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At SCET 2018, showed how the thrust cumulant can be 
related to a simpler observable using a transfer function
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⌃max(⌧) = H(µ)⌃max
Jn

(⌧n, µ)⌃
max
Jn̄

(⌧n̄, µ)⌃
max
S (⌧s, µ)

Thrust cumulant ∑(τ) related to simpler observable ∑max(τ)  
via transfer function FF(τ)

Can find a simple observable to have multiplicative factorization 
theorem

Transfer function can be computed numerically within SCET

⌃(⌧) = ⌃max(⌧)F(⌧)
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At SCET 2018, showed how the thrust cumulant can be 
related to a simpler observable using a transfer function
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Thrust cumulant in SCET can be factorized as

4. Automated resummation in SCET

The starting equation for the automated resummation in Section 2 was the separation of

the desired cross section ⌃(v) into the product of the simplified cross section ⌃max(v) and

the transfer function F(v) given in Eq. (2.5). The resummation of the simplified observable

was computed analytically, while the transfer function could be obtained numerically. In

this section we derive a similar result, but where all ingredients are defined within SCET.

To simplify the discussion, we consider here a factorizable observable (such as thrust)

and perform a similar decomposition at the level of the individual soft and jet functions.

The SCET factorization theorem (3.5) for the thrust event shape that can be recast as

(note that we drop the �B dependence from now on)

⌃(⌧) = H(µ)

Z
d⌧n⌃

0
Jn
(⌧n, µ)

Z
d⌧n̄⌃

0
Jn̄
(⌧n̄, µ)

Z
d⌧s⌃

0
S(⌧s, µ) ⇥[⌧ > ⌧n + ⌧n̄ + ⌧s] , (4.1)

where we expressed the soft and jet functions as (with F = S, Jn, Jn̄)

F (⌧F , µ) ⌘ ⌃0
F (⌧F , µ) =

d⌃F (⌧F )

d⌧F
. (4.2)

Next, we define

⌃F (⌧F , µ) ⌘ ⌃max

F (⌧, µ)FF (⌧F , ⌧, µ) . (4.3)

with

FF (⌧F , ⌧, µ) =
⌃max

F
(�⌧, µ)

⌃max

F
(⌧, µ)

⌃F (⌧F , µ)

⌃max

F
(�⌧, µ)

. (4.4)

This allows us to write

⌃(⌧) = ⌃max(⌧)

Z
d⌧nF

0
Jn
(⌧n, ⌧, µ)

Z
d⌧n̄F

0
Jn̄
(⌧n̄, ⌧, µ)

Z
d⌧sF

0
S(⌧s, ⌧, µ) ⇥[⌧ > ⌧n + ⌧n̄ + ⌧s] ,

(4.5)

where we defined F
0
F
⌘ dF 0

F
/d⌧F with F = S, Jn, Jn̄.

The goal is to compute each of the transfer functions through a MC algorithm defined

uniquely in terms of either soft or collinear fields, in a way that is similar to Section 2.

We will show in Section 4.2 that in the framework of SCET one can compute each of the

transfer functions FJ(⌧n, ⌧, µ) and FS(⌧s, ⌧, µ) through a separate MC. This ensures that

all observable dependence is restricted to the numerical MC algorithm.

The computation of Eqs. (4.4) via MC methods requires that each can be obtained in

4 dimensions by recursively computing real emissions. This relies on two important facts:

First, the transfer function has to be determined entirely through the real radiation, and

second, each contribution needs to be finite in 4 dimensions. The first fact is trivially

satisfied, since in the ratios ⌃F (⌧)/⌃max

F
(�⌧) the purely virtual corrections cancel exactly.

The second requirement deserves some closer investigation.

The IRC divergences cancel quite trivially in the ratio ⌃F (⌧)/⌃max

F
(�⌧), since the nu-

merator and denominator include the same unresolved real radiation (for rIRC safe observ-

ables). However, as we discussed in Section 3.1 and contrary to full QCD, in the standard
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⌃max(⌧) = H(µ)⌃max
Jn

(⌧n, µ)⌃
max
Jn̄

(⌧n̄, µ)⌃
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Simple observable has multiplicative factorization 

This gives

theorem (3.2) for the thrust event shape that can be recast as (note that we drop the �B

dependence form now on)
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The goal is to compute each of the transfer functions through a MC algorithm defined

uniquely in terms of either soft or collinear fields, in a way that is similar to Section 2.

We will show in Section 4.2 that in the framework of SCET one can compute each of the

transfer functions FJ(⌧n, µ) and FS(⌧s, µ) through a separate MC. This ensures that all

observable dependence is restricted to the numerical MC algorithm.

The computation of Eqs. (4.4) via MC methods requires that each can be obtained in

4 dimensions by recursively computing real emissions. This relies on two important facts:

First, the transfer function has to be determined entirely through the real radiation, and

second, each contribution needs to be finite in 4 dimensions. The first fact is trivially

satisfied, since in the ratios ⌃F (⌧)/⌃max

F
(�⌧) the purely virtual corrections cancel exactly.

The second requirement deserves some closer investigation.

The IR divergences cancel quite trivially in the ratio ⌃F (⌧)/⌃max

F
(�⌧), since the nu-

merator and denominator include the same unresolved real radiation (for rIRC safe observ-

ables). However, as we discussed in Section 3.1 and contrary to full QCD, in the standard

formulation of SCET real radiation is UV divergent. The resulting UV divergences of the

real radiation appear both in the soft and in the jet functions and they cancel entirely

only in their combination to give the physical cross section. The existence of the above

divergences is a feature of the e↵ective theory formulation in which the UV bounds of the

theory are completely integrated out into Wilson coe�cients. This guarantees that each of

the soft and jet functions only depends on a single characteristic scale, which allows for the

resummation of the dominant logarithmic terms via RG equations. In the usual formula-

tion of SCET the UV divergences from the real radiation are regulated using dimensional
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Putting all information together, we obtained

⌃NLL(⌧) = ⌃max(⌧)FNLL
S (⌧, ⌧, Q)

1. Start with i = 0 and v0 = ⌧

2. Increase i by one

3. Generate ⌧i randomly according to (⌧i�1/⌧i)�R
0
LL(�B ;⌧) = r, with r 2 [0, 1]

4. If ⌧i < �⌧ exit the algorithm, otherwise go back to step 2

If the sum over all generated ⌧i are less than ⌧ , accept the event, otherwise reject it. The

value of FNLL

S
(⌧, ⌧, Q) is equal to the fraction of the accepted events.

One can compare the result obtained in Eq. (4.31) using the MC algorithm above

to determine the transfer function F
NLL

S
(⌧, ⌧, Q) to the analytical expression, given in

Eq. (3.46). We show this comparison in Figure. 5, where we observe a perfect agreement

between the two predictions.
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Figure 5: The left figure shows the thrust cross section at NLL obtained with the Monte-Carlo
algorithm given in the text (crosses in the plot). The analytic result is reported as a solid line
for comparison. The right plot reports the comparison between numerical and analytical solutions
for the soft transfer function at the same order. The numerical results have been obtained with
ln(�) = �20.

Although the extension to the general case is beyond the scope of this article, we do

want to mention that it is possible to apply the above method to a more complicated

observable than thrust. In general, if one is able to find an SCET Lagrangian for the

simple observable and define ⌃max which by definition contains the same LL as the full

observable v, then the resummation for v can be obtained by means of a transfer function

that is defined in terms of the fields of the same Lagrangian, and can be computed via

Monte Carlo methods.

5. Conclusions and Outlook

In this work we have shown how to formulate a numerical approach to resummation in

SCET using the example of NLL resummation of the thrust distribution. This was achieved

by combining the automated CAESAR/ARES approach to resummation with the factorization

of the long distance degrees of freedom in SCET.
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How can this be generalized to any observable of interest?



General expression for numerical resummation is 
obtained using 6 basic steps
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1. Identify DOF required for given observable to LL 

2. Obtain fully differential factorization theorem 

3. Define simplified observable using same DOF 

4. Perform resummation for simplified observable using SCET 

5. Define transfer function for each of the DOF  

6. Find efficient way to perform computation of transfer function



General expression for numerical resummation is 
obtained using 5 basic steps
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Steps 1 and 4 same as in any SCET calculation 
Not discussed further

1. Identify DOF required for given observable to LL  

2. Obtain fully differential factorization theorem 

3. Define simplified observable using same DOF 

4. Perform resummation for simplified observable using SCET 

5. Define transfer function for each of the DOF  

6. Find efficient way to perform computation of transfer function
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2. Obtain fully differential factorization theorem 

3. Define simplified observable using same DOF 

4. Perform resummation for simplified observable using SCET 

5. Define transfer function for each of the DOF  

6. Find efficient way to perform computation of transfer function

Steps 2, 3, 5 and 6 deserve further discussion
Rest of the talk
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Steps 2, 3 and 5 deserve further discussion
Rest of the talk



Obtaining a fully differential factorization theorem follows 
old SCET ideas to prove general factorization theorem
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3. Notation used throughout the paper

In this section we introduce a convenient notation to formulate resummation in a way that

is applicable to broad classes of observables. We begin by introducing the usual light-cone

parametrization of four-momenta with respect to a light-like direction n
µ = (1,~n) with

n
2 = 0. This allows to write

k
µ =

n
µ

2
n̄ · k +

n̄
µ

2
n · k + k

µ

t
⌘

n
µ

2
k
� +

n̄
µ

2
k
+ + k

µ

t
, (3.1)

where n̄
µ = (1,�~n), such that n̄

2 = 0, n · n̄ = 2. The momentum kt is a space-like

momentum satisfying n · kt = n̄ · kt = 0. We also define k
2

? = �k
2
t . A common choice is to

to align ~n with the z-axis, resulting in n = (1, 0, 0, 1), but the notation is generic.

