Latest Developments in Machine Learning for Jets

Anders Andreassen

LBNL/UC Berkeley

ATLAS HFSF - December 11, 2018

Machine Learning for Jets is a rapidly growing field of research

Nachman, BOOST 2018 Talk, July 20, 2018

Machine Learning for Jet Physics 2018

indico.cern.ch/event/ml4jets2018

Organizing Committee: Pushpa Bhat (Fermilab) Kyle Cranmer (NYU) Sergei Gleyzer (U Florida) Ben Nachman (LBNL) Tilman Plehn (Heidelberg)

Local Organizing Committee:

Gabriele Benelli (Brown U), Javier Duarte (Fermilab) Benjamin Kreis (Fermilab) Nhan Tran (Fermilab) Justin Pilot (UC Davis)

Images: J. Lin, B. Nachman, L. de Oliveira

November 14-16, 2018

LPC Coordinators: Cecilia Gerber (UIC) Sergo Jindariani (Fermilab)

Overview: Machine Learning

Overview: Machine Learning in HEP

Patrick T. Komiske and Eric M. Metodiev, Harvard Feb, 2018

- Physics Motivated Inputs
 - Give physics motivated observables to a NN or BDT
- Jet Images

- Sequences
 - pT ordering
 - Clustering history

- Physics Motivated Inputs
 - Give physics motivated observables to a NN or BDT
- Jet Images

- Sequences
 - pT ordering
 - Clustering history

Energy/Particle Flow Network

Komiske, Metodiev & Thaler (2018)

- Autoencoders
 - Farina, Nakai, Shih (2018)
 - Heimel, Kasieczka, Plehn, Thompson (2018)

Physics Motivated Inputs

- Input physics motivated observables to BDT or DNN
 - Mass, multiplicity, girth, etc.
- It is a natural choice, but are we throwing information out?
- Complete basis:
 - N-subjettines observables (see 1704.08249)
 - Energy Flow Polynomials (see 1712.07124)

See also: ATL-PHYS-PUB-2017-004 ATL-PHYS-PUB-2017-013 ATLAS-CONF-2017-064

Jet Images

- Discretized energy into pixels in (η, ϕ)
- Typically very sparse
- Captures spatial correlations
- Fixed dimensions of jet representation

Cogan et al 1407.5675; de Oliveira et al 1511.05190 Almeida et al 1501.05968; Komiske et al 1612.01551 Baldi et al 1603.09349; Barnard et al 1609.00607; Kasieczka et al 1701.08784

Figure from 1511.05190

Jet Images

- Convolutional Neural Networks (CNN)
- Multiple channels

red = transverse momenta of charged particles
green = the transverse momenta of neutral particles
blue = charged particle multiplicity

Jets as Sequences

- Jet = { $p_1^{\mu}, p_2^{\mu}, p_3^{\mu}, \dots, p_M^{\mu}$ }
- NN with 4-momenta as input?
- Variable length
 - Keep the N most energetic particles (see e.g. 1704.02124)
 - Recurrent Neural Network

Recurrent Neural Networks (RNNs)

- naturally model sequential evolution (e.g. language)
- allow indeterminate number of "time steps"

Perfect for modeling jet evolution:

Jets as Sequences

- Arbitrary choice of ordering
 - pT ordering
 - clustering history

- Physics Motivated Inputs
 - Give physics motivated observables to a NN or BDT
- Jet Images

- Sequences
 - pT ordering
 - Clustering history

• Energy/Particle Flow Network

Komiske, Metodiev & Thaler (2018)

- Autoencoders
 - Farina, Nakai, Shih (2018)
 - Heimel, Kasieczka, Plehn, Thompson (2018)

• JUNIPR $P_{end} \cdot P_{mother} \cdot P_{branch}$ $P_{t=18} = (10^{-0.7})(10^{-0.1})(10^{-2.0})$ -2.9 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.7 -2.9-2.9

