Torsion balances and low-energy tests of gravity

Vijay Narayan

Fundamental Principles?

All objects fall at the same acceleration, regardless of mass or composition <u>Equivalence Principle</u>: Uniform gravitational field is locally equivalent to an accelerated reference frame

Standard (Newtonian) picture: $m_i = m_g$

Gravitational Inverse Square Law
$$V=-rac{Gm_1m_2}{r}$$

Fundamental Principles?

All objects fall at the same acceleration, regardless of mass or composition <u>Equivalence Principle:</u> Uniform gravitational field is locally equivalent to an accelerated reference frame

Standard (Newtonian) picture: $m_i = m_g$

But weak long-range forces that appear as EP violation?

Gravitational Inverse Square Law $V = -\frac{Gm_1m_2}{r}$ But tested at short distance scales?

5th force

Long history of "discoveries" of an apparent fifth force [Fischbach et al. '86,...] No reason to think such a force cannot exist Many well-motivated candidates

5th force

Long history of "discoveries" of an apparent fifth force

[Fischbach et al. '86,...]

No reason to think such a force cannot exist Many well-motivated candidates

Scalar $y\phi\bar{N}N \quad y\phi\bar{e}e$ $b\phi|H|^2, \quad g^2|\phi|^2|H^2|$

Vector

 $g_{B-L}X_{\mu}\psi\gamma^{\mu}\psi$

Naturalness?

$$V(r) = \pm \frac{y^2}{4\pi} \frac{q_i q_S}{r} e^{-r/\lambda}, \quad \lambda = 1/m_\phi$$

EP Violation

If force couples to e.g. Baryons, then $q \approx m/m_N$ why does this violate EP? Binding energy!

$$F \approx g_{B-L}^2 \Delta_{B-L} \left(\frac{A_S - Z_S}{A_S}\right) \frac{M_S M_{A_i}}{m_N^2} \frac{1}{R^2}$$
$$\Delta_{B-L} = Z_1 / A_1 - Z_2 / A_2$$

EPV force due to vector exchange between source and test masses 1,2

EP Violation

If force couples to e.g. Baryons, then $q \approx m/m_N$ why does this violate EP? Binding energy!

$$F \approx g_{B-L}^2 \Delta_{B-L} \left(\frac{A_S - Z_S}{A_S}\right) \frac{M_S M_{A_i}}{m_N^2} \frac{1}{R^2}$$
$$\Delta_{B-L} = Z_1 / A_1 - Z_2 / A_2$$

EPV force due to vector exchange between source and test masses 1,2

$$\begin{split} V(r) &= -\frac{Gm_1m_2}{r}(1+\alpha e^{-r/\lambda})\\ \alpha &\approx \frac{y^2}{4\pi}\frac{M_{\rm pl}^2}{m_N^2} \qquad \qquad \tilde{\alpha} = \frac{y^2M_{\rm pl}}{4\pi u}\left(\frac{q}{\mu}\right)_i\left(\frac{q}{\mu}\right)_S \\ & \text{Test body mass in units of} \\ & \text{atomic mass units u} \end{split}$$

Torsion Balance

Sensitive to torque along the fiber

 $\tau = \frac{(\vec{F_1} \times \vec{F_2}) \cdot r_{12}}{|\vec{F_1} + \vec{F_2}|} \qquad \begin{array}{l} \text{Differential} \\ \text{(horizontal)} \end{array} \Delta a \sim \frac{\kappa \theta}{mr_{12}} \end{array}$

Restoring torque $-\kappa \theta$

acceleration

[Eotvos]

Torsion Balance

Sensitive to torque along the fiber

Restoring torque $-\kappa\theta$ Differential (horizontal) $\Delta a \sim \frac{\kappa\theta}{mr_{12}}$ acceleration

Occurs if EP is violated and local vertical forces F1, F2 are different in direction (not magnitude) – sensitive to the angle between forces!

[Eotvos]

Relative angle between forces can come from difference in centrifugal (inertial mass) and gravitational forces (gravitational mas) = test of EP violation!

Key systematic: gravitational gradients

Twist measured, e.g. by reflecting a light from a mounted mirror

Eot-Wash Setup

Turntable to achieve relative rotation between test masses and source to achieve a sinusoidal signal ~ mHz. Reduce frequency-dependent noises

Test Bodies and Source

Non-magnetic conducting solids [Adelberger et al, '09]