We consider a state X containing N particles with four-momenta ki = (Ei,
~ki). The

total energy !X and 3-momentum ~kX at a given solid angle ⌦ in the final state are given

by

!X(⌦) =
NX

i=1

Ei �(⌦� ⌦i) , ~kX(⌦) =
NX

i=1

~ki �(⌦� ⌦i) , (3.2)

where the solid angle of each particle is determined by its 3-momentum ⌦i = ⌦(ki).

One can now define a functional integration measure as usual by discretization. We

divide ⌦ into infinitesimally small bins {⌦k}, and define the set of discrete variables {!k,
~kk}

as the integrals of !(⌦) and ~k(⌦) over the bins {⌦k},

!⌦k =

Z

⌦k

d⌦!(⌦) , ~k⌦k =

Z

⌦k

d⌦~k(⌦) . (3.3)

Now we define an integration measure over the energies and 3-momenta at a given

solid angle ⌦k as

[d!]⌦k = d!(⌦k)⇥[!(⌦k)] , [d3k]⌦k = d3k(⌦k)�
2[⌦(~k(⌦k))� ⌦k] . (3.4)

Restricting the particles inside of each solid angle to be on-shell (which is justified since

we have infinitesimally small solid angles ⌦k) one can write

[dk]⌦k =
[d!]⌦k [d

3
k]⌦k

(2⇡)3
�[!(⌦k)

2
� k

2(⌦k)] =
!⌦k [d!]⌦k

2(2⇡)3
. (3.5)

With this notation, the phase space for a state XN , containing N final state particle

besides the two Born particles qn and qn̄ is given by

D!
(N) = S(N)

NY

i=1

d⌦i[dk]⌦i ⌘ S(N)
NY

i=1

[dki] , (3.6)

where the symmetry factor S(N) takes into account identical particles in the final state

(for example, for n gluons we have S(N) = 1/N !).
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Define energy and momentum density

Phase space at given solid angle given by

Allows to write phase space as

General SCET factorization theorems from energy density formalism 
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Write general observable as

Since a given energy density is identified by its momenta, as discussed above, the

sum of two energy distributions is simply given by the the combined momenta of the two

individual distributions

! = !1 + !2 = {ki,1} [ {ki,2} . (3.7)

One simple consequence of this result is that the total momentum is conserved

P
µ[!] = P

µ[!1] + P
µ[!2] , (3.8)

where P measures the total 4-momentum in a given energy distribution.

Any observable is defined by the way it acts on a set of final state particles. For

many observables, its value only depends on the momenta of the final state particles. Such

observables can be defined in terms of a fully di↵erential energy distribution, following the

discussion of [1, 2].

The cumulative distribution for a given observable can be constructed from the pro-

jection of the cross section that is fully di↵erential in the energy distribution of the event,

onto the value of the observable

⌃(�B; v) ⌘

Z
D!

��

d�B�!
⇥ (V [!] < v)

⌘

X

N

Z
D!

(N)
��

d�B�!
(N)

⇥
⇣
V [!(N)] < v

⌘
, (3.9)

where

��

d�B�!
(N)

⌘
��

�!(N)
�

⇣
�B � �B[!

(N)]
⌘
. (3.10)

The integration measure D!
(N) was defined in Eq. (3.6), and the observable for fixed N

can again be written in terms of the N final state momenta ki

V [!(N)] ⌘ V [qn, qn̄, k1, . . . , kN ] . (3.11)

The phase space �B corresponds to the underlying Born configuration, defined by the

two quarks qn and qn̄ prior to any emission. It is constructed in terms of the energy

distribution through the total momentum P
µ[!(N)] = Q(1,~0) and the thrust axis ~n. The

fully di↵erential cross section is given (up to constants) by the square of the matrix element

as

��

�!(N)
⌘

1

2F
|M(qn, qn̄; k1, . . . , kN )|2 , (3.12)

where F denotes the flux factor, and |M(qn, qn̄; k1, . . . , kN )|2 the squared matrix elements

to all orders in perturbation theory with a fixed number N of emissions.

Before we proceed, we conclude the notation section by defining our definition of the

running coupling constant that will be used throughout the paper. The dependence of ↵s

on the renormalization scale is given in general by

µ
2

R

d

dµ2

R

↵s(µR) = �↵s(µR)

"
�0

↵s(µR)

4⇡
+ �1

✓
↵s(µR)

4⇡

◆
2

+ . . .

#
, (3.13)
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Fully diff cross section given by

Identify the SCET Lagrangian

We need to talk about that a general observable can contain restrictions on

the phase space that do not in general have the form discussed here

A generic observable can be a complicated function of all final state momenta. For

example, its definition might include a complicated clustering procedure or optimization

procedure. However, the observable computed on a final state with a single extra emis-

sion (apart from the hard Born momenta) has a much simpler structure, especially if one

considers the soft-collinear limit of this emission relative to one of the Born legs `. In this

limit, any observable can be written as

V`(k) = d`

✓
kt

Q

◆
a

e
�b`⌘` g`(�) , (4.2)

where the transverse momentum kt,`, rapidity ⌘` and azimuthal angle �` are measured with

respect to the direction of leg ` in the Born configuration. The function g`(�) is normalized

such that
Z

2⇡

0

d�

2⇡
g`(�) = 1 . (4.3)

For globally recursive infrared and collinear (rIRC) safe observables, the obtained

values of a and b` can now be used to obtain the scaling of the soft and collinear modes in

SCET. One finds

p
p2s ⇠ Qv

1/a
,

q
p
2

J`
⇠ Qv

1/(a+b`) . (4.4)

The SCET Lagrangian is uniquely defined by the modes given above

LSCET = Ls +
X

`

Ln` . (4.5)

Note that this procedure give in general an SCET Lagrangian where collinear fields in dif-

ferent directions have di↵erent scaling. Since such versions of SCET have to our knowledge

not been considered before, we restrict ourselves to the case b` = b for all legs. We suspect,

however, that our considerations apply to cases with di↵erent b` values as well. We also

specialize to the case of 2 hard legs. From now on we assume that the degrees of freedom

of this SCET Lagrangian are su�cient to describe the IRC dynamics of the observable

under consideration. For instance, it is well known that joint resummations tend to require

additional modes [?, 3], and there might be extreme cases of single resummations (such as

negative b angularities [?]) where some extra care must be taken when constructing the

e↵ective Lagrangian.

Factorize the fully di↵erential energy distribution

The starting point is the expression for the cumulative distribution given in Eq. (3.9).

As was shown in [2], the fully di↵erential energy distribution ��/d�B�! can be written in

terms of the energy momentum tensor of SCET. Following the notation of [2], we define

E
0(⌦)|Xi = !X(⌦)|Xi , (4.6)
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Define energy flow operator

where X denotes a general state. The energy flow operator E0(⌦) can be defined in terms

of the energy-momentum tensor

T
µ⌫ =

X

�2L

@L

@(@µ�)
@
⌫
�� g

µ⌫
L , (4.7)

as [1, 4]

E
0(⌦) = lim

R!1
R

2

Z 1

0

dt ~ui T 0i(t, R ~u) . (4.8)

Here, ~u ⌘ ~u(⌦) is the unit three-vector pointing in the direction identified by ⌦. Therefore,

E
0(⌦) measures the total energy arriving over time at infinity in the direction ⌦. An explicit

proof of Eq. (4.8) for scalars and Dirac fermions can be found in Ref. [1].

As was shown in [2], given that the energy momentum tensor is linear in the Lagrangian

of the theory, it can be written as

E
0(⌦) =

X

`

E
0

n`
(⌦) + E

0

s (⌦) , (4.9)

where E
0
n`,s

(⌦) is defined analogously to Eq. (4.8), but using the energy-momentum tensor

obtained from the Lagrangian Ln`,s only. This then implies that the fully di↵erential energy

distribution be written in the factorized form [1,2]

��

d�B�!
= |C(�B)|

2

Z
D!n

��n

d�B�!n

Z
D!n̄

��n̄

d�B�!n̄

Z
D!s

��S

d�B�!s

�
⇥
! � !s � !n � !n̄

⇤
.

