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“Hidden Sector”
● Standard Model particles and 

interactions have the normal 
couplings

● Hidden Sector has its own couplings 
and particles that are in principle 
unconstrained.

● Some field, the mediator, provides 
(we hope) a weak coupling that can 
be detected. 

Standard 
Model

Hidden/”Dark” sector

Mediator/Portal



Electroweak symmetry breaking in a nutshell
● Symmetries -> Interactions. 
● Gauge Symmetries: SU(3)C x SU(2)Lx U(1)Y
● (1,2, ½) Higgs Φ generates interactions between Wi & B 

bosons. 
● Φ acquires a vacuum expectation value, spontaneously 

breaking SU(2)Lx U(1)Y -> U(1)A.
○ The interactions between B and W3 become kinetic 

mixing, with γ and Z boson being the new mass 
eigenstates.

○ The goldstone modes of Φ are “eaten” by the Wi 
bosons, becoming the longitudinal modes necessary for 
them to have mass. 

○ A particle’s charge Q tells you not only about its 
coupling to EM, but also to Z bosons.

+ ...

Source: 
Quantumdiaries.org



Dark Photons
● Let’s just tack on a symmetry: SU(3)C x SU(2)Lx U(1)Y xU(1)A’

○ (And particles charged under this symmetry).
● This implies the existence of a new gauge boson, the dark 

photon X.
○ Also known as U Boson, V Boson, A’ Boson, etc.

● Basic model:
○ Dark Higgs scalar ξ couples to X.
○ Dark Matter fermion χ couples to X.
○ The B & X fields kinetically mix their field tensors with 

mixing parameter ε. This is allowed because they are 
both Abelian.

● ξ  acquires a vev, X gets a mass.
● The mixing comes not from the interaction terms with the 

Higgs, but from the allowed kinetic mixing (this was not the 
case in the EW case).

● The mass eigenstates of the X,  B, and W fields are shifted.



Interactions
● gX, ε, MX, are the parameters.
● There two ways to diagonalize the kinetic matrix: the 

mass basis and the interaction basis [1].
● Interaction basis leaves photon unchanged and gives 

dark matter a mini/milli charge.
● Mass basis diagonalizes the mass matrix, gives 

normal matter a mini dark charge and dark matter no 
visible photon charge.

● In the interaction basis, SM photons &  dark photons 
oscillate between each other.

○ At high momentum transfer /low MX, the U(1) 
symmetry is restored and the dark matter gets 
a charge under the visible photon.

● Experiments may be looking for a flux of dark 
photons, dark photon mediated interactions, or 
millicharged dark matter.

+

These interaction 
basis diagrams 
destructively 
interfere at low k.



Similarity to Axions
● Axions are a solution to the Strong CP 

Problem.
● CP-violating parameter θ is promoted to a field.
● Spontaneously broken U(1) symmetry leads to 

goldstone bosons (axions) and the relaxation 
of θ to the small values we see in nature.

● Axions may acquire small mass and would 
exist in enormous occupation numbers -> dark 
matter candidate.

● They may be detected via the axioelectric 
effect.

● Detection techniques for axions and dark 
photons are very similar.

From PDG [2].



Millicharge bounds From [3]

● Several experiments have looked at millicharged DM.
● Astrophysically, millicharged DM is constrained by 

many sources [8].
○ Bullet Cluster needs to remain DM’s “smoking 

gun.”
○ CMB anisotropy peaks can’t be washed out, 

so it needs to decouple before recombination.
○ If QSM is too large, the DM won’t virialize: the 

SM gas will transfer too much energy to DM 
and fling it out of the galaxy.

○ Large QSM will also lead to DM annihilating too 
fast and it is no longer a thermal relic.

○ Some halos are elliptic, which is hard to 
achieve with large DM self-interactions and 
heat transfer.

From [8], 
but ε is 
the 
effective 
charge.



PAMELA
● PAMELA was a satellite-based detector launched in 

2006[4].
● It could effectively discriminate electrons and 

positrons from other 
● It saw a large excess of high-energy cosmic rays.
● This excess could be explained by dark matter 

annihilating into positrons and leptons.
● Combined with AMS-02 and FERMI-LAT results, [5] 

finds a best fit at MDM = 104 GeV, but isotropic dark 
matter model excludes much of the parameter space.