ρ (g/cm ³)	Z/μ	N/μ	B/μ	
1.9	0.44384	0.55480	0.99865	
1.0	0.57034	0.42854	0.99888	
2.1	0.49813	0.50250	1.00063	
2.7	0.48181	0.51887	1.00068	
4.5	0.45961	0.54147	1.00108	
7.7	0.46610	0.53504	1.00114	
9.0	0.45636	0.54475	1.00112	
21.4	0.39984	0.60034	1.00018	
19.3	0.40108	0.59909	1.00017	
11.3	0.39572	0.60440	1.00012	
	ρ (g/cm ³) 1.9 1.0 2.1 2.7 4.5 7.7 9.0 21.4 19.3 11.3	$\begin{array}{c c} \rho \left({\rm g/cm^3} \right) & Z/\mu \\ \hline 1.9 & 0.44384 \\ 1.0 & 0.57034 \\ 2.1 & 0.49813 \\ 2.7 & 0.48181 \\ 4.5 & 0.45961 \\ 7.7 & 0.46610 \\ 9.0 & 0.45636 \\ 21.4 & 0.39984 \\ 19.3 & 0.40108 \\ 11.3 & 0.39572 \\ \end{array}$	$\begin{array}{c c c c c c c } \rho\left(\text{g/cm}^3\right) & Z/\mu & N/\mu \\ \hline 1.9 & 0.44384 & 0.55480 \\ 1.0 & 0.57034 & 0.42854 \\ 2.1 & 0.49813 & 0.50250 \\ 2.7 & 0.48181 & 0.51887 \\ 4.5 & 0.45961 & 0.54147 \\ 7.7 & 0.46610 & 0.53504 \\ 9.0 & 0.45636 & 0.54475 \\ 9.0 & 0.45636 & 0.54475 \\ 21.4 & 0.39984 & 0.60034 \\ 19.3 & 0.40108 & 0.59909 \\ 11.3 & 0.39572 & 0.60440 \\ \hline \end{array}$	

Depends on force range of interest and other more detailed systematics

Attractor	<i>R</i> _A (m)	Z/μ	N/μ	B/µ	$ ilde{\psi}^0_A$ (deg)	$g_{\perp}^{\rm max}$ (m/s ²)	
Depleted uranium	1	0.39	0.61	1.00	-32	9.2×10^{-7}	
Local topography	$5 - 2 \times 10^{4}$	0.50	0.50	1.00	-55	7.2×10^{-5}	
Entire earth	5×10^{7}	0.49	0.51	1.00	-44	1.7×10^{-2}	Ref. [14]
Sun	2×10^{11}	0.86	0.14	0.99	-81	5.9×10^{-3}	
Galaxy	3×10^{20}					1.9×10^{-10}	
Galactic DM	3×10^{20}					4.8×10^{-11}	Ref.[15]

Torsion constraints on B-L force

Use similar torsion experiment to directly detect dark matter!

Light bosonic DM (m < eV) acts as a random classical field

$$\phi = \phi_0 \cos(mt) \qquad \rho_{\rm dm} \sim \frac{0.4 \text{ GeV}}{\text{cm}^3} \sim m^2 \phi_0^2$$
$$\lambda_{\rm coh} \sim \frac{1}{mv}, \quad \tau_{\rm coh} \sim \frac{1}{mv^2}, \text{ with } v \sim 10^{-3}$$

Effects are locally coherent over 10⁶ oscillations

If the DM coupled in the same way as a fifth force, will produce a time-oscillating EPV [Graham et al. '15]

Static vs. Oscillating EP Violation

(1) Reduce systematics (e.g. gravitational gradients) since signal is oscillating at a frequency set by fundamental physics.Also annual modulation

(2) DM exerts a force on test body in a random direction (e.g. direction of B-L "electric field"). No $O(10^{-3})$ suppression from searches for a vertical force sourced by the Earth in this case.

Limits on B-L Dark Matter

EP: compare acceleration of two different materials, sensitive to deviations $~r\lesssim\lambda\lesssim\infty$

ISL: compare force at two different lengths, sensitive to deviations $r_1 \lesssim \lambda \lesssim r_2$

EP: compare acceleration of two different materials, sensitive to deviations $~r\lesssim\lambda\lesssim\infty$

ISL: compare force at two different lengths, sensitive to deviations $r_1 \lesssim \lambda \lesssim r_2$

Dominant 5th force constraint depends on the mass range of interest

Any motivation for effects that deviate ISL without violating EP?

ISL modified if there are extra dimensions – must be compact

String theory has many extra dimensions, perhaps $R < O(10^{-31} \text{ cm})$. But can they be larger?

SM particles propagate in extra dimensions, yields a KK tower of states $m^2_{\rm KK}\sim \frac{n^2}{R^2}$

Naively constrains R<O(10⁻¹⁷ cm), unless we live on a Brane!

Attempt to address Hierarchy Problem: why is v/Mpl<<1?

Solution: Gravity is not intrinsically weak, and there is only one fundamental scale [Arkani-Hamed, Dimopolous, Dvali '98,...] Gravity only appears weak due to large extra dimensions!

Simple example: d extra dimensions of size R

$$V(r) = \frac{m_1 m_2}{M_{\rm pl}^2} \frac{1}{r} \qquad r \gtrsim R$$
$$V(r) = \frac{m_1 m_2}{M^{2+d}} \frac{1}{r^{d+1}} \qquad r \lesssim R$$

 $M_{\rm pl}^2 = M^{2+d} R^d \approx (10^{19} \text{ GeV})^2$

Large Extra Dimensions

$$M_{\rm pl}^2 = M^{2+d} R^d \approx (10^{19} \text{ GeV})^2$$
 $M \approx \text{TeV}$
 $d = 1 \Rightarrow R \approx 100 \text{ AU}$
 $d = 2 \Rightarrow R \approx 0.1 \text{ mm}$

Can never completely rule out LED framework, but still important to test gravity on short distance scales

Torsion Balance

General Constraints on ISL