(4.10)

Here |C(�B)|2 denotes the matching coe�cient describing the short distance fluctuations

in the full theory that are not included in SCET, which depends on the underlying Born

configuration of the process under consideration, but is independent of the definition of the

observable. The terms ��F /d�B�!F denote the fully di↵erential cross section as computed

from the part of the SCET Lagrangian describing sector F 2 {s, n`}. In each sector, one

can write

��F

d�B�!F

⌘

X

N

��F

d�B�!
(N)

F

. (4.11)

In the soft sector, one finds

��S

d�B�!
(N)

S

⌘

(
N = 0 : VS(�B)�(!S)

N > 0 : VS(�B) |MS(�B; k1, . . . , kN )|2 ,
(4.12)

and the virtual corrections and real emission matrix element is computed using the Feyn-

man rules of the given sector. The only di↵erence with Eq. (3.12) is the absence of the

di↵erential Born cross section, which is contained in the matching coe�cient |C(�B)|2. All

matrix elements depend on the underlying Born configuration �B through the direction

and energies of the Born particles. In the collinear one instead has

��n

d�B�!
(N)

n

⌘

(
N = 0 : Vn(�B)�(!n � ![qn])

N > 0 : Vn(�B) |Mn(�B; qn; k1, . . . , kN )|2 .
(4.13)
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observable. The terms ��F /d�B�!F denote the fully di↵erential cross section as computed

from the part of the SCET Lagrangian describing sector F 2 {s, n`}. In each sector, one

can write

��F

d�B�!F

⌘

X

N

��F

d�B�!
(N)

F

. (4.11)

In the soft sector, one finds

��S

d�B�!
(N)

S

⌘

(
N = 0 : VS(�B)�(!S)

N > 0 : VS(�B) |MS(�B; k1, . . . , kN )|2 ,
(4.12)

and the virtual corrections and real emission matrix element is computed using the Feyn-

man rules of the given sector. The only di↵erence with Eq. (3.12) is the absence of the

di↵erential Born cross section, which is contained in the matching coe�cient |C(�B)|2. All

matrix elements depend on the underlying Born configuration �B through the direction

and energies of the Born particles. In the collinear one instead has

��n

d�B�!
(N)

n

⌘

(
N = 0 : Vn(�B)�(!n � ![qn])

N > 0 : Vn(�B) |Mn(�B; qn; k1, . . . , kN )|2 .
(4.13)

– 8 –

Gives general factorization theorem

CWB,  Fleming, Lee, Sterman (’08)

CWB, Hornig, Tackmann (’08)



Obtaining a fully differential factorization theorem follows 
old SCET ideas to prove general factorization theorem

11

CWB,  Fleming, Lee, Sterman (’08)

CWB, Hornig, Tackmann (’08)

General SCET factorization theorems from energy density formalism 

The important di↵erence between the collinear and the soft sector is that in the latter there

is still a single quark qn contributing to the energy distribution (!n = ![qn]), even in the

absence of any radiation. From now on, we will mostly drop the �B dependence in both

soft and collinear squared amplitudes, as well as the qn (qn̄) dependence in the collinear

ones, unless this dependence is crucial to understand the notation.

Combining Eq. (4.10) with Eq. (3.9) one can write

⌃(�B; v) =|C(�B)|
2

Z
D!n

��n

d�B�!n

Z
D!n̄

��n̄

d�B�!n̄

Z
D!s

��S

d�B�!s

⇥⇥(V [!] < v) �
⇥
! � !s � !n � !n̄

⇤
, (4.14)

where the sum of energy densities is obtained by taking the union of the momenta in each,

as defined in Eq. (3.7).

Note that Eq. (4.14) does not imply a factorization formula for ⌃(�B; v) in the com-

monly used sense, since the observable V [!n+!n̄+!s] does not factorize in general. Only

observables which do not combine momenta from di↵erent sectors in a non-trivial way,

such that they can be written as

V [!n + !n̄ + !s] = G[V [!n], V [!n̄], V [!s]] , (4.15)

satisfy a commonly used factorization theorem. One then obtains

⌃(�B; v) =|C(�B)|
2

Z
dvn

d�n

d�Bdvn

Z
dvn̄

d�n̄
d�Bdvn̄

Z
dvs

d�S
d�Bdvs

⇥(G[vn, vn̄, vs] < v) ,

(4.16)

where

d�F

d�BdvF
=

Z
D!F

d�F

d�Bd!F

� [V [!F ]� vF ] . (4.17)

Thus, for factorizable observables one reproduces the factorized result that was the starting

point in [5] when discussing the thrust distribution at NLL accuracy. For example, an

additive observable, such as thrust satisfies

V [!n + !n̄ + !s] = V [!n] + V [!n̄] + V [!s] . (4.18)

Another important consequence of Eq. (4.14) is that the delta function constraining

the total energy density to the sum of the ones each sector introduces a kinematic cross-talk

between the soft and collinear sectors. This can be understood by noting that

P
µ[!] = P

µ[!s] + P
µ[!n] + P

µ[!n̄] = Q(1,~0) . (4.19)

Thus, the quark that is initiating each collinear sector recoils against the soft radiation in

the corresponding hemisphere. This is important for observables that are sensitive to the

recoil of the Born quarks, such as jet broadening.
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From this any observable can be constructed

Standard factorization theorem if observable factorizes

where X denotes a general state. The energy flow operator E0(⌦) can be defined in terms

of the energy-momentum tensor

T
µ⌫ =

X

�2L

@L

@(@µ�)
@
⌫
�� g

µ⌫
L , (4.7)

as [1, 4]

E
0(⌦) = lim

R!1
R

2

Z 1

0

dt ~ui T 0i(t, R ~u) . (4.8)

Here, ~u ⌘ ~u(⌦) is the unit three-vector pointing in the direction identified by ⌦. Therefore,

E
0(⌦) measures the total energy arriving over time at infinity in the direction ⌦. An explicit

proof of Eq. (4.8) for scalars and Dirac fermions can be found in Ref. [1].

As was shown in [2], given that the energy momentum tensor is linear in the Lagrangian

of the theory, it can be written as

E
0(⌦) =

X

`

E
0

n`
(⌦) + E

0

s (⌦) , (4.9)

where E
0
n`,s

(⌦) is defined analogously to Eq. (4.8), but using the energy-momentum tensor

obtained from the Lagrangian Ln`,s only. This then implies that the fully di↵erential energy

distribution be written in the factorized form [1,2]

��

d�B�!
= |C(�B)|

2

Z
D!n

��n

d�B�!n

Z
D!n̄

��n̄

d�B�!n̄

Z
D!s

��S

d�B�!s

�
⇥
! � !s � !n � !n̄

⇤
.

(4.10)

Here |C(�B)|2 denotes the matching coe�cient describing the short distance fluctuations

in the full theory that are not included in SCET, which depends on the underlying Born

configuration of the process under consideration, but is independent of the definition of the

observable. The terms ��F /d�B�!F denote the fully di↵erential cross section as computed

from the part of the SCET Lagrangian describing sector F 2 {s, n`}. In each sector, one

can write

��F

d�B�!F

⌘

X

N

��F

d�B�!
(N)

F

. (4.11)

In the soft sector, one finds

��S

d�B�!
(N)

S

⌘

(
N = 0 : VS(�B)�(!S)

N > 0 : VS(�B) |MS(�B; k1, . . . , kN )|2 ,
(4.12)

and the virtual corrections and real emission matrix element is computed using the Feyn-

man rules of the given sector. The only di↵erence with Eq. (3.12) is the absence of the

di↵erential Born cross section, which is contained in the matching coe�cient |C(�B)|2. All

matrix elements depend on the underlying Born configuration �B through the direction

and energies of the Born particles. In the collinear one instead has

��n

d�B�!
(N)

n

⌘

(
N = 0 : Vn(�B)�(!n � ![qn])

N > 0 : Vn(�B) |Mn(�B; qn; k1, . . . , kN )|2 .
(4.13)
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Gives general factorization theorem



1. Identify DOF required for given observable  

2. Obtain fully differential factorization theorem 

3. Define simplified observable using same DOF 

4. Perform resummation for simplified observable using SCET 

5. Define transfer function for each of the DOF  

6. Find efficient way to perform computation of transfer function

General expression for numerical resummation is 
obtained using 5 basic steps

12

Steps 2, 3 and 5 deserve further discussion
Rest of the talk



Define a simplified observable that gives 
multiplicative factorization

13

axis defining each leg. One particularly simple choice for this axis is the so-called winner-

take-all (WTA) axis, which is aligned with the most energetic particle in each hemissphere.

This choice does not change the Lagrangian in each sector, as can be understood from

the reparametrization invariance of the Lagrangian [7]. In order to have the simplified

observable be recoil free, we therefore choose V`(q) to be defined using the WTA axis.

