
Large Batch Training
(a review)

Mustafa Mustafa

Outline

- Why do we need distributed training?

- What are the challenges of training with large batches?

- Attempts at explaining the large batch generalization gap.

- Attempts to fix large batch training, practical advice.

2

Papers reviewed in this talk

On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima, ICLR 2017, Keskar et al, arXiv:1609.04836

Sharp Minima Can Generalize For Deep Nets, PMLR 2017, Dinh et al, arXiv:1703.04933

Train longer, generalize better: closing the generalization gap in large batch training of NN, NIPs 2017, Hoffer et al. arXiv:1705.08741

Why Does Large Batch Training Result in Poor Generalization? Takase et al, Neural Computation 30, 2005–2023 (2018)

Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour, Goyal et al. arXiv:1706.02677

Don't Decay the Learning Rate, Increase the Batch Size, ICLR 2018, Smith et al, arXiv:1711.00489

Large batch size training of neural networks with adversarial training and second-order information, Yao et al. arXiv:1810.01021

Large Batch Training of Convolutional Networks, ICLR 2018, You et al. arXiv:1708.03888

Paper in this “sky” color are not covered comprehensively.

3

https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/1703.04933
https://arxiv.org/abs/1705.08741
https://www.mitpressjournals.org/doi/abs/10.1162/neco_a_01089
https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1711.00489
https://arxiv.org/abs/1810.01021
https://arxiv.org/abs/1708.03888

Motivation for Scalable Deep Learning

4

• Volume of scientific datasets can be large

• Scientific datasets can be complex
(multivariate, high dimensional)

• Rapid prototyping/model evaluation

• Problem scale

Results of ML@NERSC user survey 18’ Results of ML@NERSC user survey 18’

Motivation for Scalable Deep Learning

5

• Models get bigger and more compute
intensive as they tackle more complex tasks

“... total amount of compute, in petaflop/s-days,
that was used to train selected results ... A
petaflop/s-day (pfs-day) = ... 1015 neural net
operations per second for one day, or a total of
about 1020 operations.” -- OpenAI Blog

blog.openai.com/ai-and-compute/

https://blog.openai.com/ai-and-compute/

Distributed training

6

Ben-Nun and Hoefler arXiv:1802.09941

https://arxiv.org/abs/1802.09941

Data-parallel Training

7

● applies to Stochastic Gradient Descent-type algorithms

○ each node takes a data batch and computes model updates independently

○ these updates are then collectively summed and applied to the local model

Ben-Nun and Hoefler arXiv:1802.09941

https://arxiv.org/abs/1802.09941

Reminder: Stochastic Gradient Descent

8

Notation:

N is total sample size

B is batch-size

η is learning rate

Δw is the parameter update in one gradient descent step

gi is gradient on one sample

Large batch training and scaling learning rate

● In data parallelism with fully synchronous SGD one uses N workers to processes N batches of data

● One would like to scale the learning rate accordingly to accelerate the convergence

● There are two camps on how to scale the learning rate:

9

Large batch training and scaling learning rate

● In data parallelism with fully synchronous SGD one uses N workers to processes N batches of data

● One would like to scale the learning rate accordingly to accelerate the convergence

● There are two camps on how to scale the learning rate:

○ Linear scaling (e.g. AlexNet, Bottou et al. arXiv:1606.04838 , Goyal et al. arXiv:1706.02677): η → N * η

The motivation can be seen if one unrolls two steps SGD:

where , under the assumption that

10

https://arxiv.org/abs/1606.04838
https://arxiv.org/abs/1706.02677

Large batch training and scaling learning rate

● In data parallelism with fully synchronous SGD one uses N workers to processes N batches of data

● One would like to scale the learning rate accordingly to accelerate the convergence

● There are two camps on how to scale the learning rate:

○ Linear scaling (e.g. AlexNet, Bottou et al. arXiv:1606.04838 , Goyal et al. arXiv:1706.02677): η → N * η

The motivation can be seen if one unrolls two steps SGD:

where , under the assumption that

○ sqrt-scaling (e.g. AlexNet, You et al. arXiv:1708.03888, Hoffer et al. arXiv:1705.08741): η → sqrt(N) * η

Motivated by the observation that the variance of the gradient scales with 1/batch-size:

11

https://arxiv.org/abs/1606.04838
https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1708.03888
https://arxiv.org/abs/1705.08741

Large batch training and scaling learning rate

● In data parallelism with fully synchronous SGD one uses N workers to processes N batches of data

● One would like to scale the learning rate accordingly to accelerate the convergence

