
Selections from Jet Substructure Theory

Ian Moult

Berkeley

��� ��� ��� ��� ��� ��� ���
���

���

���

���

���

��

�
��
��
��
�
�
��
��
��
��
��

��→ �� ������� �� �������� (��� + ��)
� = ���� ���� = ���

������� �
��� ���� (������������)
��� ���� (����)

�� ∈ [��� ���] ���� ���> ��� ���

������� �

���������

ATLAS Hadronic Final States December 10, 2018 1 / 39



Jets at the LHC: Internal Structure

• Internal structure of jets resolved due to excellent detector resolution.

• Electroweak scale objects, W /Z/H or t can have sufficiently high pT
to appear inside a jet.

• Revolutionizes the types of questions we can/must ask about jets:
=⇒ jets have substructure!

Boosted Tops Event Display

Jesse Thaler — Using Jets and QCD to Boost the Search for New Physics 4

The Boosted Regime	
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Jet Substructure

• Substructure techniques were primarily developed to search for new
physics.

• Extremely succesful!
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Figure 4: Dijet mass distributions for data in the (a) WW, (b) WZ, and (c) ZZ signal regions, as well as in the
combined (d) WW +WZ and (e) WW + ZZ signal regions. The red lines correspond to the result of the fit and the
shaded bands represent the uncertainty in the background expectation. The lower panels show the significance of
the observed event yield relative to the background fits. Expected signals are shown for the HVT model B with
gV = 3 and the bulk RS model with k/MPl = 1. The predictions for GKK production are multiplied by a factor of
10.
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WZ Diboson Invariant Mass
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Jet Substructure

• What has come out of this?

• New and stronger bounds on BSM physics.

• A wealth of new and sophisticated techniques for studying and
calculating properties of jets!

Jesse Thaler — Aspects of Jets from First Principles 17

Soft Drop Declustering

Groomed	
Clustering Tree

=

Groomed Jet

!
[Larkoski, Marzani, Soyez, JDT, 2014; see also Butterworth, Davison, Rubin, Salam, 2008; Dasgupta, Fregoso, Marzani, Salam/Powling, 2013]
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Substructure Observables Grooming Strategies

• Can be applied more generally to the study of hadronic final states.
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Analytic Calculations with Grooming

p

p

• Difficulties in QCD calculations for pp:

• Global color correlations

• Hadronization corrections

• Pile-Up

• Underlying event

R RGroom

• All complications associated with soft radiation.

• Groomers remove soft radiation
=⇒ Makes calculations simpler and more universal.
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Soft Drop Grooming

• Groomer are used to remove soft contamination.

• Soft Drop/ mMDT: Recurse through a Cambridge-Aachen clustering
tree and remove particles that fail the condition:

Jesse Thaler — Aspects of Jets from First Principles 16

Soft Drop Declustering

!
[Larkoski, Marzani, Soyez, JDT, 2014; see also Butterworth, Davison, Rubin, Salam, 2008; Dasgupta, Fregoso, Marzani, Salam/Powling, 2013]

Original Jet

=

Clustering Tree

Jesse Thaler — Aspects of Jets from First Principles 17

Soft Drop Declustering

Groomed	
Clustering Tree

=

Groomed Jet

!
[Larkoski, Marzani, Soyez, JDT, 2014; see also Butterworth, Davison, Rubin, Salam, 2008; Dasgupta, Fregoso, Marzani, Salam/Powling, 2013]

R R

min[pTi , pTj ]

pTi + pTj
> zcut

• Loosely speaking, reduces a jet to its collinear core.

• Any IRC safe observable measured on a groomed jet is IRC safe.

[Larkoski, Marzani, Soyez, Thaler]

[Dasgupta, Fregoso, Marzani, Salam]

ATLAS Hadronic Final States December 10, 2018 6 / 39



Analytic Calculations with Grooming

p

p

• Grooming removes all color correlations.

• Jet can be considered in isolation!

• Enables calculations in complicated LHC environment.

= fg

+fq
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Soft Drop Jet Mass

• Measurement of the groomed jet mass in ATLAS!
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Figure 3: The unfolded log10(⇢2) distribution for anti-kt R = 0.8 jets with plead
T > 600 GeV, after the soft drop

algorithm is applied for � 2 {0, 1, 2}, in data compared to P�����, S�����, and H�����++ particle-level,
and NLO+NLL+NP [40] and LO+NNLL [41, 42] theory predictions. The LO+NNLL calculation does not
have non-perturbative (NP) corrections; the region where these are expected to be large is shown in a open
marker, while regions where they are expected to be small are shown with a filled marker. All uncertainties
described in the text are shown on the data; the uncertainties from the calculations are shown on each one.
The distributions are normalized to the integrated cross section, �resum, measured in the resummation region,
�3.7 < log10(⇢2) < �1.7. The NLO+NLL+NP cross-section in this resummation regime is 0.14, 0.19, and 0.21
nb for � = 0, 1, 2, respectively [40].

8

Soft Drop Mass in ATLAS

• Comparison of theory and data for a substructure observable!
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Analytic Calculations with Grooming

p

p

• This has both pros and cons.

• Global color correlations

• Hadronization corrections

• Pile-Up

• Underlying event

R RGroom

• If you remove soft radiation, you cannot learn about it.

• Effects associated with soft radiation are least well understood
theoretically.
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Outline

• Groomed Observables
• Top Quark Mass
• Groomed Two Prong Observables

• Hadronic Event Shapes
• Energy-Energy-Correlator
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Substructure for the Standard Model

• Boosted electroweak scale objects, W /Z/H and t are all interesting
SM particles!

• Techniques that have been developed for use in jet substructure can
provide innovative ways to study the SM.

• Here grooming can be highly beneficial.

