General Numerical
Resummation

SCET 2019, San Diego

Work In collaboration with
Pler Monni



At SCET 2018, showed how the thrust cumulant can be
related to a simpler observable using a transfer function

Can find a simple observable to have multiplicative factorization
theorem

Yimax(T) = H (p) X777 (70, ) X577 (T, ) 2™ (75, 1)

Thrust cumulant > (1) related to simpler observable > max(T)
via transfer function Fr(1)

Y(T) = Ymax(T) F(7)

Transfer function can be computed numerically within SCET



At SCET 2018, showed how the thrust cumulant can be
related to a simpler observable using a transfer function

%(7) = Ymax(7) F(7)

Thrust cumulant in SCET can be factorized as

S(r) = H(u) / A7 =5 (T, 1) / A7 =) (7, 1) / dry (g 1) O > T + 70+ 73]

Simple observable has multiplicative factorization

Yimax(T) = H(p) X577 (10, ) X577 (75, ) X5 (75, 1)

This gives
Y(7T) = Ymax(7) /dTn f}n (Th, 4) /dTn .7-“{’,75 (77, 14) /dTS Fo(Ts, pb) Ol — 1 — 75 — T4

Xp(0T,p) Xp(TrR, p)
SR (T, p) Bp(0T, p)

IF(TFaTau) —




At SCET 2018, showed how the thrust cumulant can be
related to a simpler observable using a transfer function

Putting all information together, we obtained
ZNLL (7') = Ximax (T)FgLL (7-7 T Q)
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How can this be generalized to any observable of interest?
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General expression for numerical resummation is
obtained using 6 basic steps

1. Identity DOF required for given observable to LL

2. Obtain fully differential factorization theorem

3. Define simplified observable using same DOF

4. Perform resummation for simplified observable using SCET
5. Define transfer function for each of the DOF

6. Find efficient way to perform computation of transfer function



General expression for numerical resummation is
obtained using 5 basic steps

1. Identity DOF required for given observable to LL

2. Obtain fully differential factorization theorem

3. Define simplified observable using same DOF

4. Perform resummation for simplified observable using SCET
5. Define transfer function for each of the DOF

6. Find efficient way to perform computation of transfer function

Steps 1 and 4 same as in any SCET calculation
Not discussed further



General expression for numerical resummation is
obtained using 5 basic steps

1. Identity DOF required for given observable to LL

2. Obtain fully differential factorization theorem

3. Define simplified observable using same DOF

4. Perform resummation for simplified observable using SCET
5. Define transfer function for each of the DOF

6. Find efficient way to perform computation of transfer function

Steps 2, 3, 5 and 6 deserve further discussion
Rest of the talk



General expression for numerical resummation is
obtained using 5 basic steps

2. Obtain fully differential factorization theorem



Obtaining a fully differential factorization theorem follows
old SCET ideas to prove general factorization theorem

General SCET factorization theorems from energy density formalism

CWB, Fleming, Lee, Sterman ('08)
CWB, Hornig, Tackmann (’08)

Define energy and momentum density = L

N N
wx() =) Eis(Q—Q),  kx(Q) =) kéQ—Q)

Phase space at given solid angle given by
[dw]Qk [dgk]
(2m)?

Wy [dw]Qk

ko, = 2 6[w()” = k()] = 2(2m)?

Allows to write phase space as

N N
Dw™) = S(N) | [ du[dk]q, = S(N) | [[dk]



Obtaining a fully differential factorization theorem follows
old SCET ideas to prove general factorization theorem

General SCET factorization theorems from energy density formalism

CWB, Fleming, Lee, Sterman ('08)
CWB, Hornig, Tackmann (’08)

Write general observable as Detine energy flow operator
(D g: 0) /Dw 555 <) V(D) X) = wx(Q)]X)
—Z / Du) dch;w >@<V[”(N)] <v) £(Q) = lim R? /O T atd Tt R )
Fully diff cross section given by Linearity of EM tensor gives
O = o M (gu,ani b, )P =T+

