
Acts in multi-threaded environment
Paul Gessinger - 01/15/2019 - Tracking workshop for HEP - LBNL

What’s the problem, where are we?
§ Track reconstruction is (often) the most

CPU-intensive part of event
reconstruction (ATLAS: ≈80%)

§ CPU resources are limited!
§ Scaling with pile-up is not encouraging
§ Parallelization can help!
§ But: just executing on more CPU(-cores)

might be problematic: "#"$%&#()*+ will
decrease

§ Other approaches can help to saturate
more CPUs on same amount of memory

01/15/2019 2Tracking workshop for HEP - LBNL

Year

2018 2020 2022 2024 2026 2028 2030 2032

An
nu

al
 C

PU
 C

on
su

m
pt

io
n

[M
H

S0
6]

0

20

40

60

80

100

Run 2 Run 3 Run 4 Run 5

CPU resource needs

2018 estimates:
MC fast calo sim + standard reco
MC fast calo sim + fast reco
Generators speed up x2

Flat budget model
(+20%/year)

ATLAS Preliminary

Parallelization in ATLAS

01/15/2019 3Tracking workshop for HEP - LBNL

ATLAS reconstruction
§ ATLAS reconstruction comprises multiple

domains, (e.g. ID, muons, calorimeters, jets)
with lots of interdependencies

§ Time spent by domain:
§ ID: (Pixel, SCT, TRT) ≈ 11s/event
§ Everything else: ≈ 15×1.5s (15 = no. of domains)

§ ID reconstruction is clearly the place to
optimize!

§ ATLAS software is based on Gaudi
§ Algorithms process events, data flows through

input and output collections
§ Can use Tools to offload some of their work
§ Services (singletons) can be accessed from both

01/15/2019 4Tracking workshop for HEP - LBNL

Athena framework
Based on Gaudi package
shared with LHCb and others.

“Whiteboard” pattern

Sequence of Algorithms
communicating via event
store.

Algorithms may own Tools and
use (singleton) Services.

Fixed Algorithm sequence, set
in job configuration.

Scott Snyder (BNL) The ATLAS multithreaded o✏ine framework July 10, 2018 4 / 15

[1]: Scott Snyder

[1]

Sequential processing

https://indico.cern.ch/event/587955/contributions/2938557/attachments/1680092/2698890/2018-07-10-chep.pdf

Run separate jobs
§ Simplest idea: just run multiple instances of the whole software
§ Almost “trivial” to implement
§ But:

§ Can only parallelize on event ranges
§ Duplicates the entire software stack in memory!

01/15/2019 5Tracking workshop for HEP - LBNL

Multi processing
§ Run 2: parallelization with multiple

processes, but forked
§ Requires little change to actual code
§ Start processing first event, then fork

the process to all CPUs
§ Copy-on-write allows easy sharing of

memory
§ Memory savings might not be enough

for Run 3 and beyond

01/15/2019 6Tracking workshop for HEP - LBNL

AthenaMP
For Run 2, ATLAS reduced memory requirements via multiprocessing.

A job forks subprocesses to process events in parallel. Memory is
shared automatically via copy-on-write.

Yields significant memory savings but not su�cient for Run 3.

Go to a fully multithreaded solution.
Scott Snyder (BNL) The ATLAS multithreaded o✏ine framework July 10, 2018 3 / 15

[1]: Scott Snyder

https://indico.cern.ch/event/587955/contributions/2938557/attachments/1680092/2698890/2018-07-10-chep.pdf

Multi-threading
§ AthenaMT event-processing framework (in

development)
§ Allow parallelization at algorithm level (scheduler figures

out data dependencies)
§ Inter- and intra-event parallelism possible

§ Ideally: algorithms only instantiated once, invoked for
every event
§ Keeps memory footprint low
§ All tools need to be thread-safe
§ Most importantly: no mutable state

§ However: most of ID chain is
sequential

01/15/2019 7Tracking workshop for HEP - LBNL

AthenaMT: Intra-event parallelism
Task scheduling based on the Intel
Thread Building Blocks library with a
custom graph scheduler.
Algorithms declare their inputs and
outputs.