- Physics Motivated Inputs
 - Give physics motivated observables to a NN or BDT
- Jet Images

- Sequences
 - pT ordering
 - Clustering history

Energy/Particle Flow Network

Komiske, Metodiev & Thaler (2018)

- Autoencoders
 - Farina, Nakai, Shih (2018)
 - Heimel, Kasieczka, Plehn, Thompson (2018)

• JUNIPR $P_{end} \cdot P_{mother} \cdot P_{branch}$ $P_{t=18} = (10^{-0.7})(10^{-0.1})(10^{-2.0})$ -2.9 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.7-2.7

ML4Jets '18 @FNAL:

Energy Flow Networks: Deep Sets for Particle Jets

Patrick T. Komiske III

Massachusetts Institute of Technology Center for Theoretical Physics

Machine Learning for Jet Physics Workshop

Fermilab, Illinois – 11/15/2018

Based on work with Eric Metodiev and Jesse Thaler

1810.05165

https://energyflow.network

Deep Sets

Holds for sufficiently large ℓ to arbitrary approximation [1703.06114]

Approximating Φ and F with Neural Networks

Employ neural networks as arbitrary function approximators

Use fully-connected networks for simplicity

Default sizes $-\Phi$: (100, 100, ℓ), F: (100, 100, 100)

Legend

EFN Latent Dimension Sweep

Patrick Komiske – Energy Flow Networks

Extracting New Analytic Observables

EFN ($\ell = 2$) has approximately radially symmetric filters

Take radial slices to obtain envelope

Extracting New Analytic Observables

- Physics Motivated Inputs
 - Give physics motivated observables to a NN or BDT
- Jet Images

- Sequences
 - pT ordering
 - Clustering history

Energy/Particle Flow Network

Komiske, Metodiev & Thaler (2018)

- Autoencoders
 - Farina, Nakai, Shih (2018)
 - Heimel, Kasieczka, Plehn, Thompson (2018)

• JUNIPR $P_{end} \cdot P_{mother} \cdot P_{branch}$ $P_{t=18} = (10^{-0.7})(10^{-0.1})(10^{-2.0})$ -2.9 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.7-2.7

ML4Jets '18 @FNAL:

Searching for new physics with autoencoders

ML4Jets November 16, 2018 Marco Farina Stony Brook University

Based on Farina, Nakai, Shih '18

arXiv:1808.08992

See also: 1807.10261

Slide by Marco Farina

Anomalous jets detection

After training on QCD jets...

Slide by Marco Farina

Anomalous jets detection

Slide by Marco Farina

Anomaly Detection in another way

CWoLa Hunting:

Extending the Bump Hunt with Machine Learning

Based on:

[1805.02664] Jack Collins, Kiel Howe, Ben Nachman

Mass Scan

Slide by Jack Collins

Mass Scan

Slide by Jack Collins

- Physics Motivated Inputs
 - Give physics motivated observables to a NN or BDT
- Jet Images

- Sequences
 - pT ordering
 - Clustering history

• Energy/Particle Flow Network

Komiske, Metodiev & Thaler (2018)

- Autoencoders
 - Farina, Nakai, Shih (2018)
 - Heimel, Kasieczka, Plehn, Thompson (2018)

ML4Jets '18 @FNAL:

Anders Andreassen aja@lbl.gov in collaboration with Feige, Frye and Schwartz arXiv: 1804.09720

JUNIPR models the evolution of the probability of each splitting of a clustering tree

JUNIPR models the evolution of the probability of each splitting of a clustering tree

- Physics Motivated Inputs
 - Give physics motivated observables to a NN or BDT
- Jet Images

- Sequences
 - pT ordering
 - Clustering history

Energy/Particle Flow Network

Komiske, Metodiev & Thaler (2018)

- Autoencoders
 - Farina, Nakai, Shih (2018)
 - Heimel, Kasieczka, Plehn, Thompson (2018)

Thank You!