DAMPE
● DArk Matter Particle Explorer is a satellite that measured 

cosmic ray electrons up to 10 TeV [6]. 
● Consistent with earlier measurements, but also shows 

evidence of a resonance at ~1.4 TeV.
● No peak found for antiprotons -> the dark matter must 

couple to leptons preferentially (leptophillic).
● Dark photon coupling to SM is determined by electric 

charge, so χχ->X ->e+e- must be subdominant to other 
mediators.

● In [7], they use Yukawa couplings with a scalar mediator 
to make the model leptophilic, the U(1)X symmetry exists 
to forbid quark couplings.

○ They also find that the X-mediated DM scattering 
cross section that barely escapes current DD 
experiments (10-46 cm2).

○ Negligible effect on muon g-2 values. 



EDGES 21 cm result.
● “Cosmic dawn”: first stars are born, and the cosmic gas is 

cold.
● Various processes keep the hyperfine spin state 

temperature higher than the gas temperature at this 
period of history.

● EDGES found an absorption peak in the CMB during this 
period, meaning that the gas was much colder than 
expected.

● This could be due to the gas scattering with DM, 
transferring heat.

● In [9] they analyze the millicharge and hidden photon 
cases.

● Due to self-interaction constraints, they all but rule out 
hidden photons as an explanation.

● Millicharged DM can explain the EDGES result and just 
barely escape all the other constraints, if only 1% of the 
DM mass is made up of millicharges.



Muon g-2
● As other talks this semester will address, experiments 

show the muon has a g-2 value that differs from 
theory.

● The hidden photon could appear in a loop diagram, 
contributing to the amplitude.

From [10]



Accelerators
● Visible decay: One can look for a decay of the 

massive dark photon.
○ These completely rule out the g-2 explanation.

● Meson decays: BaBar looked near the Υ(2S), Υ(3S), 
Υ(4S) resonances for e+e- -> γX events and did not 
see any [11].

○ Other experiments did similar searches and 
benefit from huge datasets.

● Beam dump: e or p incident on a target produces 
dark brehmstrahlrung, which travels through a thick 
shield and decays.

○ Combining results can constrain both 
leptophobic and leptophillic models.

○ Interestingly, it provides 2-sided exclusion 
limits.

● Target experiments: use accurate invariant mass 
reconstruction to look for resonances. From [12]



Accelerator limits
● Invisible decays: look for decays of dark 

photon to dark matter/hidden sector 
particles (i.e. dark photon is not the 
lightest hidden sector state.

● A1 and others looked and placed limits. 



Liquid Xenon Experiments
● Liquid Noble element Time projection chambers (TPCs) detect 

light signals from scintillation and ionization.
● Built to detect WIMPS, they can also detect long-lived vector 

particles (dark photons).
○ In this model, they are assumed to be the lightest 

hidden sector state.
○ Mass basis: the LXe couples to the dark photon.
○ Interaction basis: The dark photon oscillates into a real 

photon, which then recoils off the LXe.
○ 12.1 eV threshold enables low energy probes into this 

portal.
● In [13] they show that DD experiments can be competitive with 

astrophysical bounds.

From [14].



Light Shining Through Walls
● Look for oscillations between SM photon and hidden 

photon.
● Excite EM mode, shield with perfect conductor, and 

see if mode is excited on the other side in a way 
inconsistent with Maxwell’s equations.

● Produce and detect modes with microwave cavities, 
like ADMX and CROWS.

● The longitudinal mode doesn’t exist for photons, but it 
does exist for massive hidden photons, so it you try to 
excite that mode, you get pure hidden photons.

○ Don’t pay the price for oscillations, either. The 
signal is proportional to (MX

2 / ω2) ε2.
● Research ongoing at UC Davis and other places [15].

From [15].



Stellar Dark Matter
● Dark matter may collide with the sun and become 

trapped in its potential well.
● It could decay into a dark photon, which in turn could 

decay into leptons in a leptophillic theory.
● These high-energy leptons would be highly 

directional, providing a clear signal that could be used 
to identify dark matter.

● However, the Sun’s B-field smears out the 
directionality, making it not as competitive as LXe 
TPC experiments.

Source: nasa.gov
From [16].



Summary
● The dark photon is a hidden sector particle considered as 

a candidate for some component of a given theory.
● It can serve as a dark matter candidate itself or mediate a 

force.
● A closely-related theory, millicharged dark matter, is also a 

possibility.
● Both theories are aggressively constrained from both 

accelerator experiments, cosmological detection 
experiments, and cosmological considerations, but they 
have small allowed regions where they could be hiding.
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