Scheduler finds an algorithm
with all inputs available and
runs it as a task.

“Data flow.”

Flexible parallelism within an event.

Can still declare sequences of algo-
rithms that must execute in fixed
order (“control flow”).

Scott Snyder (BNL) The ATLAS multithreaded o✏ine framework July 10, 2018 5 / 15

AthenaMT: Inter-event parallelism

Allow multiple event stores (“slots”).

Allows parallelism both within and event and between events.

Number of simultaneous events in flight is configurable.

Di↵erent shapes: di↵erent algorithms; di↵erent colors: di↵erent events.

Scott Snyder (BNL) The ATLAS multithreaded o✏ine framework July 10, 2018 6 / 15

[1]: Scott Snyder

[1]

https://indico.cern.ch/event/587955/contributions/2938557/attachments/1680092/2698890/2018-07-10-chep.pdf

Enter: Acts
Toolkit containing thread-safe algorithms and utilities

01/15/2019 8Tracking workshop for HEP - LBNL

Status Concurrency in action

12

Intel Xeon e5-2698 v3, 2 sockets
32 Cores, 2 threads per core
64 Processors(cpu's)

initialization,
geometry building

almost optimal
usage

ACTS test framework runs with OpenMP 
multithreaded mode

- test programs are run using a single threaded  
setup vs. multithreaded event processing

- this consistency check is part of  
the acts-framework CI

Acts and Multi-Threading
§ Acts is designed to be thread-safe:

§ Local configuration and state
§ Immutable data everywhere (e. g. geometry)

§ Acts does not provide infrastructure for parallelization
§ Parallelization is implemented by experiment software
§ The test framework1 contains a TBB2 based event-by-event parallel loop

§ CI job3 tests results from demo particle extrapolation is identical, for !"#$%&'(= 1 and
!"#$%&'(> 1

01/15/2019 9Tracking workshop for HEP - LBNL
[1]: https://gitlab.cern.ch/acts/acts-framework, [2]: https://www.threadingbuildingblocks.org [3]: https://gitlab.cern.ch/acts/acts-framework/-/jobs/3043263

Cores

https://gitlab.cern.ch/acts/acts-framework
https://www.threadingbuildingblocks.org/
https://gitlab.cern.ch/acts/acts-framework/-/jobs/3043263

Design choices for multi-threading
§ Mutable state is limited to thread-local storage, passed around

explicitly

§ Geometry is considered immutable after creation (technically, we
const-cast it currently during closure, but we want to get rid of that)

01/15/2019 10Tracking workshop for HEP - LBNL

OptionsType eOptions;
// setup options ...
StateType state(start, eOptions);

// Perform the actual propagation & check its outcome
if (propagate_impl(result, state) != Status::IN_PROGRESS) {
result.status = Status::FAILURE;

} else {
// Convert into return type and fill the result object
m_stepper.convert(state.stepping, result);
result.status = Status::SUCCESS;

}
return result;

ACTS documentation Propagator module

Propagator < Stepper>
start parameters

<Stepper <Magnetic Field>,
Extendable<>

result

Options<Aborters, Actors>

Extendable<> Actors

Navigator>destination surface

Extendable<SurfaceReached> Aborter

Navigatoradaptive
step

estimation

Implementation Propagator and KalmanFilter
§ Acts propagation is based

on existing ATLAS
implementation

§ Redesigned interface,
eliminated all mutable state

§ Switched to Eigen library for
math (much more readable)

§ Designed to be flexible
and extensible!