Boosted Tops

ATLAS Hadronic Final States December 10, 2018 11 / 39



Top Quark Mass
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Top Quark Mass

• Top mass is an important parameter of the Standard Model.

TOP MASS MEASUREMENT
2

Tevatron (2014): mt = 174.34 ± 0.64 GeV 
CMS Run 1 (2015): mt = 172.44 ± 0.49 GeV 
ATLAS Run 1 (2016): mt = 172.84 ± 0.70 GeV 

0.3% sys + 0.07% stat!

Why should we care about a precision mt?

Why should I care about a precision        ?mt

Stability of the Standard Model vacuum! 

mt

mHiggs
uncertainty dominated by mt

Andreassen, Frost, Schwartz

Butazzo, Degrassi, Giardino, Giudice, Sala

•
4

FIG. 3. Gauge dependence of the SM potential at its maxi-
mum with mpole

h = 125.14 GeV and mpole
t = 173.34 GeV.

approach at 1-loop. Decent fits are (12)
�
V 1-loop, trad.

max

�1/4 ⇡ (2.50 ⇥ 109 GeV)e�0.02⇠t+0.0003⇠2
t

⇣
�V 1-loop, trad.

min

⌘1/4

⇡ (3.08 ⇥ 1029 GeV)e0.001⇠t�0.0001⇠2
t

The consistent gauge-invariant values at NLO are

�
V NLO

max

�1/4
= 2.88 ⇥ 109 GeV (13)

�
�V NLO

min

�1/4
= 2.40 ⇥ 1029 GeV

Note that �Vmin corresponds to an energy density well
above the Planck scale. Thus, the potential at the mini-
mum will surely be e↵ected by quantum gravity and pos-
sible new physics not included in our calculation. Previ-
ous analyses have defined stability to be Planck-sensitive
if the instability scale ⇤I > MPl [1, 2]. As we have ob-
served, the instability scale is gauge dependent, so this
is not a consistent criterion. An alternative criterion is
that new operator, such as O6 ⌘ 1

⇤2
NP

h6 be comparable

to Vmin when h = hhi. Although O6 and Vmin are gauge-
invariant, the value of O6 at the field value h where the
minimum occurs is gauge dependent, so this condition
is also unsatisfactory. A consistent and satisfactory cri-
terion was explained in [13]: the new operator must be
added to the classical theory and its e↵ect on Vmin eval-
uated.

Adding O6 to the potential, we find that the the po-
tential is still negative at its minimum in the SM even
for operators with very large coe�cients. For example,
taking ⇤NP = MPl = 1.22 ⇥ 1019 GeV, we find that
µmin

X = 6.0 ⇥ 1017 GeV and Vmin = �(1.1 ⇥ 1017 GeV)4.
Comparing to Eq. (13) we see that the energy of the true
vacuum is very Planck-sensitive.

More generally, a good fit is given by

Vmin = �(0.01⇤NP)4, ⇤NP & 1012 GeV (14)

When ⇤NP < 3.6⇥1012 GeV, Vmin becomes positive and
for ⇤NP < 3.1 ⇥ 1012 GeV the maximum and minimum

Metastability

Rapid instability

Absolute stability
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FIG. 4. Boundaries of absolute stability (lower band, NLO)
and metastability (upper line, LO). The thickness of the
lower boundary indicates perturbative and ↵s uncertainty.
The theoretical uncertainty of the metastability boundary is
unknown. The elliptical contours are 68%, 95% and 99%
confidence bands on the Higgs and top masses: mpole

h =

(125.14±0.23) GeV and mpole
t = (173.34±1.12) GeV. Dotted

lines are scales in GeV at which Vmin can be lifted positive by
new physics.

disappear. Thus the stability of the Standard Model can
be modified by new physics at the scale 1012 GeV.

If we vary the Higgs and top masses in the Standard
Model, we can compute the boundary of absolute stabil-
ity. This bound is shown in Figs. 4 and 5. The dotted
lines show where Vmin becomes positive when in the pres-
ence of O6 for the indicated value of ⇤NP. Unexpectedly,
we find that three independent conditions (1) that Vmin

goes to zero, (2) that Eq. (5) have no solution, and (3)
that Vmin goes positive when ⇤NP = MPl all give nearly
identical boundaries in the mpole

h /mpole
t plane. Know-

ing that quantum gravity is relevant at MPl, we should
therefore be cautious about giving too strong of an in-
terpretation of the perturbative absolute stability bound
in the SM. We also show in this plot the metastability
bound, that the lifetime of our vacuum be larger than
the age of the universe. At lowest order this translates to
�( 1

R )�1 < �14.53 + 0.153 ln[R GeV] for all R [30]. Since
�(µ) is gauge invariant, so is this criterion. Although for
the Standard Model this approximation is probably suf-
ficient, it has not been demonstrated that the bound can
be systematically improved in a guage-invariant way [31].

In this paper, we have only discussed a single physical
feature of the e↵ective action: the value of the e↵ective
potential at its extrema. There is of course much more
content in the e↵ective action, especially when tempera-
ture dependence is included. Unfortunately, many uses
of the e↵ective action involve evaluating it for particu-
lar field configurations, a procedure that has repeatedly
been shown to be gauge-dependent. For example, the

Butazzo, Degrassi, Giardino, Giudice, Sala

Andreassen, Frost, Schwartz

Gfitter Group, 2014

Significant contribution to uncertainty due to mt

In this talk we discuss  another source of uncertainty.

What mass is it? How precisely do we  
know the mass definition?

6

Precision Measurements

mt = 172.84 ± 0.70

mt = 172.44 ± 0.49

mt = 174.34 ± 0.64Tevatron (2014)

CMS Run-1(2015)

ATLAS Run-1(2016)

GeV

0.3% syst. & 0.07% stat. !

This talk is about another 
source of uncertainty:

What mass is it? or 

How precisely do we know 
the mass definition?

