

Ge Charge-Coupled Device Development

LBNL LDRD project (3rd year)

Steve Holland, David Schlegel, Co Tran Lawrence Berkeley National Laboratory

January 16th, 2019

LBNL talk 1 January 16th , 2019

- This is an LDRD-funded effort to develop scientific CCDs on Germanium substrates
 - The next logical step in terms of increasing the long-wavelength response of scientific CCDs
 - ~ 10 20 um thick CCDs perform to λ ~ 700 nm 250 um thick fully depleted CCDs λ ~ 1 um Ge CCDs could work out to λ ~ 1.4 um
 - Direct application to the study of high red-shift objects of interest in Dark Energy studies

Examples of astronomical CCD cameras

HyperSuprimeCam – 116 2k x 4k, (15 µm)²-pixel CCDs CCDs from Hamamatsu Corporation Licensed CCD technology from LBNL Subaru 8-m Telescope

FermiLab Dark Energy Survey Camera (DECam) 62 2k x 4k, (15 µm)²-pixel CCDs CCDs from DALSA Semiconductor / LBNL NOAO Cerro Tololo Blanco 4-m Telescope

Both use fully depleted CCDs (200 – 250 um thick) Operational since 2012

LBNL talk 3 January 16th , 2019

Astronomical cameras with fully depleted CCDs

Full moon for scale

FermiLab Dark Energy Survey Camera (DECam) 62 2k x 4k, (15 µm)²-pixel CCDs (520 Mpixels) *CCDs from DALSA Semiconductor / LBNL*

LBNL talk 4 January 16th , 2019

Astronomical cameras with fully depleted CCDs

FermiLab Dark Energy Survey Camera (DECam) 62 2k x 4k, (15 μm)²-pixel CCDs (520 Mpixels) *CCDs from DALSA Semiconductor / LBNL*

LBNL talk 5 January 16th , 2019

M1/Crab Nebula in z band: "First and Last"

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

MOSAIC 3 Camera / <u>500 μm thick</u> LBNL CCDs David Schlegel, Chris Bebek, Armin Karcher, Sufia Haque

Astronomical cameras with fully depleted CCDs

HyperSuprimeCam – 8 degrees x 3 degrees field of view Video courtesy of Satoshi Miyazaki / Subaru Telescope

> LBNL talk 7 January 16th , 2019

LSST CCDs (in production)

CCD in test fixture

- 100 µm thick
- Fully depleted
- 4k x 4k
- 10 µm pixels
- 16 amplifiers
- 189 CCDs
- 3.2 Gpixels

-DALSA/ITL STA3800C

T-E2v CCD250

3 2 പ പ 펍 3 5

Courtesy of Paul O'Connor of Brookhaven National Laboratory

LBNL talk 8 **January 16th**, 2019

 In the following we compare material properties of silicon and germanium, and discuss how these material properties affect the electrical and optical performance

Table 1. Comparison of some basic properties of Si, Ge, and GaAs at 300 K.							
Properties	51	Ge	GaAs				
Atoms/cm ³	5.02×10^{22}	4.42×10^{22}	4.42×10^{22}				
Atomic weight	28.09	72.6	144.63				
Breakdown field (V/cm)	$\sim 3 \times 10^5$	\sim 1 $ imes$ 10 ⁵	$\sim 4 imes 10^5$				
Crystal structure	Diamond	Diamond	Zincblende				
Density (g/cm ³)	2.329	5.326	5.317				
Dielectric constant	11.9	16.0	13.1				
Effective density of states in conduction band, $N_{\rm c}$ (cm $^{-3}$)	2.86 × 10 ¹⁹	1.04 × 10 ¹⁹	4.7×10^{17}				
Effective density of states in valance band, N_{ν} (cm $^{-3}$)	1.04×10^{19}	6.0 × 10 ¹⁸	7.0×10^{18}				
Optical phonon energy (eV)	0.063	0.037	0.035				
Effective mass (conductivity)							
Electrons (m _n /m _o)	0.26	0.082	0.067				
Holes (mp/mo)	0.69	0.28	0.57				
Electron affinity, χ (V)	4.05	4.0	4.07				
Energy gap (eV)	1.12	0.67	1.42				
Intrinsic carrier concentration (cm ⁻³)	1.45×10^{10}	2.4×10^{13}	1.8 × 10 ⁶				
Intrinsic resistivity (Ω-cm)	2.3×10^{5}	47	10 ⁸				
Lattice constant (Å)	5.431	5.646	5.653				
Melting point (°C)	1415	937	1240				
Minority carrier lifetime (s)	2.5×10^{-3}	10 ⁻³	$\sim 10^{-8}$				
Mobility (cm ² /V·s)							
Electron (µn)	1,500	3900	8,500				
Holes (μ_p)	450	1900	450				
Thermal diffusivity (cm²/s)	0.9	0.36	0.24				
Thermal conductivity (W/cm-°C)	1.5	0.6	0.46				

