Quark Flavor Physics

February 6, 2018 Yury Kolomensky

Contents

- Flavor transitions in quark sector
 - CKM Matrix
 - Magnitudes of CKM elements: branching fractions
 - Phases in CKM matrix
 - \bigcirc CP violation (mostly B_d and B_s decays)
 - Rare and forbidden processes: sensitivity to new physics
- Extremely rich and vibrant field
 Hundreds of measurements in the PDG booklet
 Will only cover key issues today

Why Precision Flavor Physics?

- Core properties of weak interactions
 - Parameters not predicted within the Standard Model
 - Mass hierarchy
 - Mixing between generations
 - Need measurements !
 - Rich phenomenology with few parameters
 - Standard Model measurements: the foundationDeviations: new physics searches
- LHC era: discoveries (or lack thereof) at the energy frontier
 - Flavor physics provides important interpretation

3

CP Symmetry Violation

- C,P,T: Discrete transformations of the Lagrangian
 - P: parity reversal
 - □ C: charge conjugation
 - □ T: time reversal
- Any field theory Lagrangian is invariant under CPT
 - EM and strong interactions conserve all 3 symmetries
 - Weak interactions violate parity, but CP and T are approximately conserved
 - CP symmetry is broken if Lagrangian has complex couplings

Cabibbo-Kobayashi-Maskawa Matrix

Measure phases through interference: CP violation. Need at least two amplitudes, e.g. 2 decay amplitudes ("direct CPV"), or decay and mixing

CKM Matrix

Unitary mixing matrix: 4 parameters (e.g. 3 angles, 1 phase) For quarks, conventional Wolferstein parameterization:

$$A, \rho, \eta \sim \mathcal{O}(1), \lambda \equiv \sin \theta_c \approx 0.22$$
$$V = \begin{pmatrix} V_{\rm ud} & V_{\rm us} & V_{\rm ub} \\ V_{\rm cd} & V_{\rm cs} & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix} \approx \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

Aside: number of free parameters in a unitary mixing matrix is $(n-1)^2$, so 2-flavor mixing does not have any phases. 3-flavor mixing produces a new phenomenon: CP violation

Nobel Prizes in Physics

Yoichiro Nambu

Makoto Kobayashi

Toshihide Maskawa

2008: Kobayashi-Maskawa: "for the discovery of the origin of the broken symmetry which predicts the existence of at least three families of quarks in nature"

James

Cronin

A Contraction of the second seco

Val

Fitch

1980: Cronin-Fitch "for the discovery of violations of fundamental symmetry principles in the decay of neutral Kmesons" Omitted but not forgotten: Nicola Cabibbo (1935-2010)

Yury Kolomensky: CKM Physics

CKM Magnitudes

Roadmap

First row Vus Kaon decays (KLOE) • τ decays (BaBar, Belle) |Vub| (BaBar, Belle) Second row $|V_{cd}|, |V_{cs}|$ (CLEO-c) |V₀₀| (BaBar, Belle) Third row |Vtd|, |Vts| (CDF, D0, BaBar, Belle) |Vtb| (CDF, D0)

* from inclusive measurements, but better agreement with exclusive required.
More results on the way: solving differences among measurements and interplay with theory!

Matter and Antimatter in the Universe Matter-antimatter asymmetry is one of the great cosmological puzzles

Need CP violation and baryon number violation to create asymmetry from symmetric early Universe

Standard Model effects do not generate enough matter-antimatter imbalance observed today

This is perhaps a hint to search for new physics in CP sector

11

Mixing and CP Violation

System of Neutral B mesons

- In B system, mass difference between two eigenstates is significant, lifetime difference is not
 - Define "Light" and "Heavy" states instead of "Long" and "Short"

$$rac{\Delta m_d}{\Gamma_d} = rac{M_H - M_L}{\Gamma_d} \equiv x_d = 0.730 \pm 0.029$$
 $rac{\Delta \Gamma_d}{\Gamma_d} = \mathcal{O}(10^{-2})$

For B mesons

$$\frac{q}{p} = -\frac{\Delta m_d - i/2\Delta\Gamma_d}{2(M_{12} - i/2\Gamma_{12})}$$
 and $|q/p| \sim 1$

• Direct CP violation is predicted to be small, hence $|\lambda_{CP}| \sim 1$

Unitarity Triangle

Unitary mixing matrix: 4 parameters (*c.f.* MNSP matrix in neutrinos) For quarks, conventional Wolferstein parameterization: $A, \rho, \eta \sim O(1), \lambda \equiv \sin \theta_c \approx 0.22$

- (interference between two decay amplitudes)
- □ Indirect *CP* violation
 - (interference between two mixing amplitudes)
- CP violation in the interference between mixed and unmixed decays

