Kinematic Track Fit for Mu2e

David Brown, LBNL

Kinematic Fit: What and Why?

- Kinematic track fit = time domain fit
 - time = parametric variable to describe trajectory
 - time = (primary) measurement dimension
 - t_0 = explicit fit parameter (+ 5 geometric params)
- Advantages
 - Integrates spatial and temporal measurements
 - Integrates t₀
 - Integrates timing-based PID with tracking
 - Directly constrains particle propagation direction
 - Natural relativistic kinematic interface (4-vectors)
 - Requires only D2T, not D2T and T2D, for drift sensors

Kinematic Fit: Who?

• Si Sensors

- Excellent spatial information (segmentation)
- Modest timing information, useful for pat. rec. but not fitting
- Kinematic fit not required or useful
- Temporal sensors (Scintillator bars, Calorimetry, ...)
 - Good timing (< 1 nsec)
 - Modest spatial information, useful for pat. rec. but not fitting
 - Kinematic fit can be useful
- Drift Chambers
 - Sensor identity gives rough spatial measurement (few mm \rightarrow ~1 cm)
 - Drift timing can refine spatial information to ${\sim}100~\mu\text{m}$
 - Coupled time + position measurement \Rightarrow good application for kinematic fit
- Experiments generally have a mix of sensors
 - \Rightarrow good application for kinematic fit

The Mu2e Experiment

- Mu2e = Search for CLFV
- Target Sensitivity: $\Gamma_{\mu \rightarrow e}/\Gamma_{\mu \text{ capture}} \sim 10^{-16}$
- Straw Tracker
- Csl crystal calorimeter

The Mu2e Tracker

- 72 planes of 'MWPC' straws
- 5 mm diameter straws \perp to Z axis, 350 mm < L < 1.4 m
- 120° panels of 96 straws
- Central hole
- Large angle stereo
- ~1% X₀ total mass
- Operates in vacuum
- ~20,000 straws total

Science goal: < 1% momentum resolution at 105 MeV/c

Mu2e Tracking Environment

ACTS Workshop, 17 Jan 2019

- Single track signal, 105 MeV/c, 1.5 \rightarrow 3 turns
- Random time origin (muon decay = signal source)
- Extended spatial origin (~1m x 7.5 cm diameter)
- High hit background rate (~100 KHz/straw)
 - Most hits are from Compton electrons

Mu2e Pat. Rec.

- ANN hit filter
 - Removes Compton e-, δ-rays, proton hits, …
- Time clustering of hits
 - Hit time resolution ~ 6 n-sec
 - 50 n-sec cluster in 1 μ-sec frame
- Helix fit using space 'points'
 - Straw constrains 2 dimensions
 - σ ~ 3 mm
 - Hit time difference between straw ends constrains 3rd dimension
- Fake rate $< 10^{-4}$, efficiency $\sim 90\%$

Mu2e Fit Implementations

- Framework fit
 - 5-parameter geometric KF fit
 - Code inherited from BaBar (CLHEP, difAlgebra, ...)
 - Annealing used for outlier removal
 - t₀, LR hit ambiguity determined through external iteration
- Kinematic fit
 - Being developed as a standalone package
 - Not yet integrated with Framework, Pat. Rec, ...
- Rest of talk is about Kinematic fit

DOCA and TOCA

- Geometric tracking
 - Measurement = hit position
 - Fit used to predicted position near to sensor
 - DOCA
 - Residual = measurement prediction = DOCA
- Kinematic tracking
 - Measurement = hit time
 - Fit used to predict hit time
 - TOCA (multiple contributions, see next slide)
 - Residual = measurement prediction = t_{hit} TOCA

Contributions to TOCA Estimate

10

- Particle propagation t_{pprop}
 - 10 < τ < 20 ns
 - σ < 100 ps
- Ionization drift tdrift
 - 0 < τ < 40 ns
 - $\sigma \sim 3$ ns (with long tails, see next slide)
- Straw signal propagation t_{sprop}
 - 350 mm < L_{straw} < 1400 mm
 - 0.5 c < V_{eff} < 0.9 c (dispersion + slewing)
 - $\sigma \sim 500$ ps without slewing correction
 - $\sigma \sim 200$ ps with slewing correction
- Electronics signal propagation teprop
 - TDC σ < 100 ps
 - Clock distribution $\sigma \sim 150 \text{ ps}$

Drift Resolution

- Far from wire \Rightarrow hit time directly related to impact parameter
 - Use residual = t_{hit} TOCA
- Near to wire \Rightarrow hit time poor approximation to impact parameter
 - Use residual = wire DOCA (no drift information)
- Fit DOCA used to separate regimes (iterative)