Properties of the semiconductors Si, Ge, and GaAs

Atoms/cm ³	5.02 × 10 ²²	4.42×10^{22}	4.42×10^{22}
Atomic weight	28.09	72.6	144.63
Breakdown field (V/cm)	$\sim 3 \times 10^5$	$\sim 1 \times 10^5$	$\sim 4 \times 10^5$
Table 1. Comparison o Properties	f some basic properties c	of Si, Ge, and Si	GaAs at 300 K. Ge
Energy gap (eV)		1.12	0.67
Effective mass (conductivity)			
Electrons (mn/mo)		182	0.067
Holes (mp/mo)	1.0	28	0.57
Electron affinity, χ (V)	, 1.24	le lo	4.07
Energy gap (eV)	$\lambda_{cutoff} \approx -$	- 67	1.42
Intrinsic carrier concentration (cm ⁻³)	E_a	10 ¹³	1.8 × 10 ⁶
Intrinsic resistivity (Ω-cm)	9	7	10 ⁸
Lattice constant (Å)		:46	5.653
Melting point (°C)	1415	937	1240
Minority carrier lifetime (s)	2.5×10^{-3}	10 ⁻³	$\sim 10^{-8}$
Mobility (cm²/V·s)			
Electron (µn)	1,500	3900	8,500
Holes (μ_p)	450	1900	450
Thermal diffusivity (cm ² /s)	0.9	0.36	0.24
Thermal conductivity (W/cm-°C)	1.5	0.6	0.46

Germanium vs Silicon

• Higher redshifts, e.g. z = 1.6 to 2.6 for DESI [O II] (Si to Ge)

2x volume reach for future DESI with Ge CCDs

LBNL talk 12 January 16th , 2019

Atoms/cm ³	5.02×10^{22}	4.42×10^{22}	4.42×10^{22}
Atomic weight	28.09	72.6	144.63
Breakdown field (V/cm)	~ 3 × 10 ⁵	~ 1 × 10 ⁵	~ 4 × 10 ⁵
Table 1. Comparison of some	basic properties	s of Si, Ge, and	GaAs at 300 K.
Properties		Si	Ge
Atomic weight	Z =	= 14 28.09	Z = 32 72.6
Density (g/cm ³)		2.329	5.326
Holes (mp/mo) Electro Energy Ge is 2.3x Intrinsion Intrinsion Lattice Melting Minorit	and x-ray	han silico y detectio rs are hea	n n avy
Mobility (cm ² /V·s) Electron (μ _n) Holes (μ _p) Thermal diffusivity (cm ² /s)	1,500	3900 1900	8,500 450

Table 1. Comparison of some basic propeProperties	rties of Si, Ge, and G Si		
Atoms/cm ³ Atomic weight Breakdown field (V/cm)	5.02 × 10 ²² 28.09 ~ 3 × 10 ⁵	4.42 × 10 ²² 72.6 ~ 1 × 10 ⁵	4.42 × 10 ²² 144.63 ∼ 4 × 10 ⁵
Table 1. Comparison of some Properties	basic properties	of Si, Ge, and C Si	BaAs at 300 K. Ge
Energy gap (eV) Intrinsic carrier concentration (cm ⁻³) Minority carrier lifetime (s)		1.12 1.45 × 10 ¹⁰ 2 X5 × 10 ⁻³	0.67 2.4 × 10 ¹³ 10 ⁻³
Holes (m_/m_)	0.00		
Electro	0.69	0.28	0.57
Electro Energy Intrinsic Lattice Melting Minorit	$\frac{n_i}{g} \propto \frac{\exp}{g}$	$\frac{1}{\tau_g}$	0.57 2kT)

CCD Dark Current vs Temperature LBNL Fully Depleted CCD Measurements by Bill Kolbe

0.001 e- / pixel-day at 120K (4 x 10⁻⁵ e- / pixel-hr)

LBNL talk 17 January 16th , 2019

Very brief transistor history

• The first transistor was realized in Ge (Dec. 1947) — Bardeen and Brattain, then Shockley's junction transistor

- 1st Ge transistor
 - Point contact
- Ge because the purification process was more advanced than that for silicon due to the lower melting point of Ge
 - 937°C vs 1415°C (Si)
- At a 1954 IRE conference Texas Instruments demonstrates
 the silicon grown junction transistor
 - Ge and Si transistors in an audio amplifier dunked in hot oil