�mt � 1 GeVestimate:

MOTIVATION

Kinematic Top Mass Extractions:

• Due to its strongly interacting nature, top mass is a renormalized
parameter of the SM, needs to be defined in a given scheme.

MOTIVATION

TOP MASS DEFINITION
3

What scheme is the top mass measured in?

Theory(QFT)

Experiment

Simulation 
(Monte Carlo)

t

t̄
hadrons

�shower = 1GeV

16

Theory (QFT)

Experiment

Simulation
(Monte Carlo)

mpole
t ,mt,m

MSR
t , . . .

mMC
t

CMS: mMC
t = 172.44 ± 0.49

Determines best fit value of Monte Carlo top-mass parameter:

No Ambiguity

Breit Wigner �
�

Definition ?

t

t̄
hadrons

�shower = 1GeV

16

Theory (QFT)

Experiment

Simulation
(Monte Carlo)

mpole
t ,mt,m

MSR
t , . . .

mMC
t

CMS: mMC
t = 172.44 ± 0.49

Determines best fit value of Monte Carlo top-mass parameter:

No Ambiguity

Breit Wigner �
�

Definition ?

11

Theory (QFT)

Experiment

Simulation
(Monte Carlo)

Most precise measurements 
need simulations where its 
hard to determine the 
       definition.mt

mpole
t ,mt,m

MSR
t , . . .

L :

t

t̄
hadrons

t

t̄
hadrons

�shower = 1GeV

16

Theory (QFT)

Experiment

Simulation
(Monte Carlo)

mpole
t ,mt,m

MSR
t , . . .

mMC
t

CMS: mMC
t = 172.44 ± 0.49

Determines best fit value of Monte Carlo top-mass parameter:

No Ambiguity

Breit Wigner �
�

Definition ?

CMS Run 1 (2015): mt = 172.44 ± 0.49 GeV

Masses in Quantum Field Theory get renormalized.

Field Theoretic  
Definition?

Butenschoen, Dehnadi, Hoang, Mateu, Preisser, Stewart 2016
Hoang, Stewart 2008

See Also Talk by Czakon

[Pathak, Boost 2017]
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Top Quark Mass

QCD

SCET

HQET
      Soft
Cross-Talk

top

Q

mt

Γt

Integrate out 
Hard Modes

Factorize Jets, Integrate 
 out energetic collinear 
 gluons

Evolution and 
decay of top 
close to mass shell

t t

HQET
antitop

n n

FIG. 1: Sequence of effective field theories used to compute the invariant mass distribution.

where, as indicated, power corrections are suppressed by αsm/Q, m2/Q2, Γt/m, or st,t̄/m
2.

Here mJ is the short-distance top quark mass we wish to measure, and for convenience we

have defined

ŝt =
st

mJ
=

M2
t − m2

J

mJ
, ŝt̄ =

st̄

mJ
=

M2
t̄ − m2

J

mJ
, (4)

where ŝt,t̄ ∼ Γ are of natural size in the peak region. In Eq. (3) the normalization factor σ0

is the total Born-level cross-section, the HQ and Hm are perturbative coefficients describing

hard effects at the scales Q and mJ , B± are perturbative jet functions that describe the

evolution and decay of the the top and antitop close to the mass shell, and S is a nonpertur-

bative soft function describing the soft radiation between the jets. To sum large logs B± and

S will be evolved to distinct renormalization scales µ, as we discuss in section IIC below.

For the tail region Eq. (3) becomes

dσ

dM2
t dM2

t̄

= σ0 HQ Hm B+ ⊗ B− ⊗ Spart + O
(ΛQCDQ

st,t̄

)
+ O

(mαs(m)

Q
,
m2

Q2
,
Γt

m

)
, (5)

so the only changes are that the soft-function S = Spart(ℓ
+, ℓ−, µ) becomes calculable, and

we have an additional O(ΛQCDQ/st,t̄) nonperturbative correction from the power expansion

of the soft-function which we will include in our analysis. The result in Eq. (3) was derived

by matching QCD onto the Soft Collinear Effective Theory(SCET) [3, 4, 5, 6, 7] which

in turn was matched onto Heavy Quark Effective Theory(HQET) [8, 9, 10, 11, 12, 13]

generalized for unstable particles [14, 15, 16, 17] as illustrated in Fig. 1. The decoupling of

perturbative and nonperturbative effects into the B± jet functions and the S soft function

was achieved through a factorization theorem in SCET and HQET, aspects of which are

similar to factorization for massless event shapes [18, 19, 20, 21]. The result in Eq. (3) is an

event shape distribution for massive particles, and can be used to determine common event

shapes such as thrust or jet-mass distributions. Note that a subset of our results can also
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FIG. 3: Final state jets in SCET for stable top-quarks with invariant mass ∼ m2. The invariant

mass is restricted and the top-decay products become explicit by matching onto HQET.

where Pµ is a label operator picking out the large collinear momentum of order Q and Qλ of

a collinear field [27], while the partial derivative acts on the residual momentum components

∂µ ∼ λ2. The term Wn is the momentum space Wilson line built out of collinear gluon fields

Wn(x) =
∑

perms

exp
(

− g

P̄ n̄ · An(x)
)
. (15)

We also note that Eq. (13) is the bare Lagrangian. In particular, any mass definition can

be chosen for m through an appropriate renormalization condition without breaking the

power-counting. At O(αs) these mass-schemes are the same as those in QCD [51], because

the self-energy graphs are directly related.