David Brown, LBNL

Calorimeter in Tracking

- Csl calorimeter cluster properties
 - $\sigma_E \sim$ few MeV (with long tails from leakage) used for electron PID (E/p)
 - $\sigma_t \sim 300 \text{ psec}$
 - $\sigma_{xy} \sim$ few cm, $\sigma_z \sim 10$ cm
 - ~90% acceptance
- Clusters associated with track using POCA in early Pat. Rec.
- Calorimeter time residual used in Kalman fit as a 'TrkCaloHit'

Kinematic Helix Parameterization

- A =Longitudinal wavelength
 - sign(Λ) = -sign(q Bz Pz)
 - $sign(\Lambda) = helicity$
- R = Signed transverse radius
 - $sign(\mathbf{R}) = -sign(q \cdot Bz)$
 - sign(R) = helicity direction
- C_x, C_y = center position
- ϕ_0 = atan2(Py,Px) at z=0
- **t**₀ = time at z=0

Static Fit Parameters

- External parameters
 - Bz = axial magnetic field (T)
 - c = speed of light \approx 300 mm/nsec
 - Coordinate origin = center of tracker
- Discrete Parameters (a-priori to the fit)
 - particle direction (upstream or downstream)
 - $m = particle \ mass \in \{m_e, \ m_{\mu}, \ m_{\pi}, \ m_{K,} \ m_{P,} \ m_{D, \ ...}\}$
 - q = particle charge (Ne)
 - Carried with the dynamic fit parameters

Helix Equations

- $\mathbf{Q} = -qcBz$
- $\bar{\mathbf{m}}$ = reduced mass = m/Q (unit = length!)
- $\Omega = d\Phi/dt = c \cdot sign(\mathbf{Q})/sqrt(\mathbf{\Lambda}^2 + \mathbf{R}^2 + \mathbf{\bar{m}}^2)$

Position

- $\mathbf{x}(t) = \mathbf{C}_{\mathbf{x}} + \mathbf{R} \cdot \sin(\Omega(t-t_0) + \mathbf{\Phi}_0)$
- $y(t) = C_y R \cdot \cos(\Omega(t-t_0) + \Phi_0)$
- $z(t) = \mathbf{\Lambda} \Omega(t-\mathbf{t_0})$
- Momentum
- $P_x(t) = \mathbf{Q} \cdot \mathbf{R} \cdot \cos(\Omega(t-t_0) + \mathbf{\Phi}_0)$
- $P_y(t) = \mathbf{Q} \cdot \mathbf{R} \cdot \sin(\Omega(t-t_0) + \mathbf{\Phi}_0)$
- $P_z(t) = \mathbf{Q} \cdot \mathbf{\Lambda}$
- $|\mathsf{P}| = |\mathbf{Q}| \cdot \operatorname{sqrt}(\mathbf{R}^2 + \mathbf{\Lambda}^2)$
- $E = |\mathbf{Q}| \cdot \text{sqrt}(\mathbf{R}^2 + \mathbf{\Lambda}^2 + \mathbf{\bar{m}}^2)$

Code

- https://github.com/brownd1978/KinematicHelixFit
- Helix Parameter class + kinematic interfaces
 mom. + pos. 4-vectors ⇔ Helix Parameters
- Home-made 4-vector class
 - Switch to GenVector?
- Simple root visualization
- Unit tests
- Toy MC for validation
 - 40 straws + calorimeter (timing)
 - Gaussian scattering, hit smearing, ...
- KF implemented using SVector, SMatrix

Scattering Unit Test (polar angle)

- Tweak momentum direction, everything else fixed
- Compare exact parameter change with 1st derivative prediction

Time Derivatives Unit Test

- Tweak individual parameters (R, Λ , ...)
- Compare exact change in hit time prediction with 1st derivative prediction

- Toy MC Simulated 105 MeV/c electron + KF fit
- Ensemble of 10K tests, random initial parameters
 - Randomized seed (10σ smearing) to KF, which is iterated
- Parameter pulls, chisq probability as expected

Parameter Correlations

Average correlation matrix magnitudes

Correlations between 6 and 13%

Parameter Correlations, $\Lambda \rightarrow tan(\lambda)$

Average correlation matrix magnitudes

• Large R, $tan(\lambda)$ correlation

Particle Direction Sensitivity

- Hits generated as downstream e⁻
- Fit as downstream e⁻ or upstream e⁺ (same helicity, opposite time order)
- Kinematic fit resolves direction 'degeneracy'
 - energy loss in KF is 2ndary effect

Generate 10K 105 MeV/c downstream μ⁻ particles

• Fit as either downstream μ^{-} or e^{-} (different \bar{m})

David Brown, LBNL

23

ACTS Workshop, 17 Jan 2019

Other Topics

- Time difference position reconstruction
- Signal propagation time slewing
- Time-over-Threshold drift time estimate
- Left-right ambiguity resolution
- Material effect modeling
- Track Quality selection MVA
- Drift modeling
- Hit combining for Pat. Rec.