Very brief transistor history

LILLIAN HODDESON

The first transis
 Bardeen and EMICHAEL RIORDAN

At a 1954 IRE co

THE BIRTH OF THE INFORMATION AGE

(Dec. 1947) nction transistor transistor nt contact cause the ation process was advanced than that con due to the melting point of Ge 7°C vs 1415°C (Si)

ents demonstrates

dunked in hot oil

LBNL talk 19 January 16th , 2019

recent of some basic pr			
Propertie		Ge	
BERKELEY LAB	5.02 x 10 ²²	4.42 × 10 ²²	4.42×10^{22}
Atomic weight	28.09	72.6	144.63
Breakdown field (V/cm)	$\sim 3 \times 10^5$	\sim 1 $ imes$ 10 ⁵	$\sim 4 \times 10^5$
Table 1. Comparison of so	me basic properties	of Si. Ge. and (GaAs at 300 K.
Properties		Si	Ge
Mobility (cm ² /V·s)			
Electron (µn)		1,500	3900
Holes (u_)		450	1900
			.000
6 P3			
Holes (m_p/m_o)	0.69	0.28	0.57
Holes (m _p /m _o)	0.69	0.28	0.57
Holes (mp/mo) Electr	has high car	o.28	0.57 Litios
Holes (mp/mo) Electr Energ Intrin: Germanium	has high ca	rrier mobi	0.57 lities
Holes (mp/mo) Electr Energ Intrin: Ge has the la	has high car	rrier mobi mobility of	o.sz lities f any
Holes (mp/ma) Electr Energ Intrine Ge has the la	has high car argest hole r	rrier mobi nobility of	lities f any
Holes (mp/ma) Electr Energ Intrine Intrine Lattic Mettir	has high car argest hole r semiconduct	rrier mobi nobility of	o.57 lities f any
Holes (mp/mo) Electr Energ Intrine Intrine Lattic Meltir Minor	has high car argest hole r semiconduct	rrier mobi mobility of or	0.57 lities f any
Holes (mp/mo) Electr Energ Intrine Intrine Lattic Meltir Minor Mobility (cm ² /V·s)	has high car argest hole r semiconduct	rrier mobi nobility of	o.57 lities f any
Holes (mp/mo) Electr Energ Intrin: Intrin: Ge has the la Lattic Melti: Minor Mobility (cm²/V·s) Electron (4n)	has high car argest hole r semiconduct	rrier mobi nobility of or	0.57 lities f any 8,500
Holes (mp/ma) Electr Energ Intrine Intrine Lattic Meltir Mobility (cm²/V·s) Electron (µa) Holes (µp)	has high car argest hole r semiconduct	rrier mobi mobility of or	0.57 lities f any 8,500 450
Holes (m_p/m_o) Electr Energ Intrine Intrine Lattic Meltir Minor Mobility $(cm^2/V \cdot s)$ Electron (μ_n) Holes (μ_p) Thermal diffusivity (cm^2/s)	has high car argest hole r semiconduct	rrier mobi mobility of or	0.57 lities f any 8,500 450 0.24

Opportune time for Ge R&D

rrrr

BERKELEY LAB

Renewed interest in Ge due to high mobilities

 Umicore produces 150 and 200 mm Ge wafers (low resistivity) for mostly photovoltaic applications
 Ge CCD effort at M.I.T. Lincoln Laboratories