This observable acts separately on each sector of the e↵ective theory, and the mea-

surement function is therefore of the form given in Eq. (4.15) (with G[. . .] ⌘ max[. . .]) and

therefore allows for a factorization formula in the traditional sense. Using

⇥[max[vn, vn̄, vs] < v] = ⇥[vn < v]⇥[vn̄ < v]⇥[vs < v] , (4.24)

one finds

⌃max(�B; v) =|C(�B)|
2⌃max

n (�B; v)⌃
max

n̄ (�B; v)⌃
max

s (�B; v) , (4.25)

where the expression in each sector is given by the obvious result

⌃max

F (�B; v) =

Z
D!F

��F

d�B�!F

⇥(Vmax[!F ] < v) . (4.26)

This fully factorized and recoil free observable can be resummed using the standard

techniques of SCET. We will give some details of this calculation in the App. A.

Definition of the transfer function

The transfer function relates the resummation of the simple observable to that of the

desired observable. Most global rIRC safe observables have the property that the cumu-

lative distribution is exponentially suppressed [⌃(v) ⇠ exp(�↵s ln
2
v)] in the limit v ! 0.

Such observables satisfy the basic relation to the cumulative distribution of their simple

observables [5]

⌃(�B; v) = ⌃max(�B; v)F(�B; v) . (4.27)

Using Eqs. (4.14) and (4.25) one can write a general factorization theorem for the transfer

function

F(�B; v) =

Z
D!nF

0
n(�B;!n, v)

Z
D!n̄F

0
n̄(�B;!n̄, v)

Z
D!sF

0
S(�B;!s, v)

⇥⇥(V [!n + !n̄ + !s] < v)

⌘

Z
D!F

0(�B;!, v)⇥(V [!] < v) , (4.28)

with

F
0(�B;!, v) ⌘

Z
D!nF

0
n(�B;!n, v)

Z
D!n̄F

0
n̄(�B;!n̄, v)

Z
D!sF

0
S(�B;!s, v)

⇥ �(! � !s � !n � !n̄) (4.29)

with the individual fully di↵erential transfer functions given by

F
0
F (�B;!F , v) =

��F
d�B�!F

⌃max

F
(�B; v)

. (4.30)
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The important di↵erence between the collinear and the soft sector is that in the latter there

is still a single quark qn contributing to the energy distribution (!n = ![qn]), even in the

absence of any radiation. From now on, we will mostly drop the �B dependence in both

soft and collinear squared amplitudes, as well as the qn (qn̄) dependence in the collinear

ones, unless this dependence is crucial to understand the notation.

Combining Eq. (4.10) with Eq. (3.9) one can write

⌃(�B; v) =|C(�B)|
2

Z
D!n

��n

d�B�!n

Z
D!n̄

��n̄

d�B�!n̄

Z
D!s

��S

d�B�!s

⇥⇥(V [!] < v) �
⇥
! � !s � !n � !n̄

⇤
, (4.14)

where the sum of energy densities is obtained by taking the union of the momenta in each,

as defined in Eq. (3.7).

Note that Eq. (4.14) does not imply a factorization formula for ⌃(�B; v) in the com-

monly used sense, since the observable V [!n+!n̄+!s] does not factorize in general. Only

observables which do not combine momenta from di↵erent sectors in a non-trivial way,

such that they can be written as

V [!n + !n̄ + !s] = G[V [!n], V [!n̄], V [!s]] , (4.15)

satisfy a commonly used factorization theorem. One then obtains

⌃(�B; v) =|C(�B)|
2

Z
dvn

d�n

d�Bdvn

Z
dvn̄

d�n̄
d�Bdvn̄

Z
dvs

d�S
d�Bdvs

⇥(G[vn, vn̄, vs] < v) ,

(4.16)

where

d�F

d�BdvF
=

Z
D!F

d�F

d�Bd!F

� [V [!F ]� vF ] . (4.17)

Thus, for factorizable observables one reproduces the factorized result that was the starting

point in [5] when discussing the thrust distribution at NLL accuracy. For example, an

additive observable, such as thrust satisfies

V [!n + !n̄ + !s] = V [!n] + V [!n̄] + V [!s] . (4.18)

Another important consequence of Eq. (4.14) is that the delta function constraining

the total energy density to the sum of the ones each sector introduces a kinematic cross-talk

between the soft and collinear sectors. This can be understood by noting that

P
µ[!] = P

µ[!s] + P
µ[!n] + P

µ[!n̄] = Q(1,~0) . (4.19)

Thus, the quark that is initiating each collinear sector recoils against the soft radiation in

the corresponding hemisphere. This is important for observables that are sensitive to the

recoil of the Born quarks, such as jet broadening.

– 9 –

Simplified observable defined such that observable has structure

axis defining each leg. One particularly simple choice for this axis is the so-called winner-

take-all (WTA) axis, which is aligned with the most energetic particle in each hemissphere.

This choice does not change the Lagrangian in each sector, as can be understood from

the reparametrization invariance of the Lagrangian [7]. In order to have the simplified

observable be recoil free, we therefore choose V`(q) to be defined using the WTA axis.

This observable acts separately on each sector of the e↵ective theory, and the mea-

surement function is therefore of the form given in Eq. (4.15) (with G[. . .] ⌘ max[. . .]) and

therefore allows for a factorization formula in the traditional sense. Using

⇥[max[vn, vn̄, vs] < v] = ⇥[vn < v]⇥[vn̄ < v]⇥[vs < v] , (4.24)

one finds

⌃max(�B; v) =|C(�B)|
2⌃max

n (�B; v)⌃
max

n̄ (�B; v)⌃
max

s (�B; v) , (4.25)

where the expression in each sector is given by the obvious result

⌃max

F (�B; v) =

Z
D!F

��F

d�B�!F

⇥(Vmax[!F ] < v) . (4.26)

This fully factorized and recoil free observable can be resummed using the standard

techniques of SCET. We will give some details of this calculation in the App. A.

Definition of the transfer function

The transfer function relates the resummation of the simple observable to that of the

desired observable. Most global rIRC safe observables have the property that the cumu-

lative distribution is exponentially suppressed [⌃(v) ⇠ exp(�↵s ln
2
v)] in the limit v ! 0.

Such observables satisfy the basic relation to the cumulative distribution of their simple

observables [5]

⌃(�B; v) = ⌃max(�B; v)F(�B; v) . (4.27)

Using Eqs. (4.14) and (4.25) one can write a general factorization theorem for the transfer

function

F(�B; v) =

Z
D!nF

0
n(�B;!n, v)

Z
D!n̄F

0
n̄(�B;!n̄, v)

Z
D!sF

0
S(�B;!s, v)

⇥⇥(V [!n + !n̄ + !s] < v)

⌘

Z
D!F

0(�B;!, v)⇥(V [!] < v) , (4.28)

with

F
0(�B;!, v) ⌘

Z
D!nF

0
n(�B;!n, v)

Z
D!n̄F

0
n̄(�B;!n̄, v)

Z
D!sF

0
S(�B;!s, v)

⇥ �(! � !s � !n � !n̄) (4.29)

with the individual fully di↵erential transfer functions given by

F
0
F (�B;!F , v) =

��F
d�B�!F

⌃max

F
(�B; v)

. (4.30)
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which gives multiplicative factorization

Vmax[!] = max {V [!n], V [!n̄], V [!s]}
<latexit sha1_base64="hzqc5f+vmftM2XLQFbBZJOtVoWY="></latexit><latexit sha1_base64="hzqc5f+vmftM2XLQFbBZJOtVoWY="></latexit><latexit sha1_base64="hzqc5f+vmftM2XLQFbBZJOtVoWY=">AAACRHicbZBNa9wwEIbl9CPp9mvbHHsRXQo9lMUugeYSCO2lxwSym4BlzFg73hWRZCONQxbjH5dLf0Bv/QW99NBSei3RbkybJh0QvHreGUZ6i1orT3H8Jdq4c/fe/c2tB4OHjx4/eTp89nzqq8ZJnMhKV+6kAI9aWZyQIo0ntUMwhcbj4vTDyj8+Q+dVZY9oWWNmYG5VqSRQQPkwneatcIYbOO9SURmcQ8b3+B8mNJYkWj7tzdxmb/5eWlGA47a7znwmnJovSHT5cBSP43Xx2yLpxYj1dZAPP4tZJRuDlqQG79MkrilrwZGSGruBaDzWIE9hjmmQFgz6rF2H0PFXgcx4WblwLPE1vT7RgvF+aYrQaYAW/qa3gv/z0obK3axVtm4IrbxaVDaaU8VXifKZcihJL4MA6VR4K5cLcCAp5D4IISQ3v3xbTN+Ok3icHO6M9t/3cWyxF+wle80S9o7ts4/sgE2YZBfsK/vOfkSfom/Rz+jXVetG1M9ss38q+n0JAnyyEQ==</latexit><latexit sha1_base64="hzqc5f+vmftM2XLQFbBZJOtVoWY="></latexit>

Theta function therefore implies as

Simplified observable multiplicative with same LL dependence as 
desired observable. 