Backup

Other Helix Equations

- Consider wire \perp to z at W, azimuth = η
- $\bar{\Phi} = \Phi_0 + W_z/(R \cdot \Lambda) \eta$
- $\Delta = -\sin\eta(C_x W_x) + \cos\eta(C_y W_y)$
- DOCA = $\Lambda(R-\cos(\bar{\Phi}) \Delta)/\operatorname{sqrt}(\Lambda^2 + R^2\sin^2(\bar{\Phi})) + O(r^2_{straw}/R)$

Logitudinal Hit Position

- Time readout at both ends
 - 10 n-sec coincidence in readout reduces randoms
- Δt gives rough position along straw
 - Important for pattern recognition
 - Must calibrate for slewing effects
- Earliest time is used for drift calculations
 - Must calibration for slewing effects

Wire Signal Speed (Slewing)

- Effective signal speed varies from 0.5 c to 0.9 c
 - Caused by slewing effects
 - Measured in prototypes
- Corrected using pulseheight (ADC) in timing propagation

Left-Right Ambiguity Resolution

BERKELEY LAB

- Iterated with KF fit
- Determined for sets of hits in the same panel
 - negligible propagation errors
- Compute projection χ^2 for all possible hit ambiguity states (including inactive)
 - penalty term for inactive hits
- Set LR hit errors according to best χ^2

Straw Response Simulation

Cluster Creation

Distance-To-Time (D2T)

David Brown, LBNL

- Start with G4 energy deposits in straw gas
- Model ion cluster creation, electron statistics, electrostatic gain and drift, waveguide attenuation and dispersion, amplifier transfer function, ...
- Tuned to prototype and literature data

🛠 Fermilab

BaBar Track Fit Parameterization

L = transverse flight $\mathbf{P} \equiv \{d_0, \phi_0, \omega, z_0, tan\lambda\}$

- Based on seeing a small segment of a helix arc
- Geometric description
 - with kinematic interpretation
- Arbitrary parametric variable

 $\begin{aligned} x(L) &= 1/\omega \cdot \sin(\phi_0 + \omega L) - (1/\omega + d_0) \sin \phi_0 \\ y(L) &= -1/\omega \cdot \cos(\phi_0 + \omega L) + (1/\omega + d_0) \cos \phi_0 \\ z(L) &= z_0 + L \cdot \tan \lambda \end{aligned}$

Natural description of low-curvature tracks coming from a known point

Material Effects

- Lynch-Dahl model (NIM B58 (1991))
 - Screened Rutherford cross-section
 - Parameterized by tail truncation factor
 - Can be tuned to model reconstruction truncation
 - Mu2e straw wall truncation value: 0.999
- Most probable value for energy loss, straggling
 - Sternheimer parameterization
 - Mean is biased towards tail
 - Landau tails are 'self-truncated' by pat. rec.

Time Over Threshold

- TOT is sensitive to drift time
- Useful to improve initial hit time resolution

Matrix Feature Comparison

	SMatrix	Eigen	CLHEP
Native Symmetric Matrix Support?		X	
Inversion Error Testing?		X	
CLHEP Interface Compatibility?		×	
6-Dimensional Optimization?		?	×
Interface to Spacetime Vectors?	2,3, and 4D (GenVector)	2 and 3D only	×
Native Root Persistence?		X	X
Linear Algebra Support?	multiply, add, invert, similarity,	Basic + Decompose, solve, sparse,	multiply, add, invert, similarity,
Parallelization support?		?	×
Indexing style?	C (start from 0)	C (start from 0)	Mixed C + Fortran

SMatrix Performance

Lorenzo Moneta (CERN)

Annual Concurrency Forum Meeting, 4-6 Feb 2013, Fermilab

8-Straw Prototype

- 2 ATLAS pixel modules
 - ~20 um resolution
- scintillator cosmic-ray trigger
- Measured electronics transfer, resolutions, Drift velocity

Combined Straw Hits

- Combine hits in adjacent straws in a panel
- Improves resolution along wire by ~1/sqrt(2), with large reduction in tails
- Degrades resolution \perp to wire (effective size) by a factor of ~2
- Reduces hit combinatorics in Pat. Rec.

Straw Signal Propagation

- Momentum resolution crucial for Mu2e physics goals
- ANN used to select poor momentum resolution
 - Fit chisq, Hit count, Hit pattern vs expected, ... (8 total)
 - Training emphasizes tail elimination
- 75% signal efficiency, tail reduction 10⁻³

Tracking Acceptance x Efficiency

CE Acceptance × Efficiency

CE Acceptance × Efficiency

Cummulative a×∈

Relative a×∈

Track Trigger

- Track trigger based on time cluster + helix fit
- Meeting time spec
 - Hit multiplicity reduction
 - Optimized data structures
 - Algorithm tweaking
- 2.5 msec/event
 - 64-core node
- Rejection factor ~2000 (physics limit)

