Physics 290e:

Quark Interactions: SM and Beyond Overview and Introduction

Jan 30, 2019

The (Extended) Standard Model Lagrangian

- $\mathcal{L}=\mathcal{L}_{Q C D}+\mathcal{L}_{E W}$
- Gauge group: $\mathrm{SU}(3) \times \mathrm{SU}(2)_{L} \times \mathrm{U}(1)$
- Quark are the only fundamental particles that interact with all the gauge fields
- A unique probe of the SM
- Different gauge fields couple to different quark bases
- Presence of mass-mixing matrix with wide number of phenomenological implications
- Quarks appear only in bound states (except top)
- Vast array of measurements that can be used to test consistency with SM

QCD: Quark-Gluon Interactions

- "Simple" vertex with single coupling (α_{S}) independent of quark flavor
- Some effects of gluon self-interaction incorporated into running of α_{S}
- Strong coupling at low q^{2} leads to confinement
- Rich spectroscopy of hadrons, no free quarks
- Need non-perturbative techniques to include bound-state effects:
- Lattice QCD
- Heavy Quark Effective Theory
- Other resummation techniques
- Such techniques are essential for extraction of CKM and other SM parameters

Quark Electroweak Interactions: New Parameters

X is any fermion in the Standard Model.

X is electrically charged.

- Charged current quark interactions are (V-A) $\left(S U(2)_{L}\right.$ gauge group) mediated by the $W^{ \pm}$
- Weak basis not the same as mass basis: CKM matrix to map between them
- Neutral current interactions through both $S U(2)_{L}$ and $U(1)$
- Both γ and Z are mixtures of the two neutral gauge mediators
- $\sin \theta_{W}$ specifies the mixing

Charge Current Electroweak Interactions

- Write hadronic current

$$
J^{\mu}=-\frac{g}{\sqrt{2}}(\bar{u} \bar{c} \bar{t}) \gamma_{\mu} \frac{\left(1-\gamma_{5}\right)}{2} V_{C K M}\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)
$$

- $V_{C K M}$ gives mixing between strong (mass) and (charged) weak basis
- Often write as

$$
V_{C K M}=\left(\begin{array}{ccc}
V_{u d} & V u s & V_{u b} \\
V_{c d} & V c s & V_{c b} \\
V_{t d} & V t s & V_{t b}
\end{array}\right)
$$

- Wolfenstein parameterization:

$$
V_{C K M}=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right)
$$

Here λ is the $\approx \sin \theta_{C}$.

The CKM Matrix (Continued)

- From previous page:

$$
\begin{aligned}
V_{C K M} & =\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \\
& \approx\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)
\end{aligned}
$$

- From the explicit form (dropping terms of λ^{2} or higher)

$$
\rho+i \eta=-\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}
$$

- Unitarity insures $V V^{\dagger}=V^{\dagger} V=1$. Thus

$$
\begin{aligned}
\sum_{i} V_{i j} V_{i k}^{*} & =\delta_{j k} \text { column orthogonality } \\
\sum_{j} V_{i j} V_{k j}^{*} & =\delta_{i k} \text { row orthogonality }
\end{aligned}
$$

- Eg:

$$
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
$$

The Unitarity Triangle

- From previous page

$$
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
$$

- Divide by $\left|V_{c d}^{*} V_{c b}\right|$:

$$
\frac{V_{u d} V_{u b}^{*}}{\left|V_{c d}^{*} V_{c b}\right|}-1+\frac{V_{t d} V_{t b}^{*}}{\left|V_{c d}^{*} V_{c b}\right|}=0
$$

- Think of this as a vector equation in the complex plane
- Orient so that base is along x-axis