Many observable have same simplified observable version



1. Identify DOF required for given observable  

2. Obtain fully differential factorization theorem 

3. Define simplified observable using same DOF 

4. Perform resummation for simplified observable using SCET 

5. Define transfer function for each of the DOF  

6. Find efficient way to perform computation of transfer function

General expression for numerical resummation is 
obtained using 5 basic steps
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Gives a general expression for the transfer function 
of any observable
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The important di↵erence between the collinear and the soft sector is that in the latter there

is still a single quark qn contributing to the energy distribution (!n = ![qn]), even in the

absence of any radiation. From now on, we will mostly drop the �B dependence in both

soft and collinear squared amplitudes, as well as the qn (qn̄) dependence in the collinear

ones, unless this dependence is crucial to understand the notation.

Combining Eq. (4.10) with Eq. (3.9) one can write

⌃(�B; v) =|C(�B)|
2

Z
D!n

��n

d�B�!n

Z
D!n̄

��n̄

d�B�!n̄

Z
D!s

��S

d�B�!s

⇥⇥(V [!] < v) �
⇥
! � !s � !n � !n̄

⇤
, (4.14)

where the sum of energy densities is obtained by taking the union of the momenta in each,

as defined in Eq. (3.7).

Note that Eq. (4.14) does not imply a factorization formula for ⌃(�B; v) in the com-

monly used sense, since the observable V [!n+!n̄+!s] does not factorize in general. Only

observables which do not combine momenta from di↵erent sectors in a non-trivial way,

such that they can be written as

V [!n + !n̄ + !s] = G[V [!n], V [!n̄], V [!s]] , (4.15)

satisfy a commonly used factorization theorem. One then obtains

⌃(�B; v) =|C(�B)|
2

Z
dvn

d�n

d�Bdvn

Z
dvn̄

d�n̄
d�Bdvn̄

Z
dvs

d�S
d�Bdvs

⇥(G[vn, vn̄, vs] < v) ,

(4.16)

where

d�F

d�BdvF
=

Z
D!F

d�F

d�Bd!F

� [V [!F ]� vF ] . (4.17)

Thus, for factorizable observables one reproduces the factorized result that was the starting

point in [5] when discussing the thrust distribution at NLL accuracy. For example, an

additive observable, such as thrust satisfies

V [!n + !n̄ + !s] = V [!n] + V [!n̄] + V [!s] . (4.18)

Another important consequence of Eq. (4.14) is that the delta function constraining

the total energy density to the sum of the ones each sector introduces a kinematic cross-talk

between the soft and collinear sectors. This can be understood by noting that

P
µ[!] = P

µ[!s] + P
µ[!n] + P

µ[!n̄] = Q(1,~0) . (4.19)

Thus, the quark that is initiating each collinear sector recoils against the soft radiation in

the corresponding hemisphere. This is important for observables that are sensitive to the

recoil of the Born quarks, such as jet broadening.
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axis defining each leg. One particularly simple choice for this axis is the so-called winner-

take-all (WTA) axis, which is aligned with the most energetic particle in each hemissphere.

This choice does not change the Lagrangian in each sector, as can be understood from

the reparametrization invariance of the Lagrangian [7]. In order to have the simplified

observable be recoil free, we therefore choose V`(q) to be defined using the WTA axis.

This observable acts separately on each sector of the e↵ective theory, and the mea-

surement function is therefore of the form given in Eq. (4.15) (with G[. . .] ⌘ max[. . .]) and

therefore allows for a factorization formula in the traditional sense. Using

⇥[max[vn, vn̄, vs] < v] = ⇥[vn < v]⇥[vn̄ < v]⇥[vs < v] , (4.24)

one finds

⌃max(�B; v) =|C(�B)|
2⌃max

n (�B; v)⌃
max

n̄ (�B; v)⌃
max

s (�B; v) , (4.25)

where the expression in each sector is given by the obvious result

⌃max

F (�B; v) =

Z
D!F

��F

d�B�!F

⇥(Vmax[!F ] < v) . (4.26)

This fully factorized and recoil free observable can be resummed using the standard

techniques of SCET. We will give some details of this calculation in the App. A.

Definition of the transfer function

The transfer function relates the resummation of the simple observable to that of the

desired observable. Most global rIRC safe observables have the property that the cumu-

lative distribution is exponentially suppressed [⌃(v) ⇠ exp(�↵s ln
2
v)] in the limit v ! 0.

Such observables satisfy the basic relation to the cumulative distribution of their simple

observables [5]

⌃(�B; v) = ⌃max(�B; v)F(�B; v) . (4.27)

Using Eqs. (4.14) and (4.25) one can write a general factorization theorem for the transfer

function

F(�B; v) =

Z
D!nF

0
n(�B;!n, v)

Z
D!n̄F

0
n̄(�B;!n̄, v)

Z
D!sF

0
S(�B;!s, v)

⇥⇥(V [!n + !n̄ + !s] < v)

⌘

Z
D!F

0(�B;!, v)⇥(V [!] < v) , (4.28)

with

F
0(�B;!, v) ⌘

Z
D!nF

0
n(�B;!n, v)

Z
D!n̄F

0
n̄(�B;!n̄, v)

Z
D!sF

0
S(�B;!s, v)

⇥ �(! � !s � !n � !n̄) (4.29)

with the individual fully di↵erential transfer functions given by

F
0
F (�B;!F , v) =

��F
d�B�!F

⌃max

F
(�B; v)

. (4.30)

– 11 –



Gives a general expression for the transfer function 
of any observable
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The important di↵erence between the collinear and the soft sector is that in the latter there

is still a single quark qn contributing to the energy distribution (!n = ![qn]), even in the

absence of any radiation. From now on, we will mostly drop the �B dependence in both

soft and collinear squared amplitudes, as well as the qn (qn̄) dependence in the collinear

ones, unless this dependence is crucial to understand the notation.

Combining Eq. (4.10) with Eq. (3.9) one can write

⌃(�B; v) =|C(�B)|
2

Z
D!n

��n

d�B�!n

Z
D!n̄

��n̄

d�B�!n̄

Z
D!s

��S

d�B�!s

⇥⇥(V [!] < v) �
⇥
! � !s � !n � !n̄
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where the sum of energy densities is obtained by taking the union of the momenta in each,

as defined in Eq. (3.7).

Note that Eq. (4.14) does not imply a factorization formula for ⌃(�B; v) in the com-
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Thus, the quark that is initiating each collinear sector recoils against the soft radiation in

the corresponding hemisphere. This is important for observables that are sensitive to the

recoil of the Born quarks, such as jet broadening.
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axis defining each leg. One particularly simple choice for this axis is the so-called winner-

take-all (WTA) axis, which is aligned with the most energetic particle in each hemissphere.

This choice does not change the Lagrangian in each sector, as can be understood from

the reparametrization invariance of the Lagrangian [7]. In order to have the simplified

observable be recoil free, we therefore choose V`(q) to be defined using the WTA axis.

This observable acts separately on each sector of the e↵ective theory, and the mea-

surement function is therefore of the form given in Eq. (4.15) (with G[. . .] ⌘ max[. . .]) and
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This fully factorized and recoil free observable can be resummed using the standard

techniques of SCET. We will give some details of this calculation in the App. A.

Definition of the transfer function

The transfer function relates the resummation of the simple observable to that of the

desired observable. Most global rIRC safe observables have the property that the cumu-

lative distribution is exponentially suppressed [⌃(v) ⇠ exp(�↵s ln
2
v)] in the limit v ! 0.

Such observables satisfy the basic relation to the cumulative distribution of their simple

observables [5]

⌃(�B; v) = ⌃max(�B; v)F(�B; v) . (4.27)
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with the individual fully di↵erential transfer functions given by

F
0
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⌃max

F
(�B; v)

. (4.30)
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with multiplicative 

factorization

Transfer function 
corrects to result of  
desired observable

Transfer function 
from individual pieces 
in each SCET sector

Transfer function computed through fully differential transfer functions, 
convoluted against desired (in general non-factorizing) observable



1. Identify DOF required for given observable  

2. Obtain fully differential factorization theorem 

3. Define simplified observable using same DOF 

4. Perform resummation for simplified observable using SCET 

5. Define transfer function for each of the DOF  

6. Find efficient way to perform computation of transfer function

General expression for numerical resummation is 
obtained using 5 basic steps
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observables [5]

⌃(�B; v) = ⌃max(�B; v)F(�B; v) . (4.27)

Using Eqs. (4.14) and (4.25) one can write a general factorization theorem for the transfer

function

F(�B; v) =

Z
D!nF

0
n(�B;!n, v)

Z
D!n̄F

0
n̄(�B;!n̄, v)

Z
D!sF

0
S(�B;!s, v)

⇥⇥(V [!n + !n̄ + !s] < v)

⌘

Z
D!F

0(�B;!, v)⇥(V [!] < v) , (4.28)

with

F
0(�B;!, v) ⌘

Z
D!nF

0
n(�B;!n, v)

Z
D!n̄F

0
n̄(�B;!n̄, v)

Z
D!sF

0
S(�B;!s, v)

⇥ �(! � !s � !n � !n̄) (4.29)

with the individual fully di↵erential transfer functions given by

F
0
F (�B;!F , v) =

��F
d�B�!F

⌃max

F
(�B; v)

. (4.30)
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Numerically, can only compute finite quantities. What happens to 
divergences present?

