Neutrinoless Double Beta Decay

Gregory Ottino Phys 290E - UC Berkeley 10/31/18

Overview

- Theoretical background
- Experimental design
- Selection of results

Why Should I Care?

- 0vββ: nuclear double beta decay where no neutrinos are in the final state (left)
- $(A, Z) \rightarrow (A, Z + 2) + 2e^{-}$
- SM conserves total lepton number L
- 0vββ would be direct evidence of BSM processes
- Premised on neutrinos being Majorana particles

Majorana what nows?

- All SM particles are (so far) all Dirac
- Majorana particles are massive particles which are their own antiparticles
- Neutrinos are only SM candidates for Majorana particles (massive and neutral)

• Appear in Lagrangians as terms like

$$\mathcal{L}_{\text{mass}} = \frac{1}{2} \sum_{\ell,\ell'=e,\mu,\tau} \nu_{\ell}^{t} C^{-1} M_{\ell\ell'} \nu_{\ell'} + h.c.$$

• Most interesting man alive?

Ettore Majorana

Right Handed Neutrinos and the Seesaw Mechanism

How can I shove these cool new mass terms into the standard model? Kill two birds with one stone!

$$\mathcal{L}_{\text{mass}} = -\bar{\nu}_{\text{R}i} \ m_{\ell i}^{\text{Dirac}} \ \nu_{\text{L}\ell} + \frac{1}{2} \overline{\nu}_{\text{R}i} \ M_i C \ \bar{\nu}_{\text{R}i}^t + h.c.$$

Heavy neutrinos have Majorana mass and at low energies, light neutrinos end up with effective Majorana mass inversely proportional to heavy neutrino mass

$$A=egin{pmatrix} 0&M\ M&B \end{pmatrix}, \qquad \lambda_{\pm}=rac{B\pm\sqrt{B^2+4M^2}}{2}, \qquad \qquad \lambda_{-}pprox-rac{M^2}{B}.$$

Why haven't we already done this?

Now we want to observe $0\nu\beta\beta$, what's stopping us?

- 1. Nuclear matrix element calculations
- 2. Tiny rate
- 3. Energy resolution

NME: Why You Shouldn't Try to Do Nuclear Physics

- Experiments are large piles of material in which this decay is possible.
- Simply measuring the energy of the decays
- Nuclear Matrix Element Calculations are very difficult
- Note that other processes give an idea of the error in 0vββ, its higher than it seems

Tiny Rate: Let's Check Out This Abandoned Mine Scooby

NME is a theoretical issue, so why can't we measure it and figure out the rest later? $2\nu\beta\beta$ and consequently $0\nu\beta\beta$ have very low probabilities of occuring, leading to very low rates.

One crucial requirement: low background rate

Energy Resolution: Squint, Alot

There are two broad classes of experiment

Detector + Source

- Fully reconstructible event topology enabling background reduction (good)
- Low energy resolution and intrinsic limits on the size of the source material (bad)

Detector = Source

- Good energy resolution (good)
- Scalable (good)
- Not generally able to reconstruct the event topology (bad)
- Limited in choices of material (bad)

Experiment Example: Majorana Demonstrator

- Ge 76 (enriched and natural)
- Calorimetric approach (source coincides with detector)
- Competitive predictive limits for Ge with full lifetime
- Ge Diode detection principle

Experiment Example: SNO+

- Te based experiment
- The isotope is mixed with water (liquid scintillator)
- Read out by pmts
- Water veto on the outside

arXiv:1711.11094

Experiment Example: (n)EXO

- Liquid Xenon based detector
- Uses both scintillation light and a TPC to detect events
- Full event topology is reconstructed with good energy resolution
- Able to tag background processes for veto to further suppress backgrounds
- Predicted best limits

Table of Results

Experiment	Isotope	Techinique	Total mass [kg]	Exposure [kg yr]	FWHM @ $Q_{\beta\beta}$ [keV]	Background [counts/keV/kg/yr]	$S^{0 u}{}_{(90\% \text{ C. L.})} \ [10^{25} \mathrm{yr}]$
Past							
Cuoricino, [179]	¹³⁰ Te	bolometers	$40.7 (TeO_2)$	19.75	5.8 ± 2.1	0.153 ± 0.006	0.24
CUORE-0, [180]	¹³⁰ Te	bolometers	39 (TeO ₂)	9.8	5.1 ± 0.3	0.058 ± 0.006	0.29
Heidelberg-Moscow, [181]	⁷⁶ Ge	Ge diodes	11 (enrGe)	35.5	4.23 ± 0.14	0.06 ± 0.01	1.9
IGEX, [182, 183]	⁷⁶ Ge	Ge diodes	$8.1 (^{enr}Ge)$	8.9	~ 4	≤ 0.06	1.57
GERDA-I, [167, 184]	⁷⁶ Ge	Ge diodes	17.7 (enrGe)	21.64	3.2 ± 0.2	~ 0.01	2.1
NEMO-3, [185]	¹⁰⁰ Mo	tracker + calorimeter	6.9 (¹⁰⁰ Mo)	34.7	350	0.013	0.11
Present							
EXO-200, [186]	¹³⁶ Xe	LXe TPC	175 (^{enr} Xe)	100	89 ± 3	$(1.7 \pm 0.2) \cdot 10^{-3}$	1.1
KamLAND-Zen, [187, 188]	¹³⁶ Xe	loaded liquid scintillator	348 (^{enr} Xe)	89.5	244 ± 11	~ 0.01	1.9
Future							
CUORE, [189]	¹³⁰ Te	bolometers	741 (TeO ₂)	1030	5	0.01	9.5
GERDA-II, [174]	⁷⁶ Ge	Ge diodes	37.8 (enrGe)	100	3	0.001	15
LUCIFER, [190]	⁸² Se	bolometers	17 (Zn ⁸² Se)	18	10	0.001	1.8
MAJORANA D., [191]	⁷⁶ Ge	Ge diodes	$44.8 \ (enr/natGe)$	100 ^a	4	0.003	12
NEXT, [192, 193]	¹³⁶ Xe	Xe TPC	100 (^{enr} Xe)	300	12.3 - 17.2	$5 \cdot 10^{-4}$	5
AMoRE, [194]	¹⁰⁰ Mo	bolometers	200 ($Ca^{enr}MoO_4$)	295	9	$1 \cdot 10^{-4}$	5
nEXO, [195]	¹³⁶ Xe	LXe TPC	4780 (enrXe)	12150 ^b	58	$1.7 \cdot 10^{-5}$ b	66
PandaX-III, [196]	¹³⁶ Xe	Xe TPC	1000 (^{enr} Xe)	3000 °	12 - 76	0.001	11 ^c
SNO+, [197]	¹³⁰ Te	loaded liquid scintillator	2340 (^{nat} Te)	3980	270	$2 \cdot 10^{-4}$	9
SuperNEMO, [198, 199]	⁸² Se	tracker + calorimeter	$100 (^{82}Se)$	500	120	0.01	10

Current Limits

- Common to consider intersection of oscillations and 0vββ
- Different 0vββ limits lead to different implications for mass splitting scenarios
- Cosmological constraints and different models, also play a role in the full physics of this search

Questions

Reference

 S. Dell'Oro, S. Marcocci, M. Viel, F. Vissani. Neutrinoless double beta decay: 2015 review. Advances in High Energy Physics, Volume 2016 (2016).