Gives general factorization theorem




Obtaining a fully differential factorization theorem follows
old SCET ideas to prove general factorization theorem

General SCET factorization theorems from energy density formalism

CWB, Fleming, Lee, Sterman ('08)
CWB, Hornig, Tackmann (’08)

Gives general factorization theorem

From this any observable can be constructed

50—% 50—n 60—5
Y(®p;v) =|C(PB)]7 / Pon 33 pow / e d<I>B5w / P 1 o

Xx O(Vw] <v)d|lw—ws —

Standard factorization theorem if observable factorizes
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General expression for numerical resummation is
obtained using 5 basic steps

3. Define simplified observable using same DOF
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Define a simplified observable that gives
multiplicative factorization

60—% 50—% 505
S(Pp;v) =|C(Pp)|? /Dwn 1P 50w /Dwn d<I>B(5w /Dws dP gow

x O(Vw] <v)d|w— ws — :

Simplified observable defined such that observable has structure
Vinax|w] = max {V'|wn], V]ws], V|ws]}

Theta function therefore implies as
O[max|v,, va, vs| < v] = Olv, < v] Olvy < v] Olvs < V]

which gives multiplicative factorization
Ymax (P p; v) =|C(®)[*T3™(Dp; v) 5™ (O p; v) D™ (D p; )

Simplified observable multiplicative with same LL dependence as
desired observable.
Many observable have same simplified observable version



General expression for numerical resummation is
obtained using 5 basic steps

5. Define transfer function for each of the DOF
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Gives a general expression for the transfer function
of any observable

50—?1 5O-n 50—5
Y(®p;v) =|C(®p)|? /Dwn d® pow /Dwn d<I>B5w /Dws d®pow

x O(V]w] < v)d|w — ws —

Emax(Pp; v) =|C(Pp) P X3 (D p; v) L5 (Pp; v) 27 (O p; v)
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Gives a general expression for the transfer function
of any observable

oo, Yors 0og
B(®p;v) =|C(®p)|° /Dwn 4P 50w /Dw’” dch(;w /Dws d® gow,

x O(Vw] <v)d|w— ws —

Emax(Pp; v) =|C(Pp) P X3 (D p; v) L5 (Pp; v) 27 (O p; v)

This allows to write the expression




Gives a general expression for the transfer function
of any observable

Simple observable Transfer function Transfer function
with multiplicative ~ corrects to result of  from individual pieces
factorization desired observable in each SCET sector

Transfer function computed through fully differential transfer functions,
convoluted against desired (in general non-factorizing) observable
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General expression for numerical resummation is
obtained using 5 basic steps

6. Find efficient way to perform computation of transfer function
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UV divergences that are present in individual pieces,
and only cancel in complete result, can be regulated

For the transfer function, need to compute terms like

do

Fro(®Ppiwp,v) = dbpowr
F( ByWE ) Zr}gax(q)B;v)

Numerically, can only compute finite quantities. What happens to
divergences present?

e All virtual contributions (independent of observable) cancel

¢ |R divergences cancel in the ratio defining the differential transfer
function (more later)

e However, in standard SCET soft and jet functions contain UV
divergences in real radiation
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UV divergences that are present in individual pieces,
and only cancel in complete result, can be regulated

UV divergence arises from regions of large rapidity

ng“ a) ng“ b) ng“ c) ng“ d)
11 QCD Soft Collinear 1 Collinear 2

"1 " X Col "
§\\ _ \ &\\% Coll

0-bin
0-bin

AN

1 Yag T 1 Yag T 1 Yag T 1 Yag

UV divergence arises from regions of large rapidity. Suggests that they
can be regulated by rapidity regulator
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UV divergences that are present in individual pieces,
and only cancel in complete result, can be regulated

Convenient choice for regulator is exponential regulator
Li, Neill, Zhu ('16)

separated Wilson lines  Introduces exponential in
by small x° K running across cut
T~1/A\ exp |—ko/ Al

Drop power corrections in 1//\. replace exoonential by step-function

K b) Kk c)
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Just a cutoff on the real radiation
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Now that everything is finite, how do we compute
transfer function at given logarithmic accuracy?