Phys226

15

Common Definitions

 $\frac{\text{Time-dependent } CP \text{ Observable:}}{A_{f_{CP}}(t) = \frac{\Gamma(\overline{B}_{phys}^{0}(t) \rightarrow f_{CP}) - \Gamma(B_{phys}^{0}(t) \rightarrow f_{CP})}{\Gamma(\overline{B}_{phys}^{0}(t) \rightarrow f_{CP}) + \Gamma(B_{phys}^{0}(t) \rightarrow f_{CP})}$ $= C_{f_{CP}} \cdot \cos(\Delta m_{B_{d}}t) + S_{f_{CP}} \cdot \sin(\Delta m_{B_{d}}t)$

$$C_{f_{CP}}C_{f_{CP}}C_{F_{CP}} = \frac{1 - \frac{1}{\lambda_{f_{CP}}} \frac{\lambda_{f_{CP}}}{\lambda_{f_{CP}}} \frac{2}{1 - \frac{1}{\lambda_{f_{CP}}} \frac{\lambda_{f_{CP}}}{\lambda_{f_{CP}}}} \frac{2}{1 - \frac{1}{\lambda_{f_{CP}}} \frac{\lambda_{f_{CP}}}{\lambda_{f_{CP}}} \frac{2}{1 - \frac{1}{\lambda_{f_{CP}}} \frac{\lambda_{f_{CP}}}{\lambda_{f_{CP}}}} \frac{2}{1 - \frac{1}{\lambda_{f_{$$

Yury Kolomensky: CKM Physics

Y(4S): Coherent B⁰B⁰ production

- B⁰B⁰ system evolves coherently until one of them decays
 - *CP*/Mixing oscillation clock only starts ticking at the time of the first decay, relevant time parameter Δt :

$$\Delta t = t_{CP} - t_{\text{OtherB}}$$

- B mesons have opposite flavor at time $\Delta t=0$ ⁽³⁾ Half of the time *CP* B decays first ($\Delta t < 0$)
- Integrated CP asymmetry is 0:

$$\int_{\infty}^{+\infty} F(t) dt = \int_{-\infty}^{+\infty} \overline{F}(t) dt$$

BaBar Detector

LHCb Detector

- [JINST 3 (2008) S08005]
- Acceptance $2 < \eta < 5$, with excellent vertexing, tracking, PID
- $\mathcal{L}_{int} = 1 \text{ fb}^{-1}$ @ 7 TeV in 2011, & 2 fb⁻¹ @ 8 TeV in 2012

Vertex Locator $\sigma_{PV,x/y} \sim 10 \ \mu m, \ \sigma_{PV,z} \sim 60 \ \mu m$ Tracking (TT, T1-T3) $\Delta p/p: 0.4\%$ at 5 GeV/c, to 0.6% at 100 GeV/cRICHs $\varepsilon(K \rightarrow K) \sim 95\%$, mis-ID rate $(\pi \rightarrow K) \sim 5\%$ Muon system (M1-M5) $\varepsilon(\mu \rightarrow \mu) \sim 97\%$, mis-ID rate $(\pi \rightarrow \mu) = 1 - 3\%$ ECAL $\sigma_E/E \sim 10\%/\sqrt{E} \oplus 1\%$ (E in GeV)HCAL $\sigma_E/E \sim 70\%/\sqrt{E} \oplus 10\%$ (E in GeV)

Example of a Fully Reconstructed Event

0

-0.2 L

n

0.2

0.4

0.6

- in B decays to date
- BaBar results for the final dataset
- Still statistically-limited measurements Theoretical uncertainty for $\sin 2\beta$ from charmonium modes below 0.01:

further improvements from LHCb and Super B factories

0.8

D

Mat Charles

- Time-dependent CPV in $b \rightarrow u$ transitions
- Problem: 2-3 amplitudes, additional interference ^(S) "Penguin" pollution: $S_{\text{eff}} = \sqrt{1 - C^2} \times \sin(2\alpha - 2\Delta\alpha)$
- Isospin analysis to measure Δα
 4-fold ambiguity in Δα
 Small branching fractions
- Most useful modes:

☞ Β→ρρ, ππ, ρπ

Phys226

Gronau, London, PRL65, 3381 (1990)

Yury Kolomensky: CKM Physics

Penguin Diagrams

R. Ellis, M.-K. Gaillard, D. Nanopoulos

Angle γ/ϕ_3

- Hardest angle of all to tackle $\Im \gamma = -\arg(V_{ub})$, and V_{ub} is small
- Direct CPV in $B \rightarrow D^{(*)0}K^{(*)}$ decays

 - □ CP eigenstates (Gronau,London,Wyler)
 ☞ D⁰→ππ,KK,...
 - Doubly Cabibbo-suppressed (Atwood,Dunietz,Soni)
 Solution D⁰→K⁺π⁻ vs D⁰→K⁻π⁺
- Several complementary techniques
 □ Time-dependent CPV in B0→D^(*)π, D^(*)ρ
 - Solution Measures $sin(2\beta+\gamma)$
- Key parameter: r_B , ratio of $|\mathcal{A}(b \rightarrow u)/\mathcal{A}(b \rightarrow c)|$ Phys226 Yury Kolomensky: CKM Physics