• All virtual contributions (independent of observable) cancel 

• IR divergences cancel in the ratio defining the differential transfer 
function (more later) 

• However, in standard SCET soft and jet functions contain UV 
divergences in real radiation

UV divergences that are present in individual pieces, 
and only cancel in complete result, can be regulated

For the transfer function, need to compute terms like



UV divergences that are present in individual pieces, 
and only cancel in complete result, can be regulated
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where yij denotes both yqg and yq̄g. They are shown graphically in Fig 2a). Clearly, neither

of the two Mandelstam variables can exceed the physical bound set by the total energy in

the event Q2, and therefore the phase space integration over each variable is bounded from

above.

a)
QCD1

1

τ

τ

yqg

yqg

1

1

τ

τ

b)
Soft

yqg

yqg

Coll

0-bin

c)
Collinear 1

1

1

τ

τ

yqg

yqg

yqg

yqg

d)
Collinear 2

Coll

0-bin

1

1

τ

τ

Figure 2: The regions of phase space contributing to the various pieces. In a) we show the phase
space region of full QCD, in b) that of the soft function, and in c) and d) the region of the jet
functions.

The phase space boundary of the soft function in SCET is obtained by expanding the

full QCD phase space boundary about the limit yqg, yq̄g ⌧ 1. This gives

Soft :

Z
dyqg dyq̄g ⇥[min(yqg, yq̄g) < ⌧ ]⇥[0 < yij ] , (3.11)

which is shown graphically in Fig 2b). This implies that the larger of the two Mandelstam

variables yqg or yq̄g is unbounded from above, leading to a UV divergence.

The first collinear limit is obtained by taking the limit yqg ⌧ yq̄g ⇠ 1 (the second is

the same under the replacement yqg $ yq̄g). This gives

Coll1 :

Z
dyqg dyq̄g ⇥[min(yqg, 1� yq̄g) < ⌧ ]⇥[0 < yq̄g < 1]⇥[0 < yqg] . (3.12)

The collinear regions are shown by the hatched region in Fig 2 c) and d). In this case both

variables are bounded from above, just as in the case of the full theory. However, adding the

soft and collinear regions naively, leads to a double counting of the soft-collinear region [54],

which is handled in SCET by subtracting a 0-bin region from the collinear integrals, which

is nothing but the soft limit of the collinear integral. The soft limit of the first collinear

phase space region (with the obvious replacement to the obtain the soft limit of the second

collinear phase space region) is given by

0� bin1 :

Z
dyqg dyq̄g ⇥[0 < yqg < ⌧ ]⇥[0 < yq̄g] , (3.13)

such that the integral over yq̄g is again unbounded from above, leading to a UV divergence.

Diagrammatically, the 0-bin regions are summarized by the gray region in Fig. 2 c) and d).

While UV divergences are present in SCET as just discussed, each of the terms in

the factorization formula Eq. (3.5) is IRC finite. Thus all divergences are of UV origin

and are removed by renormalization. The renormalization of the UV divergences leads to

renormalization group equations (RGE) for each component. As already discussed, each
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UV divergence arises from regions of large rapidity

UV divergence arises from regions of large rapidity. Suggests that they 
can be regulated by rapidity regulator



UV divergences that are present in individual pieces, 
and only cancel in complete result, can be regulated
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Convenient choice for regulator is exponential regulator
Li, Neill, Zhu (’16)

separated Wilson lines 
by small x0 

τ~1/Λ

Introduces exponential in 
k running across cut

Drop power corrections in 1/Λ, replace exponential by step-function

Q

Q

v

v k

k+

-

b)
SoftΛ

Λ

Coll

0-bin

c)
Collinear 1

Λ

Q

Q

v

v k

k+

-

Just a cutoff on the real radiation

exp [−k0/Λ]



Now that everything is finite, how do we compute 
transfer function at given logarithmic accuracy?
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Main results so far:

axis defining each leg. One particularly simple choice for this axis is the so-called winner-

take-all (WTA) axis, which is aligned with the most energetic particle in each hemissphere.

This choice does not change the Lagrangian in each sector, as can be understood from

the reparametrization invariance of the Lagrangian [7]. In order to have the simplified

observable be recoil free, we therefore choose V`(q) to be defined using the WTA axis.

This observable acts separately on each sector of the e↵ective theory, and the mea-

surement function is therefore of the form given in Eq. (4.15) (with G[. . .] ⌘ max[. . .]) and

therefore allows for a factorization formula in the traditional sense. Using

⇥[max[vn, vn̄, vs] < v] = ⇥[vn < v]⇥[vn̄ < v]⇥[vs < v] , (4.24)

one finds

⌃max(�B; v) =|C(�B)|
2⌃max

n (�B; v)⌃
max

n̄ (�B; v)⌃
max

s (�B; v) , (4.25)

where the expression in each sector is given by the obvious result

⌃max

F (�B; v) =

Z
D!F

��F

d�B�!F

⇥(Vmax[!F ] < v) . (4.26)

This fully factorized and recoil free observable can be resummed using the standard

techniques of SCET. We will give some details of this calculation in the App. A.

Definition of the transfer function

The transfer function relates the resummation of the simple observable to that of the

desired observable. Most global rIRC safe observables have the property that the cumu-

lative distribution is exponentially suppressed [⌃(v) ⇠ exp(�↵s ln
2
v)] in the limit v ! 0.

Such observables satisfy the basic relation to the cumulative distribution of their simple

observables [5]

⌃(�B; v) = ⌃max(�B; v)F(�B; v) . (4.27)

Using Eqs. (4.14) and (4.25) one can write a general factorization theorem for the transfer

function

F(�B; v) =

Z
D!nF

0
n(�B;!n, v)

Z
D!n̄F

0
n̄(�B;!n̄, v)

Z
D!sF

0
S(�B;!s, v)

⇥⇥(V [!n + !n̄ + !s] < v)

⌘

Z
D!F

0(�B;!, v)⇥(V [!] < v) , (4.28)

with

F
0(�B;!, v) ⌘

Z
D!nF

0
n(�B;!n, v)

Z
D!n̄F

0
n̄(�B;!n̄, v)

Z
D!sF

0
S(�B;!s, v)

⇥ �(! � !s � !n � !n̄) (4.29)

with the individual fully di↵erential transfer functions given by

F
0
F (�B;!F , v) =

��F
d�B�!F

⌃max

F
(�B; v)

. (4.30)
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Resummed expression desired related to simpler resummed 
expression via transfer function
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Main results so far:

Each term in transfer function can be computed numerically

axis defining each leg. One particularly simple choice for this axis is the so-called winner-

take-all (WTA) axis, which is aligned with the most energetic particle in each hemissphere.

This choice does not change the Lagrangian in each sector, as can be understood from

the reparametrization invariance of the Lagrangian [7]. In order to have the simplified

observable be recoil free, we therefore choose V`(q) to be defined using the WTA axis.

This observable acts separately on each sector of the e↵ective theory, and the mea-

surement function is therefore of the form given in Eq. (4.15) (with G[. . .] ⌘ max[. . .]) and

therefore allows for a factorization formula in the traditional sense. Using

⇥[max[vn, vn̄, vs] < v] = ⇥[vn < v]⇥[vn̄ < v]⇥[vs < v] , (4.24)

one finds

⌃max(�B; v) =|C(�B)|
2⌃max

n (�B; v)⌃
max

n̄ (�B; v)⌃
max

s (�B; v) , (4.25)

where the expression in each sector is given by the obvious result

⌃max

F (�B; v) =

Z
D!F

��F

d�B�!F

⇥(Vmax[!F ] < v) . (4.26)

This fully factorized and recoil free observable can be resummed using the standard

techniques of SCET. We will give some details of this calculation in the App. A.

Definition of the transfer function

The transfer function relates the resummation of the simple observable to that of the

desired observable. Most global rIRC safe observables have the property that the cumu-

lative distribution is exponentially suppressed [⌃(v) ⇠ exp(�↵s ln
2
v)] in the limit v ! 0.

Such observables satisfy the basic relation to the cumulative distribution of their simple

observables [5]

⌃(�B; v) = ⌃max(�B; v)F(�B; v) . (4.27)

Using Eqs. (4.14) and (4.25) one can write a general factorization theorem for the transfer

function

F(�B; v) =

Z
D!nF

0
n(�B;!n, v)

Z
D!n̄F

0
n̄(�B;!n̄, v)

Z
D!sF

0
S(�B;!s, v)

⇥⇥(V [!n + !n̄ + !s] < v)

⌘

Z
D!F

0(�B;!, v)⇥(V [!] < v) , (4.28)

with

F
0(�B;!, v) ⌘

Z
D!nF

0
n(�B;!n, v)

Z
D!n̄F

0
n̄(�B;!n̄, v)

Z
D!sF

0
S(�B;!s, v)

⇥ �(! � !s � !n � !n̄) (4.29)

with the individual fully di↵erential transfer functions given by

F
0
F (�B;!F , v) =

��F
d�B�!F

⌃max

F
(�B; v)

. (4.30)
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Resummed expression desired related to simpler resummed 
expression via transfer function

axis defining each leg. One particularly simple choice for this axis is the so-called winner-

take-all (WTA) axis, which is aligned with the most energetic particle in each hemissphere.