An example of an external operator that connects different collinear sectors is the jet

production current, which couples to the γ∗ or Z∗. In QCD the production matrix element

is ⟨X|J µ
a,v|0⟩ where ⟨X| is the final state. The required vector and axial currents are given

by

J µ
v (x) = ψ̄(x)γµψ(x) , J µ

a (x) = ψ̄(x)γµγ5ψ(x) , (16)

and for convenience we will adopt the short-hand notation J µ
i = ψ̄(x)Γµ

i ψ(x). The matching

relation of these QCD currents to SCET currents is given by the convolution formula [26]

J µ
i (0) =

∫
dω dω̄C(ω, ω̄, µ)J

(0)µ
i (ω, ω̄, µ) , (17)

where C contains short-distance dynamics at the scale Q, while J
(0)µ
i describes fluctuations at

all longer distance scales. In the presence of multiple collinear fields, as well as modes scaling

like our mass-modes and soft-modes, the construction of currents in SCET has been discussed

in great detail in Ref. [41]. Interactions between the mass-modes and the collinear-modes

produce offshell particles, which when integrated out leave residual interactions through

Wilson lines in the SCET current. The SCET production current at leading order in λ is

given by

J
(0)µ
i (ω, ω̄, µ) = χ̄n,ω(0)S†

nΓ
µ
i Sn̄χn̄,ω̄(0) , (18)
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Factorization Theorem:

• For sufficiently inclusive event (jet) shape observables, top mass can
be given a precise meaning through factorization formulas:
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Top Jets in pp

9

EFFECT OF HADRONIZATION AND UE

Input mass in Pythia 
mt = 173.1 GeV Significant contamination

Not ideal to have such large shift that needs to be modeled

RECAP FROM BOOST 2016
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• Can we directly measure top jet mass at pp?

• Naively seems impossible due to the very large contamination.

Top Jet Mass

[Hoang, Mantry, Pathak, Stewart]

ATLAS Hadronic Final States December 10, 2018 15 / 39



Soft Drop Top Mass

• Can we apply grooming to achieve a precision top mass measurement
at the LHC?

• Hadronization uncertainty reduced X
• Poorly understood contribution from MPI minimal X

37

input mass in
Pythia =173.1 GeV

Only 0.19 GeV shift from MPI

36

Great!

Soft Drop Top MassGroomed vs. Ungroomed

[Hoang, Mantry, Pathak, Stewart]
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Soft Drop Top Mass
• All orders factorization theorem for Soft Drop Top Mass in pp:

• Calculation can be extended to NNLL for a precision top mass
extraction =⇒ would be a massive success for jet substructure.

4

strong dependence on R for ungroomed jets. The light
groomed spectrum is also independent of an anti-kT jet-
veto cut pveto

T (for jets beyond the two with largest pT )
once pveto

T
>⇠ 50 GeV, as shown in Fig. 2c.

An important prediction of the light soft dropped top
factorization theorems is an insensitivity to parts of the
event outside the groomed top jet. Thus the same fac-
torization theorems apply for top-jets from e+e� ! tt̄
and pp ! tt̄, with only changes to the meaning of Q
and the function N . To obtain a reasonable compari-
son with Pythia8 we take the ee center-of-mass energy
Q = 2400GeV to approximate the spectrum weighted
average Q for pp with |⌘| < 2.5 and pT � 750 GeV. We
see in Fig. 2d that the spectra di↵er without soft drop
(dotted green and dot-dashed blue curves), but agree
quite well with soft drop (solid green and dashed blue
curves). Also shown is the impact of MPI on the pp
spectra. Without soft drop adding MPI shifts the peak
of the spectrum by 4.5 GeV (dotted red versus dotted
green), whereas with light soft drop the shift is only
1.1 GeV (solid red versus green). Formally e↵ects from
UE are outside the framework of factorization. However,
in Ref. [25] it was shown that MPI in Pythia for the
ungroomed jet mass spectrum can be well modeled by
simply changing FC . This occurs because the dominant
impact of MPI is to populate the jet with uncorrelated
soft radiation of somewhat higher energy than that as-
sociated to the soft hadronization. We adopt this ap-
proach to account for hadronization plus UE, replacing

⌦
(�)
n ! ⌦

(�)MPI
n . Estimating this treatment of UE is

uncertain at the <⇠ 30% level, this induces a residual un-
certainty of �mt

<⇠ 0.3 GeV for our soft drop top mass
extraction, compared to �mt

<⇠ 1.4 GeV without soft
drop. With additional dedicated studies this uncertainty
may be further reduced.

In Fig. 3 we show a comparison of Pythia8 results
with the “decay” and “high-pT ” factorization formulae
in Eqs. (4) and (5) with all ingredients taken at tree-
level with next-to-leading-logarithmic (NLL) order re-
summation and ↵s(mZ) = 0.118. In the factorization
theorems we adopt the MSR short distance top mass
scheme mMSR

t (R) [26, 27] and include it’s leading loga-
rithmic evolution from a reference scale R = 1GeV to the
scale µ in JB . As fit parameters we have the MSR mass
mMSR

t ⌘ mMSR
t (R = 1 GeV), and two non-perturbative

parameters ⌦
(�)
1 and x

(�)
2 = ⌦

(�)
2 /(⌦

(�)
1 )2 � 1. We do a

simultaneous fit of these parameters to pT � 750 GeV
and pT � 1000 GeV bins, fixing mMC

t = 173.1 GeV in
Pythia8. For the fit range we take MJ 2 [173, 180] GeV,
over which the curves are also normalized. In the up-
per two plots we include only hadronization in Pythia8,
whereas the lower two plots also include MPI. The or-
ange band shows the perturbative NLL uncertainty on
the “decay” result, from varying scales in the factoriza-
tion theorem. These values of pT are close to the upper

a)

b)

c)

d)

FIG. 3. Comparison of Pythia8 without and with MPI to
the “decay” and “high-pT ” factorization theorems at NLL
with mt in the MSR mass scheme.

limit of Eq. (3), and we find that both factorization the-
orems reproduce the Pythia8 results accurately in the

31

Ensure soft drop 
does not touch      

Can only apply  a “light soft drop” for tops:

Ensure soft drop removes global 
soft radiation from measurement      

“light grooming here”
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Factorization with Soft Drop on one jet:

Soft Drop Top Mass NLL

[Hoang, Mantry, Pathak, Stewart]
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Groomed Two-Prong Observables
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Analytic Boosted Boson Discrimination at the LHC

• Groomed mass measured and theoretically well understood.