> LBNL talk 21 January 16th , 2019

Opportune time for Ge R&D

IEEE Explore search: "Germanium MOSFET" 16Dec2015

DISTIC	3078	:													
gram															
Prop No.															
Budget No).														
PAO OFFICE	JSE												-		
ONLY															
2															
nology of t	he														
dard tool in	i.														
111ve detect 350K)	ors														
at could yie	ld														
earches. W	e														
line concep															
			_				_								
									· · · · ·					· · · · · ·	
1984/ 1985	1986/ 1987	1988/ 1989	1990/ 1991	1992/ 1993	1994/ 1995	1996/ 1997	1998/ 1999	2000/ 2001	2002/ 2003	2004 / 2005	2006 / 2007	2008/ 2009	2010/ 2011	2012/ 2013	2014/ 2015
	Prop No. Budget No PAO OFFICE I ONLY A and dard tool in titve detect SOK) search for at could yie manium better SOK) 1984 / 1985	Prop No. Budget No. PAO OFFICE USE ONLY	Prop No. Budget No. PAO OFFICE USE ONLY PAO OFFICE USE ONLY and bard tool in itive detectors itsok) search for tt could yield manium based arches. We the concept. 1984/ 1985/ 1988/ 1985 1987 1989	Prop No. Budget No. PAO OFFICE USE ONLY nology of the ght and lard tool in itive detectors SOK) search for tt could yield manium based arches. We the concept.	Prop No. Budget No. PAO OFFICE USE ONLY A Budget No. PAO OFFICE USE ONLY 1984/ 1986/ 1988/ 1990/ 1992/ 1985 1987 1989 1991 1993	Prop No. Budget No. PAO OFFICE USE ONLY PAO OFFICE USE ONLY PAO OFFICE USE ONLY 1984/ 1986/ 1988/ 1990/ 1992/ 1994/ 1985 1987 1989 1991 1993 1995	Prop No. Budget No. PAO OFFICE USE ONLY	Prop No. Budget No. PAO OFFICE USE ONLY	Prop No. Budget No. PAO OFFICE USE ONLY nology of the ght and tard tool in titve detectors ISOK) search for t could yield manium based arches. We the concept.	Prop No. Budget No. PAO OFFICE USE ONLY nology of the ght and lard tool in tive detectors ISOK) search for t could yield manium based arches. We the concept. 1984/ 1986/ 1988/ 1990/ 1992/ 1994/ 1996/ 1998/ 2000/ 2002/ 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003	Prop No. Budget No. PAO OFFICE USE ONLY nology of the ght and lard tool in titve detectors SOK) search for t could yield manium based arches. We the concept. 1984/ 1986/ 1988/ 1990/ 1992/ 1994/ 1996/ 1998/ 2000/ 2002/ 2004/ 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005	Prop No. Budget No. PAO OFFICE USE ONLY nology of the ght and fad tool in titve detectors SOK) search for it could yield manium based arches. We the concept. 1984/ 1986/ 1988/ 1990/ 1992/ 1994/ 1996/ 1998/ 2000/ 2002/ 2004/ 2006/ 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007	Prop No. Budget No. PAO OFFICE USE ONLY anology of the ght and fard tool in tive detectors SOK) search for at could yield manium based arches. We the concept. 1984 / 1986 / 1988 / 1990 / 1992 / 1994 / 1996 / 1998 / 2000 / 2002 / 2004 / 2006 / 2008 / 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009	Prop No. Budget No. PAO OFFICE USE ONLY mology of the ght and fard tool in tive detectors SOK) search for th could yield manium based arches. We the concept. 1984 / 1986 / 1988 / 1990 / 1992 / 1994 / 1996 / 1998 / 2000 / 2002 / 2004 / 2006 / 2008 / 2010 / 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011	Prop No. Brdget No. PAO OFFICE USE ONLY malogy of the ght and that doal in titre detectors ISBK) search for the concept. 1984/1986/1988/1990/1992/1994/1996/1998/2000/2002/2004/2006/2008/2010/2012/ 1985/1987/1989/1991/1993/1995/1997/1999/2001/2003/2005/2007/2009/2010/2012/

We applied for a Ge CCD LDRD in 2000 Luckily it was not approved

> LBNL talk 22 January 16th , 2019

Numerous technical challenges with Ge

Water soluble GeO₂ insulator that degrades starting at 400°C due to GeO₂ decomposition (more on this later)

Research Article

ACS APPLIED MATERIALS

Stabilization of the ${\rm GeO}_2/{\rm Ge}$ Interface by Nitrogen Incorporation in a One-Step NO Thermal Oxynitridation

Gabriela Copetti,[†] Gabriel V. Soares,[†] and Cláudio Radtke*^{,‡}

 $^\dagger Instituto$ de Física and $^\ddagger Instituto$ de Química, UFRGS, 91509-900 Porto Alegre, Brazil

However, the lack of a stable passivation layer for Ge surface hinders the development of such technology. Unlike silicon dioxide (SiO₂), germanium dioxide (GeO₂) is water-soluble and also thermally unstable at temperatures usually employed during device processing.² This instability is due to the interfacial reaction GeO₂ + Ge \rightarrow 2GeO that occurs at temperatures greater than 400 °C. Oxygen vacancies generated at the GeO₂/Ge interface diffuse through the oxide toward the surface, where they promote GeO desorption (as evidenced by thermal desorption spectroscopy³), leading to the deterioration of the device's electrical properties.⁴ First-principles calculations predicted that Nonetheless, GeO₂/Ge interface is better than the alternatives, so cap with another insulator

LBNL MicroSystems Laboratory

Class 10 clean room

 —150 mm wafer processing
 — DECam / DESI CCDs with DALSA
 — Ge CCD R&D

LBNL talk 24 January 16th , 2019

- 1st attempt at GeO₂-SiO₂ gate insulator
 - Low temperature (300°C) SiO₂ deposition over GeO₂
 - Pinholes in the deposited SiO₂ result in etching of the water-soluble GeO₂ when exposed to e.g. H₂O