● There are two camps on how to scale the learning rate:

○ Linear scaling (e.g. AlexNet, Bottou et al. arXiv:1606.04838 , Goyal et al. arXiv:1706.02677): η → N * η

The motivation can be seen if one unrolls two steps SGD:

where , under the assumption that

○ sqrt-scaling (e.g. AlexNet, You et al. arXiv:1708.03888, Hoffer et al. arXiv:1705.08741): η → sqrt(N) * η

Motivated by the observation that the variance of the gradient scales with 1/batch-size:

12

In practice, we see anywhere between sub-sqrt (e.g.You et al. arXiv:1708.03888) to linear scaling (e.g. Goyal et al.
arXiv:1706.02677)

https://arxiv.org/abs/1606.04838
https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1708.03888
https://arxiv.org/abs/1705.08741
https://arxiv.org/abs/1708.03888
https://arxiv.org/abs/1706.02677

Challenges with Large Batch Training

There are two main challenges with training with large batch and large learning rates:

1. Training with large learning rates is not stable in the initial stages of the training

 condition does not hold when the parameters are changing rapidly

13

Challenges with Large Batch Training

There are two main challenges with training with large batch and large learning rates:

1. Training with large learning rates is not stable in the initial stages of the training

 condition does not hold when the parameters are changing rapidly

2. A generalization gap appears: networks trained with small batches tend to generalize better

14

ResNet, Linear LR scaling

Goyal et al. arXiv:1706.02677

AlexNet You et al. arXiv:1708.03888

https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1708.03888

Explaining the generalization gap: Sharp minimizers?

Keskar et al, arXiv:1609.04836 observe:

“... large-batch methods tend to converge to sharp minimizers of the training function … (significant number
of large positive eigenvalues in ∇2f(x)) and tend to generalize less well.

In contrast, small-batch methods converge to flat minimizers … (numerous small eigenvalues of ∇2f(x))”

15

https://arxiv.org/abs/1609.04836

Explaining the generalization gap: Sharp minimizers?

16

Keskar et al, arXiv:1609.04836 observe:

“... large-batch methods tend to converge to sharp minimizers of the training function … (significant number
of large positive eigenvalues in ∇2f(x)) and tend to generalize less well.

In contrast, small-batch methods converge to flat minimizers … (numerous small eigenvalues of ∇2f(x))”

https://arxiv.org/abs/1609.04836

Explaining the generalization gap: Sharp minimizers?

17

It is not a case of overfitting. So it
can’t be solved with early stopping.

Keskar et al, arXiv:1609.04836 observe:

“... large-batch methods tend to converge to sharp minimizers of the training function … (significant number
of large positive eigenvalues in ∇2f(x)) and tend to generalize less well.

In contrast, small-batch methods converge to flat minimizers … (numerous small eigenvalues of ∇2f(x))”

https://arxiv.org/abs/1609.04836

Explaining the generalization gap: Sharp minimizers?

18

“We have observed that the loss function landscape of deep neural networks is such that large-batch methods
are attracted to regions with sharp minimizers and that, unlike small-batch methods, are unable to escape
basins of attraction of these minimizers”

Explaining the generalization gap: Sharp minimizers?

19

“We have observed that the loss function landscape of deep neural networks is such that large-batch methods
are attracted to regions with sharp minimizers and that, unlike small-batch methods, are unable to escape
basins of attraction of these minimizers”

Explaining the generalization gap: Sharp minimizers?

20

“We have observed that the loss function landscape of deep neural networks is such that large-batch methods
are attracted to regions with sharp minimizers and that, unlike small-batch methods, are unable to escape
basins of attraction of these minimizers”

Underfitting

Overfitting

Explaining the generalization gap: Sharp minimizers?

21

“We have observed that the loss function landscape of deep neural networks is such that large-batch methods
are attracted to regions with sharp minimizers and that, unlike small-batch methods, are unable to escape
basins of attraction of these minimizers”

Underfitting

Overfitting
Why Does Large Batch Training Result in Poor Generalization? Takase et al, Neural Computation 30, 2005–2023 (2018)

https://www.mitpressjournals.org/doi/abs/10.1162/neco_a_01089

The fall of sharp minimizers picture?

22

Ding et al. “we demonstrate a simple observation. If we
are allowed to change the parametrization of some
function f, we can obtain arbitrarily different geometries
without affecting how the function evaluates on unseen
data. The same holds for reparametrization of the input
space. The implication is that the correlation between the
geometry of the parameter space (and hence the error
surface) and the behavior of a given function is
meaningless if not preconditioned on the specific
parametrization of the model.”

