Neutron EDM: CP Violation in the Quark Sector

Cesar Gonzalez Renteria

Motivation

- Neutron EDM should be ~0 by all accounts
- The presence of a non-zero nEDM is considered a sensitive probe to CP Violation
- And of course, this might help explain the matter/antimatter asymmetry (obligatory mention of BAU)
- Two sources of CP violation in the SM (given in next slide)

$$d_n^{CKM} \approx 1 \times 10^{-32} e \cdot cm$$
 $d_n^{QCD} \approx \overline{\theta} \cdot 1 \times 10^{-16} e \cdot cm$

More than one way to skin a neutron

- Conversion of Ortho- to Para-Hydrogen
- Depolarization of neutron beams
- Ionization by neutrons
- Relaxation times of nuclei in liquids
- Nuclear scattering of neutrons
- Hyperfine structure studies
- Lamb-Rutheford experiment
- Interactions of electrons and neutrons (most accurate at the time)
- And of course, the ole' one two punch: E & B (precession)

How to measure a neutron's EDM (Ramsey)

 Measure the difference in Larmor frequencies for E parallel to B (↑↑) AND E antiparallel to B (↑↓).

•
$$d_n = \frac{\hbar(\omega_0^{\uparrow\uparrow} - \omega_0^{\uparrow\downarrow})}{2(E^{\uparrow\uparrow} - E^{\uparrow\downarrow})} = \frac{\hbar\Delta\omega}{4E}$$

• $\sigma(d_n) = \frac{\hbar}{2\alpha TE\sqrt{\langle N \rangle}}$

- Essentially becomes a counting experiment.
- Will come back to $T\sqrt{\langle N \rangle}$

One of the first experiments

- Beam polarized at A
- Pass through homogenous B field at B.
- RF B field applied at C and C'.
- E field applied parallel to B at space between condensers E.
- Magnetized iron transmission analyzer at A'.
- BF3 Neutron Counter at D.

PhysRev.108.120

$$d_n < 5 \times 10^{-20} e \cdot cm$$

Ultra Cold Neutrons (UCN)

- Revisiting $T\sqrt{\langle N \rangle}$ and the issue with our counting experiment.
- Neutrons with low kinetic E will reflect at material wall.
- Reflection at all angles creates a neutron container.
- Done through "super thermal" moderators (LHE-II or SD2).
- Proper control of KE in UCN important in passage and homogenous polarization of UCN sample.

Experiment	UCN Source	Cell	Technique	Sensitivity
				$x10^{-28}$ e-cm
ILL-PNPI	ILL turbine	Vac.	Ramsey technique for ω	Phase $1 < 100$
	$PNPI-SD_2$		E=0 cell for magentometry	Phase $2 < 10$
PSI nEDM	SD_2	Vac.	Ramsey, $Cs + Hg$ co-mag.	Phase $1 < 100$
			³ He, Hg, Cs magnetom.	Phase $2 < 20$
Munich/ILL	$SD_2@FRMII$	Vac.	Ramsey $+$ Hg co-mag. $+$	Phase $1 < 50$
	LHe@ILL		external ³ He/Cs mag.	Phase $2 < 5$
TRIUMF	LHe-II	Vac.	Ramsey technique	< 50
(TUCAN)			with $Hg + Xe$ co-mag.	
SNS nEDM	LHe-II	LHe	Cryo-HV,	< 5
			n- ³ He capture for ω ,	
			SQUIDS+Critical dressing	
JPARC	SD_2	Vac.	Under Devlopment	< 5(?)
LANL EDM	SD_2	Vac.	Ramsey with Hg	< 50

Current Best Measurement @ ILL

- UCN polarized by iron foil enter trap with uniform E and B.
- Use oscillating B fields near Larmor frequency (Ramsey)
- After osc.->free prec.->osc., neutron pol. should match init. pol.
- Dump neutrons through polarizing foil (spin analyzer)
- UCN detector measures neutrons through ³He capture.
- Repeat experiment with opposite E field direction.

$$d_n < 0.3 \times 10^{-26} \mathrm{e} \cdot cm$$

Next Generation: SNS at Oakridge NL

- Generate UCN using ⁴He.
- Use ³He as co-magnetometer and spin analyzer.
- Apply B field & large E field in LHe filled chamber.
- Neutron capture by ³He is spin dependent and creates scintillation light.
- Measure difference of n & ³He precession frequency (free precession or dressed spin method).