Capacitor-only wafer: Aluminum over SiO₂ over GeO₂

LBNL talk 25 January 16th , 2019

2nd attempt at SiO₂-GeO₂ using improved methods
 — Two step SiO₂ deposition / pinholes not likely coincident
 — Other improvements

Capacitor-only wafer: Entire region is SiO₂ over GeO₂

LBNL talk 26 January 16th , 2019

- Next step: Fabricate Ge buried-channel MOSFETs
 - Basic building block of CCDs
 - -Short-loop study to debug the basic Ge process
 - Metal gate transistors now, future polyGe gate
 - -Required two ion implantation steps
 - Work with implant vendor Innovion regarding their concerns with heavy / fragile Ge substrates
 - Required MSL equipment upgrade for photoresist removal after high-dose implants
 - H₂SO₄-H₂O₂ often used in silicon not compatible with Ge (as is the case with most silicon cleans)

Post high-dose implant with resist mask

After plasma resist strip (previously unused "asher" outfitted with special wafer handler)

LBNL talk 28 January 16th , 2019

Buried channel MOSFETs for CCDs

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. ED-23, NO. 2, FEBRUARY 1976

Noise in Buried Channel Charge-Coupled Devices

ROBERT W. BRODERSEN AND STEPHEN P. EMMONS, MEMBER, IEEE

Surface versus buried channel MOSFETs

- Surface channel MOSFET
- Conduction in a narrow inversion layer along the surface next to the gate insulator
- Interface-states trap charge and increase the 1/f noise

- Buried channel MOSFET
- Conduction below the surface (blue region)
- Less sensitive to interface states

Germanium buried-channel MOSFET fabricated at the LBNL MicroSystems Lab

PECVD[†] SiO₂ gate dielectric Metal-gate transistor

[†]Plasma-enhanced chemical vapor deposition

Germanium buried-channel MOSFET fabricated at the LBNL MicroSystems Lab

SiO₂-GeO₂ gate dielectric Metal-gate transistor

LBNL talk 32 January 16th , 2019

- Ge buried channel MOSFET
- W/L: 50 um / 5 um
- o Metal gate

- Si buried channel MOSFET
- W/L: 50 um / 5 um
- Polysilicon gate

Detailed comparisons difficult, but encouraging that the Ge MOSFET has similar performance to the Si device

- Ge surface channel MOSFET Si surface channel MOSFET
- W/L 50 um / 5 um
- o Metal gate

• W/L 50 um / 5 um

Polysilicon gate

Ge surface channel MOSFET appears to be inferior GeO_2/Ge versus SiO₂/Si interface

- Non-ideal effects noted in the first transistor fabrication, the worst shown below
 - —600°C oxidation step on a Ge wafer with no coating on the backside of the wafer
 - —Adjacent silicon wafer had blue film deposited that was water soluble (likely GeO₂)

Back side of a Ge wafer after 1 hour, 600°C in O₂

Water soluble film deposited on adjacent, oxidized silicon wafer

LBNL talk 35 January 16th , 2019 [CONTRIBUTION FROM THE CHEMISTRY DEPARTMENT OF ILLINOIS INSTITUTE OF TECHNOLOGY]

The Kinetics of the Reaction of Germanium and Oxygen

BY RICHARD B. BERNSTEIN AND DANIEL CUBICCIOTTI

The rate of oxidation of germanium has been measured in the range 575 to 705°. The kinetics do not conform to any of the previously observed rate laws for metal oxidations but rather follow an equation of the form $Q = Q_{\infty}(1 - e^{-kt})$, where Q is the quantity of oxygen consumed by the metal in time t; Q_{∞} and k are constants. Q_{∞} varies approximately inversely to the oxygen pressure in the range 2 to 40 cm. and the rate constant, k, is temperature dependent. A mechanism is proposed in which the oxidation rate is controlled by the rate of evaporation of germanium monoxide. This rate of evaporation is in turn governed by the extent to which the surface is covered by impervious germanium dioxide.

Of the two oxides reported for germanium the monoxide is considerably more volatile than the dioxide.¹ This order of volatility may be contrasted with that of the majority of other metals which have volatile oxides, such as tungsten and molybdenum, where the higher oxide is the more volatile. The kinetics of the germanium oxidation have been found to be unusual because of this volatility. planar spacings of germanium.³ The patterns of oxidized samples also showed lines corresponding to germanium dioxide.³ No extra lines were found in any of the patterns.