§ KalmanFilter is implemented
on top of the Propagator

01/15/2019 11Tracking workshop for HEP - LBNL

Implementation Propagator and KalmanFilter
§ KalmanFilter contains
Propagator object

§ Call to fit() sets up propagation
and attaches the KalmanActor

§ KalmanActor implements logic:
§ Initialize
§ Forward filter
§ Backward smoothing

§ Delegates to separate calibrator,
updator and smoother

§ Can be set up once, then invoked
from many threads

01/15/2019 12Tracking workshop for HEP - LBNL

template <typename input_measurements_t,
typename parameters_t,
typename surface_t>

auto
fit(input_measurements_t measurements,

const parameters_t& sParameters,
const surface_t* rSurface = nullptr) const

{
// Bring the measurements into Acts style
auto trackStates = m_inputConverter(measurements);

// Create the ActionList and AbortList
using KalmanActor = Actor<decltype(trackStates)>;
using KalmanResult = typename KalmanActor::result_type;
using Actors = ActionList<KalmanActor>;
using Aborters = AbortList<>;

// Create relevant options for the propagation options
PropagatorOptions<Actors, Aborters> kalmanOptions;
// Catch the actor and set the measurements
auto& kalmanActor = kalmanOptions.actionList.template get<KalmanActor>();
kalmanActor.trackStates = std::move(trackStates);
kalmanActor.targetSurface = rSurface;

// Run the fitter
const auto& result

= m_propagator.template propagate(sParameters, kalmanOptions);

/// Get the result of the fit
auto kalmanResult = result.template get<KalmanResult>();

// Return the converted Track
return m_outputConverter(std::move(kalmanResult));

}

Challenges and problems

01/15/2019 13Tracking workshop for HEP - LBNL

Conditions and concurrency
§ Conditions: parameters recorded

during data taking
§ Vary between events (Interval of

Validity, IOV)
§ Time-dependent detector properties

(wire-sagging, bending, temperatures,
…)

§ E.g. alignment of sensitive surfaces
can change over time (fitted empirically
to account for it)

§ Problem: we consider the geometry
constant!

§ One solution would be: re-create the
geometry at IOV boundaries

01/15/2019 14Tracking workshop for HEP - LBNL

L1 IOVL1 IOV L1 IOV L1
IOV L1 IOV

L2 IOV L2 IOV L2 IOV

L3 IOV L3 IOV

IOV1 IOV2

IOV3 IOV4

IOV5 IOV6

IOV7

IOV8

Conditions and concurrency
§ Previously: sequential event processing

§ Conditions are accessed through services
§ When event processing reaches an IOV boundary, all services are notified
§ Services update their conditions caches
§ Event processing continues

§ Problem: this does not work with multiple threads: multiple IOVs can be in
flight at the same time
§ !"#$ might be small for unfiltered data, but could be large for highly selected samples

§ Solution in ATLAS: remove conditions services, enter: Conditions
algorithms
§ Conditions algorithm makes conditions data available
§ Scheduler makes sure they are scheduled before conditions are required.

§ Problem: we would potentially re-build the geometry quite a lot!

01/15/2019 15Tracking workshop for HEP - LBNL

Conditions: alignment
§ What information do we need for the alignment? Module positions

(transforms)
§ Tracking geometry consists of surfaces, are connected to a

(experiment specific) detector element
§ Transform comes from that detector element
§ Detector elements need to be aware of alignment / IOV!

01/15/2019 16Tracking workshop for HEP - LBNL

IOV1 IOV2

Client

DetElement

ConditionsHandle

IOV position

Conditions: alignment
§ However: multiple alignments can be in flight at the same time!

§ Detector elements needs to know from which event they are accessed
§ ATLAS: Conditions service provides conditions objects for an event

context
§ Algorithms are explicitly passed the event context:
StatusCode
ActsExtrapolationAlg::execute_r(const EventContext& ctx)
const {
// ...

}
§ Problem: call chain from algorithm down to individual surfaces is

very deep and has many paths.

