The Energy Triple-Product Correlation

AnJie Gao
Zhejiang University
with Ming-xing Luo, Tong-Zhi Yang and Hua Xing Zhu
Work in progress
March 27, 2019
SCET 2019, UC San Diego

Event Shapes in the Dijet limit see also Larkoski's talk on Monday

- Event shape observables in the dijet limit at lepton colliders are well studied, to NNLO and N 3 LL accuracy [Ridder et al, 2007; Weinzierl, 2008, 2009; Becher et al, 2008; Abbate et al, 2011; Chien et al, 2010; Hoang et al, 2014].
- Thrust T [Farhi, 1977], C-parameter [Parisi, 1978; Donoghue et al, 1979; Ellis, 1981], broadening B [Rakow et al 1981], the energy-energy correlations (EEC) [Basham et al, 1978$]$

Observables in the Trijet Limit see also Larkoski's talk on Monday

- Thrust minor T_{m} [Banfi et al, 2001]
- D-parameter: the three-jet coplanar region was studied[Banfi et al, 2001]; recently all regions of $D \rightarrow 0$ were studied to perform the full resummation[Larkoski and Procita, 2018]

(a)

(b)
[Larkoski and Procita, 2018]

Review of the EEC

The Energy-Energy Correlation (EEC) is defined as [Basham et al, 1978]

$$
\mathrm{EEC}=\sum_{i j} \int d \sigma \frac{E_{i} E_{j}}{Q^{2} \sigma_{\mathrm{tot}}} \delta\left(\cos \theta_{i j}-\cos \chi\right),
$$

which measures the correlations of energy deposited in two detectors with angle χ

From CMB to Colliders

- In the research of the Cosmic Microwave Background (CMB), two- and three-point correlation functions were studied
- At the Lepton Collider, instead of only one universe at the CMB, we have numerous events at colliders
- Color evolutions of multiple Wilson Lines; More differencial structures
- The general form of three-point corrections is a multivariable function
- We seek for a function with one variable as first step
\Rightarrow The Energy Triple-Product Correlation

Figure: CMB [Wikipedia]

Figure: One Event at the Lepton Collider

Definition of the ETPC

- We define a NEW observable, the Energy Triple-Product Correlation (ETPC)

$$
E T P C=\frac{1}{\sigma_{\mathrm{tot}}} \frac{d \Sigma}{d \tau_{p}}=\sum_{i j k} \int d \sigma \frac{E_{i} E_{j} E_{k}}{Q^{3} \sigma_{\mathrm{tot}}} \delta\left(\tau_{p}-\tau_{i j k}\right)
$$

- i, j, k run over all the different final state particles
- $\tau_{i j k}=\left|\left(\hat{n}_{i} \times \hat{n}_{j}\right) \cdot \hat{n}_{k}\right|$ is the volume of the parallelepiped formed by the unit vectors \hat{n}_{i}, \hat{n}_{j} and \hat{n}_{k}
- $\tau_{i j k} \rightarrow 0$ corresponds to the limit that i, j, k are coplanar

The Relation between the ETPC and the D-Parameter

- The D-parameter is product of three eigenvalues of the spherocity tensor $\Theta_{\alpha \beta}=\frac{1}{Q} \sum_{i} \frac{p_{i \alpha} p_{i \beta}}{E_{i}}$ [Parisi, 1978; Donoghue et al, 1979]
- If we assume all the final particles are massless

$$
\begin{aligned}
D & =27 \lambda_{1} \lambda_{2} \lambda_{3} \\
& =\frac{27}{6}\left\{\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)\left[\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)^{2}-3\left(\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}\right)\right]+2\left(\lambda_{1}^{3}+\lambda_{2}^{3}+\lambda_{3}^{3}\right)\right\} \\
& =\frac{27}{6}\left\{\operatorname{Tr} \Theta\left[(\operatorname{Tr} \Theta)^{2}-3 \operatorname{Tr} \Theta^{2}\right]+2 \operatorname{Tr} \Theta^{3}\right\} \\
& =\frac{27}{Q^{3}} \sum_{i<j<k} \frac{\left|\left(\vec{p}_{i} \times \vec{p}_{j}\right) \cdot \vec{p}_{k}\right|^{2}}{E_{i} E_{j} E_{k}} \\
& =\frac{27}{Q^{3}} \sum_{i<j<k} E_{i} E_{j} E_{k} \tau_{i j k}^{2}
\end{aligned}
$$

- The average of the D-parameter is the third moment of the ETPC

$$
\langle D\rangle=\frac{9}{2} \int d \tau_{p} \tau_{p}^{2} E T P C\left(\tau_{p}\right)
$$

Trijet Coplanar limit

- For the D-parameter, the trijet coplanar region corresponds to

$$
D \ll C^{2} \sim 1
$$

- In the work of [Banfi et al, 2001], the trijet resolution variable y_{3} is required to be large

$$
y_{3}>y_{\mathrm{cut}}
$$

- y_{3} is defined according to the k_{T} (Durham) algorithm [Catani, 1991]