The brown substance was assumed⁴ to be the germanium monoxide reported by Dennis and Hulse.¹ It was obviously more volatile than the white germanium dioxide since it was found in the cold part of the silica tube while the dioxide was found deposited in the hot zone of the tube. Apparently, the germanium monoxide evaporated from the metal surface during the oxidation. Most of it was then oxidized in the tube to the dioxide which deposited on the

After oxidation the sample was coated with a thin blue film; the samples that were most extensively oxidized had a light-colored powdery film in addition. There was a deposit of white powder on the walls of the silica bulb near the sample and often a thin deposit of brown material at the cold end of the tube. When this brown film was heated in air, it seemed to evaporate and oxidize to a cloud of white powder which was unaffected by further heating.

lar parallelepiped was used for several runs; between runs it was repolished and weighed. The sample was generally found to have lost weight at the end of a run.

After oxidation the sample was coated with a thin blue film; the samples that were most extensively oxidized had a light-colored powdery film in addition. There was a deposit of white powder on the walls of the silica bulb near the sample and often a thin deposit of brown material at the cold end of the tube. When this brown film was heated in air, it seemed to evaporate and oxidize to a cloud of white powder which was unaffected by further heating.

X-Ray diffraction patterns were obtained from the edges of blocks of metal and oxidized specimens. The patterns of the germanium showed spots corresponding to all the inter-

of the usual metal oxidation.

It is possible to express the oxidation curves accurately by the equation

$$Q \approx Q_{\rm co}(1 - e^{-kt})$$

(3) Am. Soc. Testing Met., "X-Ray Diffraction Patterns," 1942, Second Supplementary Set, 1950.

(4) A sample of this brown material, obtained as a sublimate on heating the metal in 0.1 mm. of oxygen, was found to have the composition GeO.e. The analysis was made by measuring the uptake of oxygen at 1 atm, and 1000°. A sample of germanium subjected to this method of analysis, as a check, took up 96% of the amount of oxygen calculated for the dioxide. Therefore, the brown material had the composition of GeO.

(5) For a discussion of the types of oxidation laws see: E. A. Gulbransen, Trans. Electrochem. Soc., 91, 573 (1947).

⁽¹⁾ L. Dennis and R. Hulse, THIS JOURNAL, 52, 3553 (1930).

⁽²⁾ D. Cubicciotti, ibid., 72, 2084, 4138 (1950).

[CONTRIBUTION FROM THE CHEMISTRY DEPARTMENT OF ILLINOIS INSTITUTE OF TECHNOLOGY]

The Kinetics of the Reaction of Germanium and Oxygen

BY RICHARD B. BERNSTEIN AND DANIEL CUBICCIOTTI

The rate of oxidation of germanium has been measured in the range 575 to 705°. The kinetics do not conform to any of the previously observed rate laws for metal oxidations but rather follow an equation of the form $Q = Q_{\infty}(1 - e^{-kt})$, where Q is the quantity of oxygen consumed by the metal in time t; Q_{∞} and k are constants. Q_{∞} varies approximately inversely to the oxygen pressure in the range 2 to 40 cm. and the rate constant, k, is temperature dependent. A mechanism is proposed in which the oxidation rate is controlled by the rate of evaporation of germanium monoxide. This rate of evaporation is in turn governed by the extent to which the surface is covered by impervious germanium dioxide.

Of the two oxides reported for germanium the monoxide is considerably more volatile than the dioxide.¹ This order of volatility may be contrasted with that of the majority of other metals which have volatile oxides, such as tungsten and molybdenum, where the higher oxide is the more volatile. The kinetics of the germanium oxidation have been found to be unusual because of this volatility.

Experimental

The apparatus was similar to that used previously² for metal oxidations. The system was operated at essentially constant pressure and was capable of detecting changes of the order of a few micrograms of oxygen. planar spacings of germanium.³ The patterns of oxidized samples also showed lines corresponding to germanium dioxide.³ No extra lines were found in any of the patterns.

The brown substance was assumed⁴ to be the germanium monoxide reported by Dennis and Hulse.¹ It was obviously more volatile than the white germanium dioxide since it was found in the cold part of the silica tube while the dioxide was found deposited in the hot zone of the tube. Apparently, the germanium monoxide evaporated from the metal surface during the oxidation. Most of it was then oxidized in the tube to the dioxide which deposited on the hot walls, while some of the monoxide diffused to the cold walls and deposited there as the brown material.

The fact that the weight losses of the samples were not due to evaporation of germanium itself was determined by evaporation experiments carried out with unoxidized samples in a 10^{-6} mm. vacuum at 800° . In a period of four hours

Apparently, the germanium monoxide evaporated from the metal surface during the oxidation. Most of it was then oxidized in the tube to the dioxide which deposited on the hot walls, while some of the monoxide diffused to the cold walls and deposited there as the brown material.

pany, was fused *in vacuo* and then polished with emery paper, finishing with number 4/0. The resulting rectangular parallelepiped was used for several runs; between runs it was repolished and weighed. The sample was generally found to have lost weight at the end of a run.