- Also from previous page:

$$
\rho+i \eta=-\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}
$$

The Measurement Game Plan

- Want to test if matrix is unitary
- Failure of unitarity means new physics
- Make many measurements of sides and angles to over-constrain the triange and test that it closes

$$
\begin{aligned}
\alpha & \equiv \arg \left[-V_{t d} V_{t b}^{*} / V_{u d} V_{u b}^{*}\right] \\
\beta & \equiv \arg \left[-V_{c d} V_{c b}^{*} / V_{t d} V_{t b}^{*}\right] \\
\gamma & \equiv \arg \left[-V_{u d} V_{u b}^{*} / V_{c d} V_{c b}^{*}\right]
\end{aligned}
$$

Examples:

$$
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
$$

many observables functions of $\bar{\rho}$ and $\bar{\eta}$: overconstraining

$$
\alpha=\pi-\beta-\gamma
$$

$$
\beta=\operatorname{atan}\left(\frac{\bar{\eta}}{(1-\bar{\rho})}\right)
$$

Measuring the Sides (example): B and D Decays

- Sides are combinations of magnitudes of CKM matrix elements
- Heavy flavor decays one way to measure these
- $V_{c d}$ from $D_{s} \rightarrow K \ell \nu, D \rightarrow \pi \ell \nu$
- $V_{c s}$ from $D_{s}^{+} \rightarrow \mu^{+} \nu, D \rightarrow K \ell \nu$
- $V_{c b}$ from $B \rightarrow X_{c} \ell \nu\left(X_{c} \equiv D, D^{*}\right.$, etc $)$
- $V_{u b}$ from $B \rightarrow X_{d} \ell \nu\left(X_{d} \equiv \pi, \rho\right.$, etc)
- Requires precise measurement of branching fractions
- Must correct for fact that c or b-quark is bound in a meson
- Need theory for this

Angle Measurements: Types of CP Violation

- Three different categories
- Direct CP Violation

$$
\operatorname{Prob}(B \rightarrow f) \neq \operatorname{Prob}(\bar{B} \rightarrow \bar{f})
$$

- Indirect CP Violation (CPV in mixing)

$$
\operatorname{Prob}(B \rightarrow \bar{B}) \neq \operatorname{Prob}(\bar{B} \rightarrow B)
$$

- CP Violation between mixing and decay
- Third category cleanest theoretically since no issues of final state interations
- Always need more than one amplitude to allow interference

The Weinberg Angle θ_{W}

- We have two couplings: g and g^{\prime}
- Can always express the ratio as

$$
\tan \theta_{W}=\frac{g}{g^{\prime}}
$$

- Then

$$
\begin{aligned}
\sin \theta_{W} & =\frac{g}{\sqrt{g^{2}+g^{\prime 2}}} \\
\cos \theta_{W} & =\frac{g^{\prime}}{\sqrt{g^{2}+g^{\prime 2}}}
\end{aligned}
$$

- And our LaGrangian becomes:

$$
\begin{aligned}
\mathcal{L}_{N C} & =-\left[\bar{\chi} \gamma^{\mu}\left(g I_{3}\left(W_{3}\right)_{\mu}+g^{\prime} B_{\mu} \frac{Y}{2}\right) \chi\right] \\
& =-\sqrt{g^{2}+g^{\prime 2}}\left[\bar{\chi} \gamma^{\mu}\left(\sin \theta_{W} I_{3}\left(W_{3}\right)_{\mu}+\cos \theta_{W} B_{\mu} \frac{Y}{2}\right) \chi\right]
\end{aligned}
$$

- Now we can pick out the piece that couples to charge and identify it with the photon

The photon, the Z and the $W^{ \pm}$

- Define photon field as piece that couples to charge

$$
A_{\mu}=B_{\mu} \cos \theta_{W}+\left(W_{3}\right)_{\mu} \sin \theta_{W}
$$

- The Z is the orthogonal combination

$$
Z_{\mu}=-B_{\mu} \sin \theta_{W}+\left(W_{3}\right)_{\mu} \cos \theta_{W}
$$

- Because photon couples to charge, we can relate e to the couplings and θ_{W} :