• Groomed two-prong (probe three emissions) observables are next
step:

• Grooming and perturbative mass cut make them behave like a
protected event shape inside the jet.

• Clean even in LHC environment.
• Interesting for QCD studies e.g. αs , parton shower studies, etc
• Understanding can be used as input into searches.

• Start with D2:

Power Counting

• Original proposal used e
(�)
2 , e

(�)
3 .

• Define the discriminant D
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Collinear Subjets

[Larkoski, Moult, Neill]
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[Larkoski, Moult, Neill]
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Analytic Calculations with Grooming

p

p

• Grooming removes all color correlations.

• Focus on two-prong substructure gives you
“boosted e+e− event shapes”

• Radiation inside dipole is a remarkably clean, isolated system.

= fg

+fq
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Perturbative Structure

• Calculation performed by piecing together different EFT descriptions.

Groomed D2 Phase Space Groomed D2

• Completely cover all asymptotic regions of phase space.
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Non-Perturbative Behavior

• Non-perturbative effects are non-negligible, but under control.

• Provide interesting probe of color flow of non-perturbative radiation
emitted from a dipole, and effects of grooming on this radiation.

• Would be very interesting to measure.

• Non-perturbative effects exhibit a number of interesting features
• Non-perturbative power corrections are suppressed by the jet mass
• Negligible contribution from MPI/Underlying Event
• Independent of rest of event: Depends only on quark or gluon fraction,

jet mass.
• Independent of quark or gluon.
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Non-Perturbative Behavior
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• Non-Perturbative correction controlled by perturbative jet mass
=⇒ behaves like a (boosted) event shape with Q = mJ !
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Non-Perturbative Behavior
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• Collinear-soft radiation emitted from dipole:
=⇒ In large Nc limit, independent of quark or gluon.

• Well born out in parton shower Monte Carlo.

NP Parameter Extraction
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Non-Perturbative Behavior
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• Contribution from MPI/Underlying Event completely negligible.

• Non-perturbative corrections are from hadronization within the jet.

Groomed D2

• Good control of non-perturbative contributions.
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Analytic Boosted Boson Discrimination at the LHC
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• Calculation of groomed D2 at the LHC.

Groomed D2 Distribution Discrimination Power

• Analytic understanding of modern jet substructure tools at LHC!

• Precision measurements useful!
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Hadronic Event Shapes
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Analytic Calculations with Grooming

p

p

• Grooming has both pros and cons.

• Global color correlations

• Hadronization corrections

• Pile-Up

• Underlying event

R RGroom

• If you remove soft radiation, you cannot learn about it.

• Effects associated with soft radiation are least understood
theoretically.
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Color Evolution

• With four directions, one has “quantum color evolution”.2

4
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FIG. 1: Representative 3-loop connected webs contributing to the soft anomalous dimension with 4 coloured lines.

state and �ij = 0 otherwise; Ti are colour generators
in the representation of parton i, acting on the colour in-
dices of the amplitude as described in Ref. [11]; b�K(↵s)
is the universal cusp anomalous dimension [7, 46, 47],
with the quadratic Casimir of the appropriate represen-
tation scaled out (Casimir scaling of the cusp anomalous
dimension holds through three loops [46]; it may be bro-
ken by quartic Casimirs starting at four loops); �Ji

are
the anomalous dimensions of the fields associated with
external particles, which govern hard collinear singular-
ities, currently known up to three loops [28, 48]. Equa-
tion (4) is known as the dipole formula, and captures the
entirety of the soft anomalous dimension matrix up to
two loops. According to the non-Abelian exponentiation
theorem [44] the colour factors in �n must all correspond
to connected graphs as shown in Fig. 1. Tripole cor-
rections correlating three partons, with colour factors of
the form ifabcTa

i T
b
jT

c
k, which could appear starting from

two loops, are not present in the soft anomalous dimen-
sion at any order because the corresponding kinematic
dependence on the three momenta is bound to violate
the rescaling symmetry constraints [18–20]. While a con-
stant correction proportional to ifabcTa

i T
b
jT

c
k is excluded

by Bose symmetry, kinematic-independent corrections in-
volving three lines of the form fabef cde

�
Ta

i ,Td
i

 
Tb

jT
c
k

(last two diagrams in Fig. 1) are admissible and we will
see that they do indeed appear. The first admissible
corrections involving kinematic dependence in Eq. (3)
are then quadrupoles, because four momenta can form
conformally-invariant cross ratios,

⇢ijkl ⌘
(�sij)(�skl)

(�sik)(�sjl)
, (5)

which are invariant under a rescaling of any of the mo-
menta. Since diagrams with four colour generators con-
tribute for the first time at three loops, this is the first
order at which contributions to �n in Eq. (3) may ap-
pear,

�n ({⇢ijkl}) =
1X

`=3

⇣↵s

4⇡

⌘`

�(`)
n ({⇢ijkl}) . (6)

Three-loop graphs can connect at most four lines, and
so the general form of the three-loop correction is com-
pletely determined by the four-parton case and can be

written as

�(3)
n ({⇢ijkl}) = 16 fabefcde

n
(7)

X

1i<j<k<ln

h
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where C is a constant and F is a function of two
conformally-invariant cross ratios. Both C and F are
independent of the colour degrees of freedom. Moreover,
Eq. (7) is the most general three-loop ansatz consistent
with Bose and rescaling symmetry, so C and F are inde-
pendent of the number of legs n. Note that the terms in
this sum are not all independent, because of the antisym-
metry of the structure constants and the Jacobi identity.