Sharp Minima Can Generalize For Deep Nets, PMLR 2017, Dinh et al,
arXiv:1703.04933

https://arxiv.org/abs/1703.04933

Explaining the generalization gap: parameters diffusion?

Hoffer et al. show that the distance of weights from their point of initialization grows logarithmically:

they draw similarities of training deep NN to “random walk on a random landscape” statistical model which
exhibits similar “ultra-slow” diffusion.

23

Explaining the generalization gap: parameters diffusion?

Hoffer et al. show that the distance of weights from their point of initialization grows logarithmically:

they draw similarities of training deep NN to “random walk on a random landscape” statistical model which
exhibits similar “ultra-slow” diffusion.

24

“Train longer, generalize better: closing the generalization gap in large batch training of NN”, Hoffer et al. arXiv:1705.08741

https://arxiv.org/abs/1705.08741

Avoiding initial training instabilities

Learning rate warm-up:

The instability of initial training with large learning rates is remedied by having a learning rate warm-up
phase. It has been shown that gradual linear warm-up works better than constant warm-up (Goyal et al.
arXiv:1706.02677).

Start with small batch LR = η and linearly scale up to the target learning rate over a few epochs.

Some other works have used gradient clipping, which is typically active in the earlier stages, as an
alternative to a warm-up period, see LARC version of You et al. arXiv:1708.03888 and Hoffer
arXiv:1705.08741.

25

https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1708.03888
https://arxiv.org/abs/1705.08741

Closing the generalization gap

Linear warm up + LR linear scaling

Goyal et al. arXiv:1706.02677 have shown that linear warm-up over 5 epochs up to N * η followed by
original learning rate decay schedule works pretty well for ResNet-50 on ImageNet up to batch-size=8k
(using 256 GPUs). The paper also clarifies subtleties and common pitfalls in distributed training.

26

No warm-up Gradual warm-up

Goyal et al. arXiv:1706.02677 Goyal et al. arXiv:1706.02677

In fact, the small and large batch loss curves are even matched.

This scheme breaks down
beyond batch-size = 8k for
ResNet on ImageNet

https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1706.02677

Closing the generalization gap

Linear warm up + LR linear scaling

Goyal et al. arXiv:1706.02677 have shown that linear warm-up over 5 epochs up to N * η followed by
original learning rate decay schedule works pretty well for ResNet-50 on ImageNet up to batch-size=8k
(using 256 GPUs). The paper also clarifies subtleties and common pitfalls in distributed training.

27

No warm-up Gradual warm-up

Goyal et al. arXiv:1706.02677 Goyal et al. arXiv:1706.02677

In fact, the small and large batch loss curves are even matched.

This scheme breaks down
beyond batch-size = 8k for
ResNet on ImageNet

In our experience this is approach is robust for a wide range of architectures and datasets for reasonable
scales, it does breakdown at extreme batch-sizes.

https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1706.02677

Closing the generalization gap

Adaptive learning rates for large batch, Layer-wise Adaptive Rate Control (LARS/LARC):

You et al. arXiv:1708.03888 observe that when the ratio between the norm of the layer weights and norm of
the gradient update is too small the training becomes unstable. When it is too high, the weights don’t get
updated fast enough.

28

https://arxiv.org/abs/1708.03888

Closing the generalization gap

Adaptive learning rates for large batch, Layer-wise Adaptive Rate Control (LARS/LARC):

You et al. arXiv:1708.03888 observe that when the ratio between the norm of the layer weights and norm of
the gradient update () is too small the training becomes unstable. When it is too high, the weights
don’t get updated fast enough.

They suggest introducing a layer-wise learning rate multiplier:

Where α is a scaling factor dubbed “trust coefficient”.

The SGD update becomes:

Where η is the global learning rate.

A variation over this scheme is a clipping instead of scaling:

29

https://arxiv.org/abs/1708.03888

Closing the generalization gap

Adaptive learning rates for large batch, Layer-wise Adaptive Rate Control (LARS/LARC):

You et al. arXiv:1708.03888 observe that when the ratio between the norm of the layer weights and norm of
the gradient update () is too small the training becomes unstable. When it is too high, the weights
don’t get updated fast enough.

30

https://arxiv.org/abs/1708.03888

Closing the generalization gap

31

Closing the generalization gap

32

Batch-size scaling:

Remember that we typically decay the learning rate as we train our models. Some works have suggested
scaling the batch-size instead.

