| IS Y — T — S T— g
I IR TR TR R TR IR TR S T R e

L o Wl s L . ‘g‘l‘\m

. e i . . — . N —— X
trr/A".k"z-kl_‘n M “-\‘-\-—‘,“\

Acts iIn multi-threaded environment

Paul Gessinger - 01/15/2019 - Tracking workshop for HEP - LBNL

What’s the problem, where are we?

= Track reconstruction is (often) the most
CPU-intensive part of event
reconstruction (ATLAS: =80%))

= CPU resources are limited!
= Scaling with pile-up is not encouraging

= Parallelization can help!

Annual CPU Consumption [MHSO06]

= But: just executing on more CPU(core:

mory

might be problematic:
decrease

PUs

= Other approaches can help to saturate
more CPUs on same amount of memory

01/15/2019

Tracking workshop for HEP - LBNL

100_—

80

60

40

20

T T T | T T T | T . T .I | T T T T T T T T T T T T T T T T
- ATLAS Preliminary
CPU resource needs

- 2018 estimates:

<«
<
TR B B

~ v MC fast calo sim + standard reco .

e MC fast calo sim + fast reco ¥ S

4 Generators speed up x2 v

- ' [] o _]
- — Flat budget model ;e e s
- (+20%/year) ¥ aa ® S]

1 1] 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2018 2020 2022 2024 2026 2028 2030 2032

Year

Parallelization in ATLAS

ATLAS reconstruction Sequential processing

= Algorithms process events, data flows through
iInput and output collections

= Can use Tools to offload some of their work Data file
= Services (singletons) can be accessed from both

= ATLAS reconstruction comprises multiple V crai
domains, (e.g. ID, muons, calorimeters, jets) T
with lots of interdependencies | gy
= Time spent by domain: V >.o
- ID: (Pixel, SCT, TRT) ~ 11s/event g>1mgor-thm
= Everything else: = 15x1.5s (15 = fd :
ything else: x1.58 (no. of domains) : >®
= |ID reconstruction is clearly the place to .
optimize! ; ol
= ATLAS software is based on Gaudi $
A
1

]

[1]: Scott Snyder

01/15/2019 Tracking workshop for HEP - LBNL

https://indico.cern.ch/event/587955/contributions/2938557/attachments/1680092/2698890/2018-07-10-chep.pdf

Run separate jobs

= Simplest idea: just run multiple instances of the whole software
= AlImost “trivial” to implement

= But:
= Can only parallelize on event ranges
= Duplicates the entire software stack in memory!

01/15/2019 Tracking workshop for HEP - LBNL

Multi processing

= Run 2: parallelization with multiple
nrocesses, but forked

= Requires little change to actual code

- Stal’t prOCeSSIng flrSt event, then fOrk ATLAS Preliminary. Memory Profile of MC Reconstruction
the process to all CPUs AT T
= Copy-on-write allows easy sharing of °
e
memory | *
= Memory savings might not be enough ¢ 4

;.*"&"

for Run 3 and beyond f'——"‘*

a¥ r
A3 t
A W A
PV 1)

400 600 800 1000 1200 1400 1600 1800

Time (sec)

[1]: Scott Snyder

01/15/2019 Tracking workshop for HEP - LBNL

https://indico.cern.ch/event/587955/contributions/2938557/attachments/1680092/2698890/2018-07-10-chep.pdf

Multi-threading

= AthenaMT event-processing framework (in mooriilll | MooriEly
development)

= Allow parallelization at algorithm level (scheduler figures &> >
out data dependencies)
= Inter- and intra-event parallelism possible —i

= |deally: algorithms only instantiated once, invoked for l
every event
@ [1]

= Keeps memory footprint low
= All tools need to be thread-safe

= Most importantly: no mutable state Thread -

. . 1 Event 2

= However: most of ID chain is 2 Event 3
sequential

[1]: Scott Snyder

01/15/2019 Tracking workshop for HEP - LBNL

https://indico.cern.ch/event/587955/contributions/2938557/attachments/1680092/2698890/2018-07-10-chep.pdf

Enter: Acts

Toolkit containing thread-safe algorithms and utilities

01/15/2019 Tracking workshop for HEP - LBNL

Acts and Multi-Threading

= Acts is designed to be thread-safe:
= Local configuration and state
= Immutable data everywhere (e. g. geometry)

= Acts does not provide infrastructure for parallelization
= Parallelization is implemented by experiment software

= The test framework! contains a TBB? based event-by-event parallel loop
= Cl job?° tests results from demo particle extrapolation is identical, for 1,044 = 1 and

Nehreads > 1 almost optimal
usage

g gl
2,554 il
B g|
a e s . al
=15s initialization, g:
1551 geometry building §:
<<
15 :
0.55 4 :
l. |