�
(3)
n is independent of the details of the underlying the-

ory and completely determined by soft gluon interactions.

In particular, this implies that �
(3)
n is the same in QCD

and in N = 4 Super Yang-Mills, and it is therefore ex-
pected to be a pure polylogarithmic function of weight
five. Its functional form has been constrained by consid-
ering collinear limits and the Regge limit [18–26], but
it has so far remained unclear whether three-loop correc-
tions to the dipole formula are present. The purpose of

the present paper is to compute �
(3)
n . We will present

its complete functional form, hence determining soft sin-
gularities of any massless multi-leg amplitude at three

loops. Since C and F can be extracted from �
(3)
4 , we

restrict our computation to the case n = 4. Before pre-
senting the final result, we give a brief summary of the
computation. A complete account of the computation
will be presented in a forthcoming publication [49].

We set up the calculation of the soft anomalous dimen-
sion through the renormalization of a product of semi-
infinite Wilson lines with four-velocities �k, with �2

k 6= 0.
By considering non-lighlike lines we avoid collinear sin-
gularities, and obtain kinematic dependence via cusp an-

gles �ij ⌘ 2�i ·�j/
q

�2
i �

2
j . We eventually extract �

(3)
n for

• Grooming destroys this, leading to classical color evolution.

• At 3 loops, one encounters for the first time a “color quadrupole”:
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FIG. 1: Representative 3-loop connected webs contributing to the soft anomalous dimension with 4 coloured lines.

state and �ij = 0 otherwise; Ti are colour generators
in the representation of parton i, acting on the colour in-
dices of the amplitude as described in Ref. [11]; b�K(↵s)
is the universal cusp anomalous dimension [7, 46, 47],
with the quadratic Casimir of the appropriate represen-
tation scaled out (Casimir scaling of the cusp anomalous
dimension holds through three loops [46]; it may be bro-
ken by quartic Casimirs starting at four loops); �Ji

are
the anomalous dimensions of the fields associated with
external particles, which govern hard collinear singular-
ities, currently known up to three loops [28, 48]. Equa-
tion (4) is known as the dipole formula, and captures the
entirety of the soft anomalous dimension matrix up to
two loops. According to the non-Abelian exponentiation
theorem [44] the colour factors in �n must all correspond
to connected graphs as shown in Fig. 1. Tripole cor-
rections correlating three partons, with colour factors of
the form ifabcTa

i T
b
jT

c
k, which could appear starting from

two loops, are not present in the soft anomalous dimen-
sion at any order because the corresponding kinematic
dependence on the three momenta is bound to violate
the rescaling symmetry constraints [18–20]. While a con-
stant correction proportional to ifabcTa

i T
b
jT

c
k is excluded

by Bose symmetry, kinematic-independent corrections in-
volving three lines of the form fabef cde
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i ,Td
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(last two diagrams in Fig. 1) are admissible and we will
see that they do indeed appear. The first admissible
corrections involving kinematic dependence in Eq. (3)
are then quadrupoles, because four momenta can form
conformally-invariant cross ratios,

⇢ijkl ⌘
(�sij)(�skl)

(�sik)(�sjl)
, (5)

which are invariant under a rescaling of any of the mo-
menta. Since diagrams with four colour generators con-
tribute for the first time at three loops, this is the first
order at which contributions to �n in Eq. (3) may ap-
pear,

�n ({⇢ijkl}) =
1X

`=3

⇣↵s

4⇡
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�(`)
n ({⇢ijkl}) . (6)

Three-loop graphs can connect at most four lines, and
so the general form of the three-loop correction is com-
pletely determined by the four-parton case and can be

written as
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where C is a constant and F is a function of two
conformally-invariant cross ratios. Both C and F are
independent of the colour degrees of freedom. Moreover,
Eq. (7) is the most general three-loop ansatz consistent
with Bose and rescaling symmetry, so C and F are inde-
pendent of the number of legs n. Note that the terms in
this sum are not all independent, because of the antisym-
metry of the structure constants and the Jacobi identity.

�
(3)
n is independent of the details of the underlying the-

ory and completely determined by soft gluon interactions.

In particular, this implies that �
(3)
n is the same in QCD

and in N = 4 Super Yang-Mills, and it is therefore ex-
pected to be a pure polylogarithmic function of weight
five. Its functional form has been constrained by consid-
ering collinear limits and the Regge limit [18–26], but
it has so far remained unclear whether three-loop correc-
tions to the dipole formula are present. The purpose of

the present paper is to compute �
(3)
n . We will present

its complete functional form, hence determining soft sin-
gularities of any massless multi-leg amplitude at three

loops. Since C and F can be extracted from �
(3)
4 , we

restrict our computation to the case n = 4. Before pre-
senting the final result, we give a brief summary of the
computation. A complete account of the computation
will be presented in a forthcoming publication [49].

We set up the calculation of the soft anomalous dimen-
sion through the renormalization of a product of semi-
infinite Wilson lines with four-velocities �k, with �2

k 6= 0.
By considering non-lighlike lines we avoid collinear sin-
gularities, and obtain kinematic dependence via cusp an-

gles �ij ⌘ 2�i ·�j/
q

�2
i �

2
j . We eventually extract �

(3)
n for

[Almelid, Duhr, Gardi]

• Can we get to this accuracy/ see this in a physical observable?
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Choice of Observable

• Event Shapes are not all created equal.