This choice does not change the Lagrangian in each sector, as can be understood from

the reparametrization invariance of the Lagrangian [7]. In order to have the simplified

observable be recoil free, we therefore choose V`(q) to be defined using the WTA axis.

This observable acts separately on each sector of the e↵ective theory, and the mea-

surement function is therefore of the form given in Eq. (4.15) (with G[. . .] ⌘ max[. . .]) and

therefore allows for a factorization formula in the traditional sense. Using

⇥[max[vn, vn̄, vs] < v] = ⇥[vn < v]⇥[vn̄ < v]⇥[vs < v] , (4.24)

one finds

⌃max(�B; v) =|C(�B)|
2⌃max

n (�B; v)⌃
max

n̄ (�B; v)⌃
max

s (�B; v) , (4.25)

where the expression in each sector is given by the obvious result

⌃max

F (�B; v) =

Z
D!F

��F

d�B�!F

⇥(Vmax[!F ] < v) . (4.26)

This fully factorized and recoil free observable can be resummed using the standard

techniques of SCET. We will give some details of this calculation in the App. A.

Definition of the transfer function

The transfer function relates the resummation of the simple observable to that of the

desired observable. Most global rIRC safe observables have the property that the cumu-

lative distribution is exponentially suppressed [⌃(v) ⇠ exp(�↵s ln
2
v)] in the limit v ! 0.

Such observables satisfy the basic relation to the cumulative distribution of their simple

observables [5]

⌃(�B; v) = ⌃max(�B; v)F(�B; v) . (4.27)

Using Eqs. (4.14) and (4.25) one can write a general factorization theorem for the transfer

function

F(�B; v) =

Z
D!nF

0
n(�B;!n, v)

Z
D!n̄F

0
n̄(�B;!n̄, v)

Z
D!sF

0
S(�B;!s, v)

⇥⇥(V [!n + !n̄ + !s] < v)

⌘

Z
D!F

0(�B;!, v)⇥(V [!] < v) , (4.28)

with

F
0(�B;!, v) ⌘

Z
D!nF

0
n(�B;!n, v)

Z
D!n̄F

0
n̄(�B;!n̄, v)

Z
D!sF

0
S(�B;!s, v)

⇥ �(! � !s � !n � !n̄) (4.29)

with the individual fully di↵erential transfer functions given by

F
0
F (�B;!F , v) =

��F
d�B�!F

⌃max

F
(�B; v)

. (4.30)
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Transfer function 



soft sector collinear sector

nloops + nparticles times nloops + nparticles times

F
0
S

F
0
n,n̄

NLL 1 1 – –

�F
0
S

�F
0
n,n̄

NNLL 2 1 1 1

N3LL 3 1

2 2 2 1

NkLL k 1

k � 1 2 k � 1 1
...

...
...

...

2 k � 1 2 k � 2

Table 1: Ingredients needed for the NLL transfer function, as well as for the corrections required
to for the the result at NkLL. For each soft and collinear transfer function, the first column of the
table shows the perturbative accuracy required for the soft and collinear clusters, and the second
column shows the number of insertions of each specific cluster.

5.1 General results at NLL

According to Eq. (4.31), to derive the transfer function to NLL accuracy requires knowledge

of ��F /[d�B�!F ] and ⌃max

F
(�B; v) to LL accuracy. As discussed, the collinear sector gives

rise to only single logarithmic behavior and one therefore finds

��
LL
n,n̄

d�B �!n,n̄

= � (!n,n̄ � ![qn,n̄]) , ⌃max,LL

n,n̄ (�B;!n,n̄) = 1 , (5.4)

where we have used the fact that Vmax is zero for a state that only includes a single quark

(see discussion below Eq. (4.23)). From this one immediately obtains

F
0
NLL

n,n̄ (�B;!n,n̄) = � (!n,n̄ � ![qn,n̄]) . (5.5)

Thus, to NLL accuracy, only the transfer function FS(�B;!s, v) is required and one finds

F
NLL(�B; v) =

Z
D!sF

0
NLL

S (�B;!s, v)⇥(V [!s + ![qn] + ![qn̄]] < v) . (5.6)

To compute the soft transfer function to NLL accuracy, we start from the general

expression

��S

d�B�!s

= VS(�B)

"
�(!s) +

1X

n=1

|MS(k1, . . . , kn)|
2

#
. (5.7)

The virtual corrections in the soft sector of SCET is a scaleless integral, and therefore has

both UV and IR divergences.

As explained above, to compute the NLL transfer function, we only need the di↵erential

cross section to LL accuracy. As explained in [5], this only requires tree level expression of
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Now that everything is finite, how do we compute 
transfer function at given logarithmic accuracy?
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Write amplitude at given multiplicity through correlated as

To given logarithmic accuracy, only 
low order correlations are needed

Definition of the simple observable

The next step in our formulation of the resummation is the definition of the simple

observable. Such an observable needs to have the same leading logarithmic behavior as

the full observable, and obey a simple factorization structure. Many choices are possible,

but a particularly simple and systematic procedure is to use an IRC safe definition of the

maximum value of the observable in the soft-collinear limit evaluated on a set of emissions.

For each sector F , we start from Eqs. (4.11) and (4.14) and decompose the square of

the amplitude in terms of correlated clusters1 [?]

|MF (k1)|
2
⌘ M̃

2

F (k1)

|MF (k1, k2)|
2 = M̃

2

F (k1)M̃
2

F (k2) + M̃
2

F (k1, k2)

|MF (k1, k2, k3)|
2 = M̃

2

F (k1)M̃
2

F (k2)M̃
2

F (k3)

+
⇣
M̃

2

F (k1)M̃
2

F (k2, k3) + perm.
⌘
+ M̃

2

F (k1, k2, k3)

... (4.20)

Each cluster represents the portion of the squared amplitude that can not be written in

terms of products of lower multiplicity clusters. Each correlated cluster admits a pertur-

bative expansion arising from the virtual corrections, and we write

M̃
2

F (k1, . . . , kN ) =
1X

i=0

⇣
↵s

2⇡

⌘
i

M̃
2

F,i(k1, . . . , kN ) . (4.21)

Using this definition, one can define the simple observable through its action on prod-

ucts of correlated clusters

M̃
2

F (k1, . . . , km1) . . . M̃
2

F (kmk+1, . . . , kn)Vmax[qn, qn̄; k1, . . . , kn] (4.22)

= M̃
2

F (k1, . . . , km1) . . . M̃
2

F (kmk+1, . . . , kn)

⇥max{ṼF [k1 + . . .+ km1 ], . . . , ṼF [kmk+1 + . . .+ kn]} .

where

Ṽn` [q] = V`(q)

ṼS [q] =
X

`

V`(q)⇥[⌘` > 0] , (4.23)

and ⌘` is the rapidity of the momentum q with respect to the leg `, whose direction was

used to define the SCET Lagrangian, and V`(q) is defined by Eq. (4.2). In other words,

the observable Vmax is defined to be the maximum value of ṼF computed on the sum of

momenta in each correlated cluster.

Observables with b`  1 have the property that in general the collinear sector recoils

against the soft sector and are called recoil sensitive. It has been shown [6] that the collinear

sector can be made insensitive to the soft recoil by choosing a suitable definition of the

1Note that the correlated clusters M̃2
F (�B ; . . .) are not positive definite.
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NLL accuracy: 
Infinite number of tree level, single soft emission terms
NNLL accuracy: 
Need to add 1) one loop single soft, 2) tree level double soft, 3) tree 
level single collinear

axis defining each leg. One particularly simple choice for this axis is the so-called winner-

take-all (WTA) axis, which is aligned with the most energetic particle in each hemissphere.

This choice does not change the Lagrangian in each sector, as can be understood from

the reparametrization invariance of the Lagrangian [7]. In order to have the simplified

observable be recoil free, we therefore choose V`(q) to be defined using the WTA axis.

This observable acts separately on each sector of the e↵ective theory, and the mea-

surement function is therefore of the form given in Eq. (4.15) (with G[. . .] ⌘ max[. . .]) and

therefore allows for a factorization formula in the traditional sense. Using

⇥[max[vn, vn̄, vs] < v] = ⇥[vn < v]⇥[vn̄ < v]⇥[vs < v] , (4.24)

one finds

⌃max(�B; v) =|C(�B)|
2⌃max

n (�B; v)⌃
max

n̄ (�B; v)⌃
max

s (�B; v) , (4.25)

where the expression in each sector is given by the obvious result

⌃max

F (�B; v) =

Z
D!F

��F

d�B�!F

⇥(Vmax[!F ] < v) . (4.26)

This fully factorized and recoil free observable can be resummed using the standard

techniques of SCET. We will give some details of this calculation in the App. A.