Smith et al. arXiv:1711.00489 use batch-size scaling to train Inception-ResNet V2 on ImageNet in 2500
parameter updates. Starting at batch-size 8k and scale to 80k!

https://arxiv.org/abs/1711.00489

Closing the generalization gap

Batch-size scaling:

Remember that we typically decay the learning rate as we train our models. Some works have suggested
scaling the batch-size instead.

Smith et al. arXiv:1711.00489 use batch-size scaling to train Inception-ResNet V2 on ImageNet in 2500
parameter updates. Starting at batch-size 8k and scale to 80k!

33Inception-ResNet-V2 on ImageNet. Multiple runs to illustrate variance.

https://arxiv.org/abs/1711.00489

Closing the generalization gap

Adaptive batch-size scaling with adversarial training and 2nd-order information (ABSA):

Yao et al. arXiv:1810.01021 use 2nd-order information (to assess the loss surface curvature) to adaptively
increase the batch-size. In addition, they employ adversarial training to regularize against “sharp-minima”.
They show that this approach closes the generalization gap for a wide range of architectures on image
classification tasks.

34

Example of their results using Adaptive Batch Scaling (ABS) and with Adversarial
Training (ABSA). ResNet-18 on ImageNet dataset with up to 16k batch-size

Yao et al. arXiv:1810.01021

Yao et al. arXiv:1810.01021

https://arxiv.org/abs/1810.01021
https://arxiv.org/abs/1810.01021
https://arxiv.org/abs/1810.01021

Distributed training with batch-normalization

Data-parallel SGD training assumes that independence of the sample loss. However, batch-normalization
computes the statistics along the minibatch. This breaks the independence assumption.

It has been shown that using a fixed batch-size to compute the batch-normalization statistic allows
batch-normalization to scale well in distributed settings, see notes in Goyal et al. arXiv:1706.02677 and
Ghost Batch Normalization in Hoffer et al. arXiv:1705.0874.

35

https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1705.08741

Large batch training takeaway

● Training with large batch-size requires learning rate scaling. Anywhere between sub-sqrt (e.g.You et al.
arXiv:1708.03888) to linear scaling (e.g. Goyal et al. arXiv:1706.02677) have been used in practice.

● Training with large learning rates introduces instabilities in the initial stages of training. Gradual
warm-up to target learning rate works well.

● Training with a large batch-size has a generalization gap w.r.t small batch-size
○ Linear warm-up + scaling LR works well for ~10x scaling of batch-size
○ Increasing the batch-size is an alternative approach to decaying the learning rate
○ Adaptive learning rate scaling methods like LARC is another alternative

● These methods are constantly pushing the limits of the largest batch-size we can use for training but
they still don’t eliminate the upper bound

● Use Ghost Batch Normalization (Hoffer et al. arXiv:1705.08741) for batch-norm in distributed settings.

36

https://arxiv.org/abs/1708.03888
https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1705.08741

37

backup

Data-parallel Training

38

 FORWARD
 PROPAGATION

 BACK
 PROPAGATION

L
A
Y
E
R

1

L
A
Y
E
R

2

L
A
Y
E
R

N

A
llr

ed
uc

e

A
llr

ed
uc

e

A
llr

ed
uc

e

● applies to Stochastic Gradient Descent-type algorithms
○ each node takes a data batch and computes model updates independently

○ these updates are then collectively summed and applied to the local model

From Pradeep Dubey, “Scaling to Meet the Growing Needs of Artificial Intelligence (AI), IDF 2016
https://software.intel.com/en-us/articles/scaling-to-meet-the-growing-needs-of-ai

https://software.intel.com/en-us/articles/scaling-to-meet-the-growing-needs-of-ai

Synchronous Update

39

● all nodes compute gradients locally

● gradients are summed across nodes

● updates propagated to all nodes

● pros:
○ stable convergence

● cons:
○ scaling is not optimal because all nodes

have to wait for reduction to complete
(stragglers slow everyone down)

○ global (effective) batch size grows with
number of nodes

W
W
W
W

W
W
W
W

A
ll-

re
du

ce

Synchronous SGD, decentralized

Asynchronous Update

40

● all nodes compute gradient update locally

● gradient is sent to parameters server

● parameters servers incorporates gradients into
model as they arrive and sends back the updated
model to the corresponding node

● pros
○ no node waits for anybody (perfect scaling)
○ resilient

● cons
○ use of stale gradients can have impact on

convergence rate (depending on #workers)
○ parameter server can be bottleneck

W
W
W
W

W
W
W
W

A
sy

c.
 P

S

Asynchronous SGD, parameter-server