After oxidation the sample was coated with a thin blue film; the samples that were most extensively oxidized had a light-colored powdery film in addition. There was a deposit of white powder on the walls of the silica bulb near the sample and often a thin deposit of brown material at the cold end of the tube. When this brown film was heated in air, it seemed to evaporate and oxidize to a cloud of white powder which was unaffected by further heating.

X-Ray diffraction patterns were obtained from the edges of blocks of metal and oxidized specimens. The patterns of the germanium showed spots corresponding to all the interpressure, in contrast to the pressure independence of the usual metal oxidation.

It is possible to express the oxidation curves accurately by the equation

$$Q = Q_{\infty}(1 - e^{-kt})$$

(3) Am. Soc. Testing Met., "X-Ray Diffraction Patterns," 1942, Second Supplementary Set, 1950.

(4) A sample of this brown material, obtained as a sublimate on heating the metal in 0.1 mm. of oxygen, was found to have the composition GeO. 44. The analysis was made by measuring the uptake of oxygen at 1 atm, and 1000°. A sample of germanium subjected to this method of analysis, as a check, took up 96% of the amount of oxygen calculated for the dioxide. Therefore, the brown material had the composition of GeO.

(5) For a discussion of the types of oxidation laws see: E. A. Gulbransen, Trans. Electrochem. Soc., 91, 573 (1947).

⁽¹⁾ L. Dennis and R. Hulse, THIS JOURNAL, 52, 3553 (1930).

⁽²⁾ D. Cubicciotti, ibid., 72, 2084, 4138 (1950).

- We now coat the backsides of the Ge wafers with SiO₂ to inhibit the oxidation and the consequent GeO / GeO₂ issues
- We next fabricated capacitor-only wafers to see if the Ge-GeO₂ interface could be improved via process changes and address some of the issues seen in the first attempt
 - Simple 2 mask process
 - No ion implantation steps

- MOS capacitors used to study the quality of the gate insulator and the semiconductorinsulator interface
- C-V curves yield much information about the quality of the insulator
- After much R&D in the 1970's, the Si-SiO₂ interface typically has defect levels in the low 10¹⁰ cm⁻², or about 1 defect per every 10⁵ Si atoms
 - Ge-GeO₂ interface is at best 10x worse

MOS (Metal Oxide Semiconductor) Physics and Technology

- For SiO₂ the two major advances (1970's) were
 - "Deal triangle"
 - Address fixed oxide charge
 - Post metallization anneal in H₂
 - Minimize interface states
 - H₂ PMA in Ge not effective
 - Implemented on CDF strip detectors in late 1980's

Fig. 6. The dependence of $Q_{\rm ss}$ on final oxidation temperature and ambient as represented by the $Q_{\rm ss}$ -oxygen triangle. Data are for (111) oriented silicon. Also shown are sketches of thermal oxide cross section indicating proposed relationship of $Q_{\rm ss}$ to oxidation conditions.

Gate Voltage [volts]

Three remaining topics

— High purity Ge wafer production via SBIR

- Brief overview of work at the UC-Berkeley Marvell Nanofabrication Laboratory

-Lincoln Labs Ge CCD effort

—The table of material properties shown earlier listed millisecond minority carrier lifetimes

Table 1. Comparison of some basic pr	roperties of Si, Ge, and G	GaAs at 300 K.
Properties	Si	Ge
Energy gap (eV)	1.12	0.67
Intrinsic carrier concentration (cm ⁻³)	1.45 × 10 ¹⁰	2.4 × 10 ¹³
Minority carrier lifetime (s)	2 <mark>%</mark> × 10 ⁻³	10 ⁻³

$$J_{leakage} \propto rac{n_i}{ au_g} \propto rac{\exp(-E_g/2kT)}{ au_g}$$

—Only valid for detector-grade materials

• High resistivity silicon (FD CCDs), HPGe

- Concern that we only have one viable Ge supplier with 10's μsec lifetimes
- Explore the possibility of producing 150 mm wafers from HPGe
 - Analogous to the high-resistivity Si effort
- CCD parameters like dark current and charge transfer efficiency depend critically on lifetime via the presence of harmful impurities

» Deathnium (W. Shockley)

• From William Shockley's 1956 NP lecture

Holes, electrons, donors and acceptors represent four of the five classes of imperfections that must be considered in semiconductor crystals in order to understand semiconductor effects. The fifth imperfection has been given the name *deathnium*. The chemical analogue of deathnium is a catalyst. In the

Holes, electrons, donors and acceptors represent four of the five classes of imperfections that must be considered in semiconductor crystals in order to understand semiconductor effects. The fifth imperfection has been given the name *deathnium*.

this recombination process. The symbols for the five imperfections are shown in Table 1.

Table 1.