Main results so far:

Resummed expression desired related to simpler resummed
expression via transfer function
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Now that everything is finite, how do we compute
transfer function at given logarithmic accuracy?

Main results so far:

Resummed expression desired related to simpler resummed
expression via transfer function

Y(®p;v) = Ynmax(PB; v) F(PB;v)

Transter function

F(Pp;v) :/Dwn F(®p;wn,v) /Dwn Fr(®p;wn,v) /Dws Fo(®Pp;ws,v)

X O(V|w, + wp + ws] < v)

Each term in transfer function can be computed numerically
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Now that everything is finite, how do we compute
transfer function at given logarithmic accuracy?
F(Pp;v) :/Dwn Fr(®p;wn,v) /Dwn Fr(®p;wn,v) /Dws Fo(Pp;ws,v)

X OV |wp + wp + ws| <)
Write amplitude at given multiplicity through correlated as

‘MF(kl) 2 = M%(kl) soft sector collinear sector
‘MF(kl, kQ) 2 — Mg*(kl)Mgv(kQ) -+ M]%’(kly ]{‘2) Moops ‘|‘”p rticles | times || Nioops -I-np rticles | times
To given logarithmic accuracy, only — —= —ml——
low order correlations are needed TP I S N N

NLL accuracy:
nfinite number of tree level, single soft emission terms

NNLL accuracy:
Need to add 1) one loop single soft, 2) tree level double soft, 3) tree
evel single collinear
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As example, at NLL, can compute transfer function
using a simple algorithm

JfNLL : /Dws /NLL (PB;ws,v) O(V|ws +wlgn] + wigrn]] <v)

Choose a particular phase space parametrization to write

1—|-Z 'l_l[z:/vdvZ /dX'LPELL(U X’L) /(;f:] @(V[Qnaqﬁaklaak’n]<v)

= =1 /

ALL((I)B, v, 57)

Can be implemented in straightforward algorithm

Algorithm 2: Computing the NLL transfer function

Set weight W =1, Wgq = 1;
for:=1...N do
Generate a set of soft-collinear emissions {k;} with weight w using
Algorithm 1;
if Vign, qn;{ki}] < v then
Increase W by w;

2.
Increase Wsq by w?;

end

end
Compute FN £ AFNEL from the average value of W and its standard deviation; 25




From these emission, one can then compute the
transfer function for a given observable

Soft momenta generated via MCMC algorithm

Algorithm 1: Generating the soft-collinear emissions

Set weight w = 1;
Start with ¢ = 0 and vy = v;
while true do
Increase ¢ by 1;
Generate a random number r € [0, 1];
Determine v; by solving AEL(CDB; Vil 1,Vi) =T
if v; < év then
break;
end
Choose the leg ¢ randomly from a flat distribution;
Generate x; € [0,1] and ¢; € [0, 27| from a flat distribution;
Multiply the event weight w by Pi(v, xi)/ [ Pr(v)] X Niegs;
Determine k; = k(v;, xi, ¢;) and add to the list of emissions;

end
Return the list of momenta {k;} and associate weight w;

This works for any observable

26



Higher order resummation is obtained by a
systematic expansion in SCET to higher orders

Everything is defined within eftective theory, so
going to higher orders just requires computing
things systematically to higher order.

Simplified observable resummed to higher
logarithmic order using normal SCET counting of
anomalous dimensions

Transfer function computed to higher logarithmic
order by systematically computing higher
correlated matrix elements numerically
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In summary, one can obtain resummed expressions for any
observable numerically using systematic SCET expansion

28