0s- 0 10 20 30 40 = 50 60 Cores

[1]: https://gitlab.cern.ch/acts/acts-framework, [2]: https://www.threadingbuildingblocks.org [3]: https://gitlab.cern.ch/acts/acts-framework/-/jobs/3043263

01/15/2019 Tracking workshop for HEP - LBNL

https://gitlab.cern.ch/acts/acts-framework
https://www.threadingbuildingblocks.org/
https://gitlab.cern.ch/acts/acts-framework/-/jobs/3043263

Design choices for multi-threading

= Mutable state is limited to thread-local storage, passed around
eXp“CItIy OptionsType eOptions;

// setup options ...
StateType state(start, eOptions);

// Perform the actual propagation & check its outcome

if (propagate impl(result, state) != Status::IN PROGRESS) {
result.status = Status::FAILURE;
} else {

// Convert into return type and fill the result object
m stepper.convert(state.stepping, result);
result.status = Status::SUCCESS;

}

return result;

= Geometry is considered immutable after creation (technically, we
const-cast it currently during closure, but we want to get rid of that)

01/15/2019 Tracking workshop for HEP - LBNL

Implementation Propagator and KalmanFilter

= Acts propagation is based
on existing ATLAS
iImplementation

= Redesigned interface,
eliminated all mutable state

= Switched to Eigen library for —
math (much more readable) “eon | th
- - start parameters estimation
" Designed t? be flexible destination surface [gICIeEle Stepper et
= KalmanFilter is implemented T Optons<Aborers, Ao
on top of the Propagator |
Extendable<SurfaceReached> Aborter Extendable<> ACtors i i

01/15/2019 Tracking workshop for HEP - LBNL

Implementation Propagator and KalmanFilter

template <typename input measurements t,

01/15/2019

KalmanFilter contains

typename parameters t,
typename surface t>

auto

P r O p a g a 't O r' O bj eCt fit(input measurements t measurements,

Callto fit() sets up propagation ¢
and attaches the KalmanActor

KalmanActor implements logic:
= |nitialize
= Forward filter
= Backward smoothing

Delegates to separate calibrator,
updator and smoother

Can be set up once, then invoked
from many threads

const parameters t& sParameters,
const surface t* rSurface = nullptr) const

// Bring the measurements into Acts style
auto trackStates = m_inputConverter (measurements);

// Create the ActionList and AbortList

using KalmanActor Actor<decltype(trackStates)>;
using KalmanResult typename KalmanActor::result type;
using Actors ActionList<KalmanActor>;

using Aborters AbortList<>;

// Create relevant options for the propagation options
PropagatorOptions<Actors, Aborters> kalmanOptions;

// Catch the actor and set the measurements

auto& kalmanActor = kalmanOptions.actionList.template get<KalmanActor>();
kalmanActor.trackStates std: :move(trackStates);
kalmanActor.targetSurface rSurface;

// Run the fitter
const auto& result
= m_propagator.template propagate(sParameters, kalmanOptions);

/// Get the result of the fit
auto kalmanResult = result.template get<KalmanResult>();

// Return the converted Track
return m outputConverter(std: :move(kalmanResult));

Tracking workshop for HEP - LBNL

Challenges and problems

Conditions and concurrency

= Conditions: parameters recorded
during data taking

= Vary between events (Interval of
Validity, IOV)

= Time-dependent detector properties
(wire-sagging, bending, temperatures,

)

= E.g. alignment of sensitive surfaces
can change over time (fitted empirically
to account for it)

= Problem: we consider the geometry
constant!

= One solution would be: re-create the
geometry at IOV boundaries

01/15/2019 Tracking workshop for HEP - LBNL

Conditions and concurrency

= Previously: sequential event processing
= Conditions are accessed through services
= When event processing reaches an IOV boundary, all services are notified
= Services update their conditions caches
= Event processing continues

= Problem: this does not work with multiple threads: multiple I0OVs can be in
flight at the same time

= n;oy Might be small for unfiltered data, but could be large for highly selected samples

= Solution in ATLAS: remove conditions services, enter: Conditions
algorithms

= Conditions algorithm makes conditions data available
= Scheduler makes sure they are scheduled before conditions are required.

= Problem: we would potentially re-build the geometry quite a lot!

01/15/2019 Tracking workshop for HEP - LBNL

Conditions: alignment

= What information do we need for the alignment? Module positions
(transforms)

= Tracking geometry consists of surfaces, are connected to a
(experiment specific) detector element

= Transform comes from that detector element
= Detector elements need to be aware of alignment / IOV!

\. /'
/Q/r[?\@\n

01/15/2019 Tracking workshop for HEP - LBNL

IOV1 10V2

Conditions: alignment

= However: multiple alignments can be in flight at the same time!
= Detector elements needs to know from which event they are accessed

= ATLAS: Conditions service provides conditions objects for an event
context
= Algorithms are explicitly passed the event context:
StatusCode

ActsExtrapolationAlg::execute r(const EventContext& ctx)
const {

/) ..
}

= Problem: call chain from algorithm down to individual surfaces is
very deep and has many paths.