- (excess) electron
- 2. + hole
- 3. deathnium
- 4.
 donor
- ⊖ acceptor

From William Shockley's 1956 NP lecture

Actually, there are several forms of deathnium. For example, if electrons

Actually, there are several forms of *deathnium*.

due University, it is known that such bombardment produces disorder of the germanium atoms³. A high-energy electron can eject a germanium atom

... found that copper and nickel chemical impurities in the germanium produce marked reductions in the lifetime.

It has also been found that copper and nickel chemical impurities in the germanium produce marked reductions in lifetime⁴.

The way in which deathnium catalyzes the recombination process is in-

Fig. 1. A recombination center (deathnium) captures alternately an electron and a hole and thus catalyzes their recombination, as shown in parts (a), (b), and (c). The thermally activated generation process is shown in (d) and (c).

> LBNL talk 54 January 16th , 2019

- Impressive history at LBNL of HPGe work
 - The late Eugene Haller, R. Pehl, W. Hansen, J. Beeman, Paul Luke of "Luke phonons", M. Amman, graduate students, e.g. Nick Palaio, apologies for omissions
- With assistance from Maurice Garcia-Sciveres and Helmut Marsiske of the DOE, we placed an SBIR call for HPGe wafer production
- We targeted the company PHDS Co. given that they had received previous SBIRs and were capable of producing 150 mm diameter crystals

High-purity Ge

SBIR efforts PHDS Co.

High purity Ge wafer production (SBIR Phase I)

SBIR efforts (Phase II awarded to PHDS Co.)

High purity Ge wafer production (SBIR Phase I)

UCB Nanofabrication Laboratory

- Polycrystalline Ge (in-situ doped) capabilities
- Advanced characterization tools for the Ge technology development
 - Spectroscopic Ellipsometer and Atomic Force Microscopy
- Deep UV wafer stepper (250 nm lines / spaces) and TCP polysilicon etcher
- Atomic layer deposition

LBNL talk 59 January 16th , 2019

UCB Nanofabrication Laboratory

Atomic Force Microscopy study —SiO₂-GeO₂-Ge gate stack fabricated in the MSL

LBNL talk 60 January 16th , 2019

LPCVD Ge investigations

- Interest in an in-situ doped poly-Ge film that could be deposited at ~ 350°C / possible gate electrode
- Sheet resistance high and variable across the chamber despite numerous attempts varying the BCl₃ to GeH₄ ratio

Table below shows some results from Boron implantation and post-implant annealing

Sheet resistance in ohms/square	1 hr 350C	1 hr 375C	1 hr 400C	1 hr 425C
Process #1	2038K ± 9.5%	76.9 ± 219%	17.6 ± 2.2%	17.5 ± 1.1%
Process #2	1431 ± 33.9%	19.2 ± 131%	17.0 ± 0.83%	16.7 ± 0.85% 🕃
Process #3	3500K ± 6.2%	1919K ± 7.0%	13.9 ± 3.5%	12.7 ± 1.2%
Process #4	10.0M ± 5.8%	5281K ± 7.4%	28.7 ± 9.5%	16.6 ± 0.55%
Process #5	95.4 ± 12.5%	22.7 ± 3.6%	20.9 ± 1.3%	

- Permission has been granted by the Nanolab staff to deposit polyGe films on Ge transistor wafers
- Plan to add this deposition capability to the MSL

LPCVD Ge investigations

- LPCVD polyGe films:
 - More effort needed in terms of film flatness

Lincoln Labs Ge CCD effort

- MIT Lincoln Laboratory has a long history of CCD production (Keck DEIMOS, PAN-STARRS, new TESS exoplanet satellite, latter two fully depleted CCDs)
 - Initial Ge CCD report published Sept. 2015
 - Advanced technologies (193 nm litho, high-k dielectrics, 200nm gaps)
 - Very open about the Ge issues they have observed
 - Our approach is geared to possible tech transfer (DALSA)
 - Must demonstrate results

Microelectronics Laboratory

LOCATION: MIT Lincoln Laboratory TOPIC: microelectronics R&D AREA: Advanced Technology

70,000 ft² MSL 700 ft²

The Microelectronics Laboratory is a state-of-the-art semiconductor research and fabrication facility that supports the design, fabrication, and packaging of novel devices.

LBNL talk 64 January 16th , 2019

- Making progress with transistor fabrication with SiO₂-GeO₂ gate insulators
 - Quite exciting to see the prior R&D efforts progressing from a hopeless water soluble film to that same film showing encouraging properties
- High-purity Ge effort well underway
- Looking forward to polyGe devices
- Prototype CCD layouts are included on the mask design / more technology development
- Implement cryogenic studies of test structures Special thanks to Co Tran / Expert on MSL processing and equipment