• From increased study of observables, now much better understood
which have properties enabling high order calculations.8
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Figure 2: The effects of MPI, ISR, and FSR in PYTHIA8 CUETP8M1 on t? (upper left), BTot
(upper right), rTot (lower left) and rT

Tot (lower right) for a typical range 225 < HT,2 < 298 GeV.
The ratio plots for simulation (MC) with respect to data are shown in the lower panel of each
plot. The inner gray band represents the statistical uncertainty and the yellow band represents
the total uncertainty (systematic + statistical) in each plot.
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Figure 1: Detector-level distributions for the TEEC (top) and ATEEC functions (bottom) for the first and the last
HT2 intervals chosen in this analysis, together with MC predictions from Pythia8, Herwig++ and Sherpa. The total
uncertainty, including statistical and detector experimental sources, i.e. those not related to unfolding corrections,
is also indicated using an error bar for the distributions and a green-shaded band for the ratios. The systematic
uncertainties are discussed in Section 7.

The excellent azimuthal resolution of the ATLAS detector, together with the reduction of the energy scale
and resolution e↵ects by the weighting procedure involved in the definition of the TEEC function, are
reflected in the fact that the transfer matrices have very small o↵-diagonal terms (smaller than 10%),
leading to very small migrations between bins.
The statistical uncertainty is propagated through the unfolding procedure by using pseudo-experiments.
A set of 103 replicas is considered for each measured distribution by applying a Poisson-distributed
fluctuation around the nominal measured distribution. Each of these replicas is unfolded using a fluctuated
version of the transfer matrix, which produces the corresponding set of 103 replicas of the unfolded
spectra. The statistical uncertainty is defined as the standard deviation of all replicas.
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Transverse Energy Energy Correlator

• Extensive ongoing theoretical work on understanding TEEC.

• See Lance Dixon at
https://www.youtube.com/watch?v=WVC1ygsjZNc

• Is now most accurately known dijet event shape NLL → N3LL.
[Dixon, Gao, Li, Moult, Zhu ]
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Transverse Energy Energy Correlator

• TEEC interesting in both collinear and back-to-back region.
• Back-to-back: color quadrupoles (Sudakov logarithms)
• Collinear: Non-trivial probe of splitting (single logarithms).
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• ATLAS measurement currently uses NLO fixed order.

• Can be improved significantly (numerics not finished today:( ).

• Measurement with very fine bins would be nice!
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TEEC in Collinear Limit

• TEEC in collinear (φ→ 0) limit exhibits highly interesting behavior.
• Is a self grooming, single logarithmic observable.
• Does not exhibit Casimir scaling.
• Can be resummed to high perturbative orders.
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• Has received almost zero experimental or theory interest.

• Would be very interesting to measure as a jet substructure observable.

[Dixon, Moult, Zhu ]
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TEEC in Collinear Limit

• Splitting function can be written as a classical piece + quantum piece:

= 4Ci
α

4π

(
x

1− x
+ (1− x)gi (x)

)
,





gφ(x) = 0
gλ(x) = 1

2
gV (x) = x + 1

x

. (1)

• All perturbatively calculable jet substructure observables that I am
aware of (both groomed and ungroomed) can be computed at LL
from the classical piece =⇒ Casimir Scaling =⇒
Theorem: For an observable whose LL result can be computed using
the eikonal splitting functions of (1) in the independent emission
approximation (with or without running coupling), this LL result can
not achieve better quark/gluon discrimination than multiplicity.

• Does not hold for TEEC. Is sensitive to “quantum” structure of
splitting. Promising as q vs. g discriminant in simulation.

[Dixon, Moult, Zhu ]

[Metodiev, Moult, Nachman, Prestel]
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(Near?) Future Prospects
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NNLO Jet Substructure/ Hadronic Event Shapes

• Next jump in precision will require 2→ 3 amplitudes at NNLO
=⇒ substructure (mass) of jet described at NNLO!
=⇒ hadronic event shape described at NNLO!

• Significant recent progress and numerical results
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Figure 1: On the left, with label a), we depict the hexa-box integral family and on the

right, with label b), the double pentagon integral family.

1 Introduction

Scattering amplitudes for multi-particle processes start to play an increasingly important

role in future collider physics analyses, as processes at higher multiplicity are being probed

more and more accurately. Recently, rapid progress has been achieved for five-particle pro-

cesses at next-to-next-to-leading order. This concerns several areas, such as the e�cient

computation of loop integrands [1–4], the analytic computation of the Feynman integrals

[5–7] as well as advances in integral reduction techniques [8–16]. Most recently, two in-

dependent numerical determinations of all planar five-gluon scattering amplitudes [4, 17]

have been achieved.

Non-planar corrections are unfortunately considerably more di�cult to handle, due

to a variety of reasons. Owing to the richer cut-structure of non-planar amplitudes, they

can contain a larger number of rational factors in the external invariants, leading to more

complicated algebraic expressions, both in the integrand reduction and in the determination

of the integrals. This article addresses the second challenge, specifically at the level of

the computations of non-planar Feynman integrals. The first steps in this direction were

taken in [18], where three of the present authors conjectured the function space describing

the Feynman integrals, and proposed a bootstrap method for determining the functions.

Furthermore, individual integrals were computed in ref. [19], using a method based on

conformal symmetry.

There are two non-planar integral families for five particles at two loops, namely the

hexa-box integral family a) and the double pentagon integral family b), shown in Fig. 1.

In this paper, we analytically compute all master integrals for this first one, namely the

hexa-box integral family a).

We begin by deriving a basis of integrals with constant leading singularities, also known

as d-log integrals [20–22]. This is done by adapting the algorithm described in [23] to the

five-particle kinematics. We then use integral reduction programs to find a minimal basis

and thus obtain a basis of 73 d-log integrals.

We follow this up by computing the di↵erential equations for the basis integrals, and

find that they obey the canonical form of [21], as expected by the conjecture made therein.

We find that the di↵erential equations can be expressed in terms of the non-planar pentagon

alphabet of reference [18].

– 2 –
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Figure 1: On the left, with label a), we depict the hexa-box integral family and on the

right, with label b), the double pentagon integral family.