01/15/2019 Tracking workshop for HEP - LBNL

Conditions: alignment
= The magic solution: | i

= Event context can be accessed from thread-
local static variable (set up by the scheduler)

= Detector element can implicitly figure out
which IOV it is being accessed from!

= (this is what was implemented so far)

= The clean solution:

= Every call chain down to sensitive surfaces
needs to pass along the context

= Type-erase context object so it can be
experiment-agnostic

= (we will most likely switch to this solution)

01/15/2019 Tracking workshop for HEP - LBNL

Conditions for calibration

= Calibration is performed during fitting

= |dea: raw measurement supplemented with
full track parameter prediction

= Typical example: wire-sagging: wire identified
by measurement, sagging calculated at
predicted position

= The updator delegates to the calibrator

= Calibrator needs access to conditions (not a
problem, since experiment specific)

Measurements

01/15/2019 Tracking workshop for HEP - LBNL

Opportunities

From ATLAS’ perspective

01/15/2019 Tracking workshop for HEP - LBNL

Algorithms in ID reconstruction

parallel dimension

-
=

TRT _DiriftCircleCreation SCT_Clusterization

SpacePointFormation
o /
@ s
0 . s
- > i
© DataHandle ; '
= <SpacePointCollection> | DataHandle
a ; <TrackCollection>
= Track Fittin
o) InDetAmbiguitySolver &
& DataHandle | Hole Search
> i <TrackCollection> ;
Y i ' Ambiguity Solvin
| " o InDetExtensionProcessor mbiguity 8

<TRT _DriftCircleCollection> DataHandle
<TrackCollection>

InDetTrackPartcheCreatlon

DataHandle Track Fitting

Extension finding

<TrackParticle>

InDetPrimaryVertexFinder

data preparation chain data processing chain

01/15/2019 Tracking workshop for HEP - LBNL

Time spent in ATLAS reconstruction

parallel dimension

uoISUsWIP [enuenbas

1
+

TRT_DriftCircleCreation SCT_Clusterization

SpacePointFormation

=

DataHandle :
<SpacePointCollection> DataHandle
<TrackCollection>
| InDetAmbiguitySolver
DataHandle
<TrackCollection>
1 InDetExtensionProcessor
DataHandle g
<TRT _DriftCircleCollection> DataHandle

<TrackCollection> Il :

InDetTrackParticleCreation

DataHandle
<TrackParticle>

v H

data preparation chain

InDetPrimaryVertexFinder

data processing chain

01/15/2019

Tracking workshop for HEP - LBNL

Jebingzjes vy

Event loop time, % (approx

m InDetSiSpTrackFinder

m InDetAmbiguitySolver

m InDetExtensionProcessor
Other

Algorithm Concurrent Cell Number of cells Rel. CPU of ID Comments

output

Cluster . o :
creation per module O(1000) no tests exist O(5%) merging step
necessary
SpacePoint output
P . per space point O(10000) no tests exist O(<1%) merging step
creation
necessary
. GPU based test o overlaps are
detector region 0(10-100) version from 2011 0(50%) dangerous

fitting: per track
book keeping of

Ambiguity ambiguity: per tracks) .
Solving through shared O(100-1000) no tests exist 0O(20%) hits is shared
modules
may need update | o
TRT extension per track 0O(100) no tests exist O(10%) for DataHandle §

01/15/2019 Tracking workshop for HEP - LBNL

Parallelization of ID reco chain

= The largest parts of the ID reco chain are sequential
= InDetSpSeededTrackFinder needs to run before Ambiguity solving, and so on

= Inputs (drift circle creation, clusterization) can be parallelized
= Need to be careful not to have runaway preemptive pre-processing and starve
main algorithm
= |f the large algorithms can be made thread-safe: event-by-event
parallelism possible
= [f CPUs can be saturate like this: fine, we’re done!
= If not? Finer granularity!

= In many cases: parallelism by geometric regions requires careful
treatment of boundaries (ambiguity solving)

01/15/2019 Tracking workshop for HEP - LBNL

Parallelization of ID reco chain

= E.g. produce seeds parallelized, batch and spawn tasks to do track

following

= Acts seed finder implementation can parallelize on middle space
point bins!

= Feed into track finding
(which runs sequential per input)

Seed #1

= Tune chunk sizes to strike the
right balance

= No effort so far beyond initial
tests

= Should allow scaling
parallelism as necessary

\\ |/
\

Y

One event

Make Tracks

Make Tracks

01/15/2019 Tracking workshop for HEP - LBNL

Summary

= Multi-threaded infrastructure is well underway in ATLAS

= Acts provides components that can be deployed in concurrent
environments

= Details of unit-of-parallelization is left to the experiment to decide

01/15/2019 Tracking workshop for HEP - LBNL