Conclusion

- New and improved methods are being explored to measure nEDM
- Hope to gain up to two orders of magnitude in sensitivity within the next ~5 years.
- Still a long way to go:
 - Experiment: $d_n < 5 \times 10^{-28} e \cdot cm$ (optimistically)
 - SM Theory: $d_n < 1 \times 10^{-32} e \cdot cm$
- Imperative Innovations for the Future:
 - Better generation of UCN and storage
 - Higher E field applied
 - Better Magnetometers

References

- "The Quest for an Electric Dipole Moment of the Neutron" P.Schmidt-Wellenburg [1602.01997v1] (2016)
- "Worldwide Search for the Neutron EDM" B.W. Filippone [1810.03718v1] (2018)
- "On the Possibility of Electric Dipole Moments for Elementary Particles and Nuclei" - E.M. Purcell and N.F. Ramsey [PhysRev.78.807] (1950)
- "Experimental Limit to the Electric Dipole Moment of the Neutron" J.H. Smith, E.M. Purcell, and N.F. Ramsay [PhysRev.108.120] (1957)
- "An Improved Experimental Limit on the Electric-Dipole Moment of the Neutron" – C.A. Baker et al. [0602020v3] (2006)

References

- "A Revised Experimental Upper Limit on the Electric Dipole Moment of the Neutron" J.M. Pendlebury et al. [1509.04411v3] (2015)
- "High Electric Field Development for the SNS nEDM Experiment" T.M. Ito et al. [1401.5435v1] (2014)
- "nEDM at SNS" T. M. Ito, nEDM workshop at LANL [LA-UR-12-25394] (2012)
- Great paper covering most of the field:
- "Experimental Searches for the Neutron Electric Dipole Moment" S K Lamoreaux and R Golub 2009 J. Phys. G: Nucl. Part. Phys. **36** 104002

Backup Slides

Magnetometers

- Used to reduce systematics of unstable and gradient-ful (?) B fields while measuring the field.
- Have to be magnetically susceptible while having an EDM much smaller than the nEDM.
- ¹⁹⁹Hg,¹³³Cs, ¹²⁹Xe and ³He are the most common.
- Cohabitating magnetometers are used in the same volume as the neutrons.
- Auxiliary magnetometers are used outside of the precession chamber but within the magnetic shield.

Free precession method

A dilute admixture of polarized ³He atoms is introduced to the bath of SF ⁴He (x = $N_3/N_4 \sim 10^{-10}$ or $\rho_{3He} \sim 10^{12}/cc$) as comagnetometer

Signature of EDM appears as a shift in ω_3 - ω_n corresponding to the reversal of *E* with respect to *B* with no change in ω_3

3He concentration needs to be adjusted to maximize the sensitivity

- Low concentration → small BR for capture events, weak SQUID signals
- High concentration → short storage time

Slide taken from T. M. Ito talk, nEDM workshop [LA-UR-12-25394]

Dressed spin method

• $\overrightarrow{B_{rf}} \perp \overrightarrow{B_0}$, $B_{rf} \gg B_0$, $\omega_{rf} \gg \omega_0$ • By applying a strong non-resonant RF field, the gyromagnetic ratio can be modified or "dressed"

$$\gamma' = \gamma J_0 \left(\gamma B_{rf} / \omega_{rf} \right) = \gamma J_0 \left(X \right)$$

- Can tune the dressing parameter $(X = \gamma_n B_n / \omega_n)$ until the relative precession between 3He and neutrons is zero $(X = X_c)$.
- Look for X_c dependence on E field
- Provides access to EDM that is independent of variations of the ambient B-field

Slide taken from T. M. Ito talk, nEDM workshop [LA-UR-12-25394]