$$
e=g \sin \theta_{W}=g^{\prime} \cos \theta_{W}
$$

- The $W^{ \pm}$bosons are

$$
W^{ \pm}=\frac{W_{1} \pm i W_{2}}{\sqrt{2}}
$$

and their coupling remains g. Using standard conventions

$$
\frac{g^{2}}{8}=\frac{G_{F} M_{W}^{2}}{\sqrt{2}}
$$

- $\sin \theta_{W}$ is a parameter to be measured (many different techniques)

$$
\sin ^{2} \theta_{W} \sim 0.23
$$

The Quark Quantum Numbers

- Follow same prescription as for the leptons
- W_{μ} coupling is left handed: $\gamma_{\mu}\left(1-\gamma^{5}\right) / 2, B$ coupling is left-right symmetric: γ_{μ}
- Left handed weak isodoublets, right handed weak isosinglets
- Y value for multiplets chosen to enforce $Q=I_{3}+Y / 2$

fermion	Q	I_{3}^{L}	Y_{L}	Y_{R}
ν_{ℓ}	0	$\frac{1}{2}$	-1	-
ℓ	-1	$-\frac{1}{2}$	-1	-2
u, c, t	$+\frac{2}{3}$	$+\frac{1}{2}$	$+\frac{1}{3}$	$+\frac{4}{3}$
d, s, b	$-\frac{1}{3}$	$-\frac{1}{2}$	$+\frac{1}{3}$	$-\frac{2}{3}$

Predicted Z Couplings to Fermions

- The Z current specified by

$$
Z_{\mu}=-B_{\mu} \sin \theta_{W}+\left(W_{3}\right)_{\mu} \cos \theta_{W}
$$

- Together with the LaGrangian from page 18 this gives (with some math)

$$
J_{\mu}^{Z}=J_{\mu}^{3}-\sin ^{2} \theta_{W} j_{\mu}^{E M}
$$

- The neutral weak coupling is NOT (V-A) but rather $C_{V} \gamma_{\mu}+C_{A} \gamma_{m} u\left(1-\gamma^{5}\right)$
- Values of C_{V} and C_{A} can be calculated from $\sin ^{2} \theta_{W}$
- Weak NC vector and axial vector couplings are:

f	Q_{f}	C_{A}	C_{V}
ν	0	$\frac{1}{2}$	$\frac{1}{2}$
e	-1	$-\frac{1}{2}$	$-\frac{1}{2}+2 \sin ^{2} \theta_{W}$
u	$\frac{2}{3}$	$\frac{1}{2}$	$\frac{1}{2}-\frac{4}{3} \sin ^{2} \theta_{W}$
d	$-\frac{1}{3}$	$-\frac{1}{2}$	$-\frac{1}{2}+\frac{2}{3} \sin ^{2} \theta_{W}$

Forward-Backward Asymmetry

- Angular distribution in QED: $1+\cos ^{2} \theta$
- Here θ is angle between ingoing e^{-}direction and outgoing fermion f direction
- Parity violating weak interactions add a $\cos \theta$ term
- Can see this effect either by measuring angular distribution or integrating over positive and negative $\cos \theta$
Both have been done

- Different asymmetries for leptons, for u-type and for d-type quarks
- Note: $e^{+} e^{-}$channel has t-channel Feynman diagram
- The integrated quantity

$$
A_{F B} \equiv \frac{\sigma_{F}-\sigma_{B}}{\sigma_{F}+\sigma_{B}}
$$

Measuring the Quark Couplings at LEP

- Asymmetry measurements require distinguishing f and \bar{f}
- No clean way to do this for light quarks
- Can try to measure jet charge, but large systematic uncertainties
- We saw results from later HERA measurements on page 6
- Variety of techniques possible for "tagging" bottom and charm ("Heavy Flavor")
- Some distinguish q and \bar{q} while others don't
- Want to determine
- $A_{F B}^{b, c}$: Different τ_{3} for b and c leads to different couplings
- R_{b} and R_{c} : Sensitive to couplings but also in case of R_{b} to $Z b b$ vertex

