± 0.29) · 10�9

• The measured branching fraction (3.2+1.4
�1.2(stat)

+0.5
�0.3(syst)⇥ 10�9) after the

reverse correction becomes:

B(B0
s ! µ+µ�)CP = 2.7+1.3

�1.0 · 10
�9

where a correction to the e�ciency (discussed later) is also included

⇤
Using the new HFAG average of ⌧

B0
s

= 1.516 ± 0.011ps.
F. Dettori (Nikhef) Search for B

0

d,s
! µ

+
µ
�

decays... Tuesday Meeting 9/7/13 5 / 40

Due the finite width of the B0s system the time integrated BF is:

Probe for models with an extended Higgs sector

FCNC decays Rare di-muon decays b ! s`+`� decays Summary Spares

Physics in Flavour changing neutral currents (FCNC)

Small SM prediction... NP can compete at equal level !

Fatima Soomro (LNF - INFN) Rare decays at LHCb, Rencontres de Blois 28 May 2013 3 / 26

Experimental Status
LHCb reported the first evidence of Bs→µ+µ– 
decay with a 3.5 σ significance:

best upper limit on B0→µ+µ– (ATLAS+CMS+LHCb):

B(B0
s ! µ+µ�) = (3.2+1.4�1.2(stat)

+0.5
�0.3(syst))⇥ 10�9

[PRL 110, 021801 (2013)]

[Eur. Phys. J. C72 (2012) 2172]

[arXiv:1207.1158]

3

B(B0 ! µ+µ�) < 8.4 · 10�10 @ 95% CL
[LHCb-CONF-2012-017]

B(B0 ! µ+µ�)hti = (3.56± 0.30) · 10�9
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B(s,d)→𝜇+𝜇-
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BF(B0s→µ+µ– ) 
‣ A simultaneous unbinned 
likelihood fit to the mass spectra is 
performed on 8 BDT bins
‣ Combinatorial bkg, Bs and B0 
yields free
‣ yield and PDFs of exclusive 
backgrounds constrained to their 
expectations.

B(B0
s ! µ+µ�) = (2.9+1.1�1.0(stat)

+0.3
�0.1(syst))⇥ 10�9

B(B0 ! µ+µ�) = (3.7+2.4�2.1(stat)
+0.6
�0.4(syst))⇥ 10�10

‣ For the Bs we obtain:

‣ with a significance of 4.0 σ
‣ For the B0:

‣ with a significance of 2.0 σ
9

[arXiv:1307.5024]
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‣ For the Bs we obtain:

‣ with a significance of 4.0 σ
‣ For the B0:

‣ with a significance of 2.0 σ
9

[arXiv:1307.5024]
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B ! µ+µ�: interesting well beyond HL-LHC

• Bd ! µ
+
µ

� at SM level: LHCb expects 10% (300/fb), CMS expects 15% (3/ab)

SM uncertainty, currently ' (2%) � f
2
Bq

� CKM

)
−

µ+µ → 
0

s
BF(B

0 2 4 6 8

9−
10×

)
−

µ
+

µ 
→ 

0
B

F
(B
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0.9
9−

10×

6
8
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7
%

9
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5
%

9
9
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3
%

9
9
.9

9
%

SM

LHCb

• Theoretically cleanest |Vub| I know, only isospin: B(Bu ! `⌫̄)/B(Bd ! µ
+
µ

�)

• A decay with mass-scale sensitivity (dim.-6 operator) that competes w/ K ! ⇡⌫⌫̄

Z L – p. 18

Improvements with HL-LHC data, may start to get interesting
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Leptonic Decays: B→τν
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Tauonic B decays

Dec 11, 2018 F.Forti, Belle II 12
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Lepton universality in BÆD(*)τν

Dec 11, 2018 F.Forti, Belle II 10

F. Forti
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RK and RK⇤: theoretically cleanest

• LHCb: RK(⇤) =
B ! K

(⇤)
µ

+
µ

�

B ! K(⇤)e+e� < 1 both ratios over 2.5� from lepton universality
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• Theorists’ fits quote 4 – 5� (sometimes including P
0
5 and/or Bs ! �µ

+
µ

�)

• Modifying one Wilson coefficient in He↵ gives good fit: � C9,µ ⇠ �1

Z L – p. 15

Z. Ligeti
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Summary
• High-precision measurements from the B-factories, 

Tevatron, and LHC
! Overall, excellent agreement between sides and angles of 

the Unitarity Triangle
"  But a few tantalizing discrepancies, e.g. in rare decays

! Nontrivial constraints on the flavor of new physics
• Still statistics limited

"  More data from LHC and Belle-II

• Measurements in the quark flavor sector will 
continue to provide important insights and 
constraints on the flavor structure of physics within 
and beyond the Standard Model