Definition of the transfer function

The transfer function relates the resummation of the simple observable to that of the

desired observable. Most global rIRC safe observables have the property that the cumu-

lative distribution is exponentially suppressed [⌃(v) ⇠ exp(�↵s ln
2
v)] in the limit v ! 0.

Such observables satisfy the basic relation to the cumulative distribution of their simple

observables [5]

⌃(�B; v) = ⌃max(�B; v)F(�B; v) . (4.27)

Using Eqs. (4.14) and (4.25) one can write a general factorization theorem for the transfer

function

F(�B; v) =

Z
D!nF

0
n(�B;!n, v)

Z
D!n̄F

0
n̄(�B;!n̄, v)

Z
D!sF

0
S(�B;!s, v)

⇥⇥(V [!n + !n̄ + !s] < v)

⌘

Z
D!F

0(�B;!, v)⇥(V [!] < v) , (4.28)

with

F
0(�B;!, v) ⌘

Z
D!nF

0
n(�B;!n, v)

Z
D!n̄F

0
n̄(�B;!n̄, v)

Z
D!sF

0
S(�B;!s, v)

⇥ �(! � !s � !n � !n̄) (4.29)

with the individual fully di↵erential transfer functions given by

F
0
F (�B;!F , v) =

��F
d�B�!F

⌃max

F
(�B; v)

. (4.30)
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As example, at NLL, can compute transfer function 
using a simple algorithm
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Choose a particular phase space parametrization to write

soft sector collinear sector

nloops + nparticles times nloops + nparticles times

F
0
S

F
0
n,n̄

NLL 1 1 – –

�F
0
S

�F
0
n,n̄

NNLL 2 1 1 1

N3LL 3 1

2 2 2 1

NkLL k 1

k � 1 2 k � 1 1
...

...
...

...

2 k � 1 2 k � 2

Table 1: Ingredients needed for the NLL transfer function, as well as for the corrections required
to for the the result at NkLL. For each soft and collinear transfer function, the first column of the
table shows the perturbative accuracy required for the soft and collinear clusters, and the second
column shows the number of insertions of each specific cluster.

5.1 General results at NLL

According to Eq. (4.31), to derive the transfer function to NLL accuracy requires knowledge

of ��F /[d�B�!F ] and ⌃max

F
(�B; v) to LL accuracy. As discussed, the collinear sector gives

rise to only single logarithmic behavior and one therefore finds

��
LL
n,n̄

d�B �!n,n̄

= � (!n,n̄ � ![qn,n̄]) , ⌃max,LL

n,n̄ (�B;!n,n̄) = 1 , (5.4)

where we have used the fact that Vmax is zero for a state that only includes a single quark

(see discussion below Eq. (4.23)). From this one immediately obtains

F
0
NLL

n,n̄ (�B;!n,n̄) = � (!n,n̄ � ![qn,n̄]) . (5.5)

Thus, to NLL accuracy, only the transfer function FS(�B;!s, v) is required and one finds

F
NLL(�B; v) =

Z
D!sF

0
NLL

S (�B;!s, v)⇥(V [!s + ![qn] + ![qn̄]] < v) . (5.6)

To compute the soft transfer function to NLL accuracy, we start from the general

expression

��S

d�B�!s

= VS(�B)

"
�(!s) +

1X

n=1

|MS(k1, . . . , kn)|
2

#
. (5.7)

The virtual corrections in the soft sector of SCET is a scaleless integral, and therefore has

both UV and IR divergences.

As explained above, to compute the NLL transfer function, we only need the di↵erential

cross section to LL accuracy. As explained in [5], this only requires tree level expression of
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and the running coupling at LL accuracy is simply given by
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One can easily convince one-selves, that the integration over the second term leads to a

subleading logarithmic contribution, which can be dropped to the order we are working.

It will be included when going to NNLL, which will be discussed in the next section.

Using this, one immediately obtains for the Sudakov factor in Eq. (5.11)
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One can perform all 3 integrals analytically. One finds
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Combining these results into Eq. (5.6), one finds
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In the last line we have made explicit that the functional form of FNLL(�B; v) is determined

entirely in terms of PLL

`
and the observable V . The momenta qn and qn̄ are determined

through momentum conservation of the energy densities, as defined in Eq. (4.19). This

means that the momenta qn and qn̄ is given by the di↵erence of the Born momentum and

the total soft momentum in the direction of each leg `

q
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We stress that in order to single out the purely NLL e↵ects, one could restrict the

emissions to the same limit that was taken when defining Vmax [see Eq. (4.22)], namely to

limit the observable to soft radiation that is strongly ordered in angle and collinear to the

appropriate hard leg `. This would ensure that each rapidity integration is independent of
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We stress that in order to single out the purely NLL e↵ects, one could restrict the

emissions to the same limit that was taken when defining Vmax [see Eq. (4.22)], namely to

limit the observable to soft radiation that is strongly ordered in angle and collinear to the

appropriate hard leg `. This would ensure that each rapidity integration is independent of
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From the emissions generated with Algorithm 1 one then immediately computes the

NLL transfer function by taking the average weight of all emissions with the constraint on

the observable V [qn, qn̄; {ki}] < v. This is results in the algorithm

Algorithm 2: Computing the NLL transfer function

Set weight W = 1, WSq = 1;

for i = 1 . . . N do

Generate a set of soft-collinear emissions {ki} with weight w using

Algorithm 1;

if V [qn, qn̄; {ki}] < v then

Increase W by w;

Increase WSq by w
2;

end

end

Compute F
NLL

±�F
NLL from the average value of W and its standard deviation;

At NLL the observable can always be approximated with its soft-collinear limit VSC,

as discussed in Section 7, therefore one can implement the above above algorithms with

the replacement

V [q̄n, q̄n̄; k̄1, . . . , k̄n] ! VSC[q̄n, q̄n̄; k̄1, . . . , k̄n] . (D.4)

D.2 Results at NNLL

As discussed in Section 6.3, there are 3 broad classes of terms contributing to the trans-

fer function at NNLL. The first is F
NLL[PNLL

`
, V ], the second is the contribution from

higher order corrections to the soft correlated clusters �FNNLL

S
[V ](�B; v) and the third the

collinear transfer function �F
NNLL
n,n̄ [V ](�B; v). We will now give the explicit algorithms for

these three contributions.

D.2.1 F
NLL[PNLL

`
, V ](�B; v): Higher order terms in the NLL transfer function

As discussed in Section 6.3, keeping the NLL terms in the expansions made in Eq. (6.6)

results in the NLL splitting function given in Eq. (6.16). While the LL splitting function

given in Eq. (6.7) only depended on the values of v and �a, the NLL splitting function

depends on the value of v as well as all three emission variables va, �a and �a. This means

that after performing the analytical integration over �i and �i, the function still depends

on va. The Sudakov factor is then given by

�NLL

S (�B, vi�1, vi) (D.5)

= exp
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Can be implemented in straightforward algorithm



From these emission, one can then compute the 
transfer function for a given observable

26This works for any observable

D.1 Results at NLL

The starting point of the numerical algorithm is Eq. (6.12). Using the simple expression

of the Sudakov factor given in Eq. (6.10), one easily finds

�LL
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Furthermore, we use
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This allows us to write Eq. (6.12) as

F
NLL(�B; v) =


�LL
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1X
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�
, (D.3)

where we have eliminated the 1/n! symmetry factor by ordering the emissions according

to vi, and we have used that v0 ⌘ v.

Thus, the emissions with momenta ki(vi,�i,�i) have a distribution that is very similar

to that of a parton shower algorithm. They involve an evolution variable (vi) that is

monotonically decreasing with each emission, together with a splitting function P
LL

`
(v;�i)

and associated Sudakov factor �LL

S
. The emissions can therefore be generated by the

following algorithm:

Algorithm 1: Generating the soft-collinear emissions

Set weight w = 1;

Start with i = 0 and v0 = v;

while true do

Increase i by 1;

Generate a random number r 2 [0, 1];

Determine vi by solving �LL

S
(�B; vi�1, vi) = r;

if vi < �v then

break;

end

Choose the leg ` randomly from a flat distribution;

Generate �i 2 [0, 1] and �i 2 [0, 2⇡] from a flat distribution;

Multiply the event weight w by P
LL

`
(v,�i)/

⇥P
`
P

LL

`
(v)

⇤
⇥ nlegs;

Determine ki = k(vi,�i,�i) and add to the list of emissions;

end

Return the list of momenta {ki} and associate weight w;
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Soft momenta generated via MCMC algorithm



Higher order resummation is obtained by a 
systematic expansion in SCET to higher orders

27

Everything is defined within effective theory, so 
going to higher orders just requires computing 

things systematically to higher order.

Simplified observable resummed to higher 
logarithmic order using normal SCET counting of 

anomalous dimensions

Transfer function computed to higher logarithmic 
order by systematically computing higher 

correlated matrix elements numerically



In summary, one can obtain resummed expressions for any 
observable numerically using systematic SCET expansion

28
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stion
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