1 Introduction

Scattering amplitudes for multi-particle processes start to play an increasingly important

role in future collider physics analyses, as processes at higher multiplicity are being probed

more and more accurately. Recently, rapid progress has been achieved for five-particle pro-

cesses at next-to-next-to-leading order. This concerns several areas, such as the e�cient

computation of loop integrands [1–4], the analytic computation of the Feynman integrals

[5–7] as well as advances in integral reduction techniques [8–16]. Most recently, two in-

dependent numerical determinations of all planar five-gluon scattering amplitudes [4, 17]

have been achieved.

Non-planar corrections are unfortunately considerably more di�cult to handle, due

to a variety of reasons. Owing to the richer cut-structure of non-planar amplitudes, they

can contain a larger number of rational factors in the external invariants, leading to more

complicated algebraic expressions, both in the integrand reduction and in the determination

of the integrals. This article addresses the second challenge, specifically at the level of

the computations of non-planar Feynman integrals. The first steps in this direction were

taken in [18], where three of the present authors conjectured the function space describing

the Feynman integrals, and proposed a bootstrap method for determining the functions.

Furthermore, individual integrals were computed in ref. [19], using a method based on

conformal symmetry.

There are two non-planar integral families for five particles at two loops, namely the

hexa-box integral family a) and the double pentagon integral family b), shown in Fig. 1.

In this paper, we analytically compute all master integrals for this first one, namely the

hexa-box integral family a).

We begin by deriving a basis of integrals with constant leading singularities, also known

as d-log integrals [20–22]. This is done by adapting the algorithm described in [23] to the

five-particle kinematics. We then use integral reduction programs to find a minimal basis

and thus obtain a basis of 73 d-log integrals.

We follow this up by computing the di↵erential equations for the basis integrals, and

find that they obey the canonical form of [21], as expected by the conjecture made therein.

We find that the di↵erential equations can be expressed in terms of the non-planar pentagon

alphabet of reference [18].
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Figure 1. Kinematical region in the s12-channel in the (s23, s15)-plane for s12 = 1.0, s34 = 0.35,

s45 = 0.2 fixed.

Figure 2. Family of planar penta-box integrals computed in the main text. The numbers corre-

spond to indices i of ai in Ga1...a11
. Numerator factors are not shown in the figure.

3 Two-loop five-point planar master integrals

The family of penta-box integrals is defined as

Ga1,...a11 :=

Z
dDk1d

Dk2

(i⇡D/2)2
⇥

⇥ [�(k1 + p1 + p2 + p3 + p4)
2]�a9

[�k2
1]

a1 [�(k1 + p1)2]a2 [�(k1 + p1 + p2)2]a3 [�(k1 + p1 + p2 + p3)2]a4
⇥

⇥ [�(k2 + p1)
2]�a10

[�k2
2]

a5 [�(k2 + p1 + p2 + p3)2]a6 [�(k2 + p1 + p2 + p3 + p4)2]a7
⇥

⇥ [�(k2 + p1 + p2)
2]�a11

[�(k1 � k2)2]a8
, (3.1)

with p2
i = 0, i = 1, . . . 5, and

P5
i=1 pµ

i = 0, and where a1, . . . a8 � 0 are propagators and

a9, a10, a11  0 numerator factors. See Figure 2.
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• Will be a game changer enabling precision substructure at the LHC!

ATLAS Hadronic Final States December 10, 2018 36 / 39



NNLO

• In the short term, only a few observables at hadronic colliders will get
to NNLO+N3LL.

• Two prime candidates are
• Groomed Jet Mass
• Transverse Energy-Energy-Correlator
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Figure 3: The unfolded log10(⇢2) distribution for anti-kt R = 0.8 jets with plead
T > 600 GeV, after the soft drop

algorithm is applied for � 2 {0, 1, 2}, in data compared to P�����, S�����, and H�����++ particle-level,
and NLO+NLL+NP [40] and LO+NNLL [41, 42] theory predictions. The LO+NNLL calculation does not
have non-perturbative (NP) corrections; the region where these are expected to be large is shown in a open
marker, while regions where they are expected to be small are shown with a filled marker. All uncertainties
described in the text are shown on the data; the uncertainties from the calculations are shown on each one.
The distributions are normalized to the integrated cross section, �resum, measured in the resummation region,
�3.7 < log10(⇢2) < �1.7. The NLO+NLL+NP cross-section in this resummation regime is 0.14, 0.19, and 0.21
nb for � = 0, 1, 2, respectively [40].
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Figure 1: Detector-level distributions for the TEEC (top) and ATEEC functions (bottom) for the first and the last
HT2 intervals chosen in this analysis, together with MC predictions from Pythia8, Herwig++ and Sherpa. The total
uncertainty, including statistical and detector experimental sources, i.e. those not related to unfolding corrections,
is also indicated using an error bar for the distributions and a green-shaded band for the ratios. The systematic
uncertainties are discussed in Section 7.

The excellent azimuthal resolution of the ATLAS detector, together with the reduction of the energy scale
and resolution e↵ects by the weighting procedure involved in the definition of the TEEC function, are
reflected in the fact that the transfer matrices have very small o↵-diagonal terms (smaller than 10%),
leading to very small migrations between bins.
The statistical uncertainty is propagated through the unfolding procedure by using pseudo-experiments.
A set of 103 replicas is considered for each measured distribution by applying a Poisson-distributed
fluctuation around the nominal measured distribution. Each of these replicas is unfolded using a fluctuated
version of the transfer matrix, which produces the corresponding set of 103 replicas of the unfolded
spectra. The statistical uncertainty is defined as the standard deviation of all replicas.
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Conclusions

• Jet substructure provides novel ways for
studying hadronic final states.

• Grooming is useful, but don’t groom
everything!

• Hope for precision SM physics from
substructure in the future.
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Thanks!
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