M. Pierini

O. Deschamps

Summary of γ/ϕ_3

Difficult, statistics-limited measurements ! Combination of constraints: uncertainty of ~20°. Larger statistics needed (LHCb, SuperBelle)

Current Precision

UT Constraints

Circa 2007

3σ

Yury Kolomensky: CKM Physics

2

UT Constraints

Circa 2016

rigin of the broken he existence of at ks in nature"

Photo: Kyoto University

Toshihide Maskawa

Yury Kolomensky: CKM Physics

80

UT Constraints

J. Ellison

CPV in B_s Decays

- CPV in $B_s \rightarrow J/\Psi \phi$ measures the phase of B_s mixing amplitude $\beta_s \equiv \arg \left[-(V_{ts}V_{tb}^*)/(V_{cs}V_{cb}^*)\right]$
 - Predicted to be nearly zero in the Standard Model
 - S New Physics may enter through mixing box
 - ⁽³⁾ Angular analysis determines fractions of CP-odd and CP-even eigenstates; simultaneous fit for $\Delta\Gamma_s$

β_s Results from 2008

β_s Results from 2014

 $\phi_s - \Delta \Gamma_s$ Combination

Y. Amhis et al. (HFAG), HFAG spring 2014

Consistent with the Standard Model.

Rare Decays

- Look for processes suppressed in SM
 - Deviations are signatures of new physics
 - Rare or forbidden decays
 - Forbidden by symmetry in SM
 - Symmetry can be badly broken for NP: enhancement
 - Interference effects: P, CP violation, angular distribution
 - Interference between SM and NP can enhance NP

 $B_{(s,d)} \rightarrow \mu^+ \mu^-$

Branching fractions well predicted in the SM:

[Eur. Phys. J. C72 (2012) 2172]

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-)^{CP} = (3.34 \pm 0.27) \cdot 10^{-9}$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-)^{CP} = (1.07 \pm 0.05) \cdot 10^{-10}$$

Due the finite width of the B_s^0 system the time integrated BF is:

$$\mathcal{B}(B^0 \to \mu^+ \mu^-)^{\langle t \rangle} = (3.56 \pm 0.30) \cdot 10^{-9}$$
 [arXiv:1207.1158]

Probe for models with an extended Higgs sector

Experimental Status LHCb reported the first evidence of $B_s \rightarrow \mu^+\mu^$ decay with a 3.5 σ significance: $\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-) = (3.2^{+1.4}_{-1.2}(\text{stat})^{+0.5}_{-0.3}(\text{syst})) \times 10^{-9}$ [PRL 110, 021801 (2013)] best upper limit on $B^0 \rightarrow \mu^+\mu^-$ (ATLAS+CMS+LHCb): $\mathcal{B}(B^0 \rightarrow \mu^+\mu^-) < 8.4 \cdot 10^{-10}$ @ 95% CL [LHCb-CONF-2012-017]

 $B_{(s,d)} \rightarrow \mu^+ \mu^-$

Improvements with HL-LHC data, may start to get interesting

$\underline{\mathbf{B}}^+ \rightarrow \tau^+ \nu \ \mathbf{results}$

World average: $B(B^+ \rightarrow \tau^+ \nu) = (1.68 \pm 0.31) \times 10^{-4}$

Future Prospects

Lepton Universality

F. Forti

 W^+/H^+

$$R(D^{(*)}) = \frac{\Gamma(B \to D^{(*)}\tau\nu)}{\Gamma(B \to D^{(*)}\ell\nu)} \quad (\ell = e \text{ or } \mu)$$

 Partial cancellation of theoretical uncertainties related to hadronic effects and measurement systematics.

 $P_{\tau}(D^*) = \frac{\Gamma^+ - \Gamma^-}{\Gamma^+ + \Gamma^-} \quad (\Gamma^{\pm}: \text{ decay rate of } \pm \tau \text{-helicity})$

Another probe of New Physics

Yury Kolomensky: CKM Physics

Lepton Universality

Z. Ligeti

• LHCb: $R_{K^{(*)}} = \frac{B \to K^{(*)} \mu^+ \mu^-}{B \to K^{(*)} e^+ e^-} < 1$ both ratios over 2.5σ from lepton universality

Summary

- High-precision measurements from the B-factories, Tevatron, and LHC
 - Overall, excellent agreement between sides and angles of the Unitarity Triangle

But a few tantalizing discrepancies, e.g. in rare decays

- Nontrivial constraints on the flavor of new physics
- Still statistics limited

More data from LHC and Belle-II

• Measurements in the quark flavor sector will continue to provide important insights and constraints on the flavor structure of physics within and beyond the Standard Model