01/15/2019 17Tracking workshop for HEP - LBNL

Conditions: alignment
§ The magic solution:

§ Event context can be accessed from thread-
local static variable (set up by the scheduler)

§ Detector element can implicitly figure out
which IOV it is being accessed from!

§ (this is what was implemented so far)

§ The clean solution:
§ Every call chain down to sensitive surfaces

needs to pass along the context
§ Type-erase context object so it can be

experiment-agnostic
§ (we will most likely switch to this solution)

01/15/2019 18Tracking workshop for HEP - LBNL

AlgorithmCTX

CTX

CondSvc

AlgorithmCTX CondSvc

Conditions for calibration
§ Calibration is performed during fitting

§ Idea: raw measurement supplemented with
full track parameter prediction

§ Typical example: wire-sagging: wire identified
by measurement, sagging calculated at
predicted position

§ The updator delegates to the calibrator
§ Calibrator needs access to conditions (not a

problem, since experiment specific)

01/15/2019 19Tracking workshop for HEP - LBNL

Position from
parameters

Wire from
measurement

Measurements

Opportunities
From ATLAS’ perspective

01/15/2019 20Tracking workshop for HEP - LBNL

Algorithms in ID reconstruction

01/15/2019 21Tracking workshop for HEP - LBNL

SP Seeding

Track following

Track Fitting

Hole Search

Ambiguity Solving

Extension finding

Track Fitting

Time spent in ATLAS reconstruction

01/15/2019 22Tracking workshop for HEP - LBNL

45

24

12

20

Event loop time, % (approx

InDetSiSpTrackFinder
InDetAmbiguitySolver
InDetExtensionProcessor
Other

A. Salzburger

01/15/2019 23Tracking workshop for HEP - LBNL

Algorithm Concurrent Cell Number of cells Tests Rel. CPU of ID Comments

Cluster
creation per module O(1000) no tests exist O(5%)

output
merging step

necessary

SpacePoint
creation per space point O(10000) no tests exist O(<1%)

output
merging step

necessary

SpacePoint
seeded track

finding
detector region O(10-100) GPU based test  

version from 2011 O(50%) overlaps are
dangerous

Ambiguity
Solving

fitting: per track
ambiguity: per tracks 

through shared
modules

O(100-1000) no tests exist O(20%) book keeping of
hits is shared

TRT extension per track O(100) no tests exist O(10%)
may need update
for DataHandle

A. Salzburger

Parallelization of ID reco chain
§ The largest parts of the ID reco chain are sequential

§ InDetSpSeededTrackFinder needs to run before Ambiguity solving, and so on
§ Inputs (drift circle creation, clusterization) can be parallelized

§ Need to be careful not to have runaway preemptive pre-processing and starve
main algorithm

§ If the large algorithms can be made thread-safe: event-by-event
parallelism possible
§ If CPUs can be saturate like this: fine, we’re done!
§ If not? Finer granularity!

§ In many cases: parallelism by geometric regions requires careful
treatment of boundaries (ambiguity solving)

01/15/2019 24Tracking workshop for HEP - LBNL

Parallelization of ID reco chain
§ E.g. produce seeds parallelized, batch and spawn tasks to do track

following
§ Acts seed finder implementation can parallelize on middle space

point bins!
§ Feed into track finding

(which runs sequential per input)
§ Tune chunk sizes to strike the

right balance
§ No effort so far beyond initial

tests
§ Should allow scaling

parallelism as necessary

01/15/2019 25Tracking workshop for HEP - LBNL

Seeds

Seed #1

Seed #2

Seed #3

Seed #4

Seed #5

Seed #6

Seed #7

Seed #8

Make Tracks

Make Tracks

One event

Summary
§ Multi-threaded infrastructure is well underway in ATLAS
§ Acts provides components that can be deployed in concurrent

environments
§ Details of unit-of-parallelization is left to the experiment to decide

01/15/2019 26Tracking workshop for HEP - LBNL