Hera: DIS at large Q^{2}

Neutral current scattering $e p \rightarrow e^{\prime} X$

Charged current scatterin
$e p \rightarrow \nu_{e} X$

- Electron-proton collider
- e^{+}and $e^{-}: E_{e}=27.6 \mathrm{GeV}$
- $E_{p}=920 \mathrm{GeV}$
- Unpolarized running 1993-2000
- Longitudinally polarized leptons
- Fits to high statistics data to determine EW parameters
- Leave vector and axial vector couplings of e, u-quarks and d-quarks free
- Constrain SM parameters
- Global PDF fits

Measurements of NC couplings of quarks

- Axial and vector couplings determined by weak I_{3} and Y
- Same equations as for leptons, but different numbers
- These couplings measured well at LEP, SLC
- HERA provides an alternative method

Quark Interactions with the Higgs: Yukawa Couplings

$$
\begin{aligned}
& \mathrm{h}-\ldots-\tilde{\Sigma}_{\substack{\mathbf{W}, \mathbf{Z} \\
2 \\
\mathbf{W}, \mathbf{Z}}}^{=} g M_{W}, \frac{g M_{Z}}{\cos \theta_{W}} \\
& \mathrm{~h}-\mathrm{f}_{\mathrm{f}}^{\mathrm{f}}=\frac{g M_{f}}{2 M_{W}}
\end{aligned}
$$

- Coupling to $W^{+} W^{-}$and $Z Z$ defined by \mathcal{L}
- Coupling to fermions with strength that depends on fermion mass
- These are known as the Yukawa couplings
- Current LHC measurements provide strong constraints on the W and Z and τ couplings to the Higgs, but how about the quark Yukawas?
- Indirect constraints on Ht coupling from ggF (top loop)
- First observation of $t t H$ production in 2018
- First observation of $H \rightarrow b \bar{b}$ in 2018
- Only limits on first and second generation quarks so far

BSM Physics: Searches for FCNC Interactions

- In SM, GIM mechanism suppresses FCNC
- Unitarity of CKM matrix means FCNC only possible due to differences between quark masses
- This is why, eg $B R\left(K_{L}^{0} \rightarrow \mu^{+} \mu^{-}\right)=6.8 \times 10^{-9}$
- FCNC possible for BSM interactions
- Because SM rate small, possible to see small BSM couplings if they exist
- Searches possible in many modes, eg:
- $t \rightarrow Z q$
- $b \rightarrow s \gamma$ or $s \ell^{+} \ell^{-}$

BSM Physics: Are Quarks Composite?

- To the best of our knowledge quarks, like leptons, are point-like particles
- But, people used to think nuclei, and later nucleons were point-like
- Whenever the energy of our beam increases, we can probe smaller distances
- Analog of the Rutherford experiment
- Look for an excess of events at large angle and/or high transverse momentum
- Best constraints today from LHE due to large \hat{s}

BSM Physics: New Interactions

- Many BSM models extend the SM Gauge group (embedding the "old" physics in the new)
- Resulting theory has additional force mediators (typically with large mass)
- These mediators can have color, flavor, lepton number
- New interactions forbidden in SM appear
- Rate often low due to high mass of mediator
- New particles can also appear
- Eg: Leptoquarks with both lepton and baryon number
- If kinematically allowed, can be seen at invariant mass peak in jet-lepton spectrum
- Below threshold, non-resonance phenomena possible

Conclusions

- Precise measurements of quark couplings a rich field of research
- Inconsistencies among measurements would indicate presence of new particles or interactions
- Significant ongoing work to constrain CKM matrix
- Is the single phase in CKM the only source of CP violation in quark sector?
- Searches for suppressed or forbidden processes allows us to constrain (or see) new physics
- It's easier to see a small cross section process if the background is zero or tiny
- Many theories developed to explain the as-yet-unexplained introduce such interaction.
We hope such theories may explain:
- What is the source of the matter-antimatter asymmetry in the Universe?
- What is Dark Matter?
- Are the SM interactions unified at a high mass scale?
- What about gravity?