Figure: Trijet Coplanar Limit

$$
y_{h h^{\prime}}=2\left(1-\cos \theta_{h h^{\prime}}\right) \min \left(E_{h}^{2}, E_{h^{\prime}}^{2}\right) / Q^{2}
$$

Trijet Coplanar Limit for the ETPC

For the ETPC, we apply two ways to approach the trijet coplanar limit 1 In each event, choose the three particles set $\{i, j, k\}$ such that

$$
\sin \theta_{i j}>a_{\mathrm{cut}}, \quad \sin \theta_{j k}>a_{\mathrm{cut}}, \quad \sin \theta_{k i}>a_{\mathrm{cut}}
$$

where $\sqrt{3} / 2<a_{\text {cut }}<1$ is a parameter that control the size of the allowed phase space.

The phase space of three particles, with $a_{\text {cut }}=0.6$ Here $x_{i}=2 E_{i} / Q$

Trijet Coplanar Limit for the ETPC

For the ETPC, we applied two ways to approach the trijet coplanar limit
2 Use the k_{T} algorithm to find three jets, only if $y_{3}>y_{\text {cut }}$ we keep the event, and modify the definition of the ETPC to

$$
\begin{aligned}
& \sum_{\substack{i \in J_{1} \\
j \in J_{2} \\
k \in J_{3}}} \int d \sigma \frac{E_{i} E_{j} E_{k}}{E_{J_{1}} E_{J_{2}} E_{J_{3}} \sigma_{\mathrm{tot}}} \delta\left(\tau_{p}-\tau_{i j k}\right) \\
& J_{3} \text { denote three jets. } \\
& \\
& \text { The phase space of three } \\
& \text { particles, with } y_{\text {cut }}=0.1
\end{aligned}
$$

where J_{1}, J_{2}, J_{3} denote three jets.

Using PYTHIA8.2

Preliminary!

- Used PYTHIA8.2 [Sjöstrand et al, 2015] to generate events
- Turn on/off hadronization
- The hadronization effect is $\frac{1}{Q}$-dependent
- $a_{\text {cut }}=0.6$

- $y_{\text {cut }}=0.1$

Factorization: Kinematics

In the trijet coplanar limit, soft radiations and collinear fragmentations dominate $\frac{d \sigma}{d \tau_{p}}$

Factorization: Kinematics

In the trijet coplanar limit, soft radiations and collinear fragmentations dominate $\frac{d \sigma}{d \tau_{p}}$

- The recoil effect of soft radiations.

- Collinear fragmentation

- \vec{p}_{J}, \vec{k}_{s}, and \vec{k}_{i}^{h}, are the momenta of three jets, the soft radiations, final-state hadrons; z_{i}^{h}, the longitudinal fragment of \vec{k}_{i}^{h} to $p_{J} ; k_{s, x}$ and $p_{J, x}, k_{i, x}^{h}$, momentum components perpendicular to the trijet plane

$$
\Rightarrow \quad \tau_{i j k}=\frac{\left|\vec{p}_{1} \times \vec{p}_{2}\right|}{E_{1} E_{2} E_{3}}\left|\frac{k_{i, x}^{h}}{z_{i}^{h}}+\frac{k_{j, x}^{h}}{z_{j}^{h}}+\frac{k_{k, x}^{h}}{z_{k}^{h}}-k_{s, x}\right|+\mathcal{O}\left(\tau_{p}^{2}\right)
$$

Factorization: Kinematics

In the trijet coplanar limit, soft radiations and collinear fragmentations dominate $\frac{d \sigma}{d \tau_{p}}$

- The recoil effect of soft radiations.

- Collinear fragmentation

- \vec{p}_{J}, \vec{k}_{s}, and \vec{k}_{i}^{h}, are the momenta of three jets, the soft radiations, final-state hadrons; z_{i}^{h}, the longitudinal fragment of \vec{k}_{i}^{h} to $p_{J} ; k_{s, x}$ and $p_{J, x}, k_{i, x}^{h}$, momentum components perpendicular to the trijet plane

$$
\begin{array}{cc}
\text { ne } & \xi \\
\Rightarrow & \left.\tau_{i j k}=\left|\frac{\left|\vec{p}_{1} \times \vec{p}_{2}\right|}{E_{1} E_{2} E_{3}}\right| \frac{k_{i, x}^{h}}{z_{i}^{h}}+\frac{k_{j, x}^{h}}{z_{j}^{h}}+\frac{k_{k, x}^{h}}{z_{k}^{h}}-k_{s, x} \right\rvert\,+\mathcal{O}\left(\tau_{p}^{2}\right)
\end{array}
$$

The Factorization Formula

$$
\begin{aligned}
& \frac{1}{\sigma_{b}} \frac{d \sigma}{d \tau_{p}}=\int_{D} d x_{1} d x_{2} H\left(x_{1}, x_{2}, \mu\right) \sum_{i j k} \int d k_{i, x}^{h} \int d k_{j, x}^{h} \int d k_{k, x}^{h} \int d k_{s, x} \\
& \times \int d z_{i}^{h} d z_{j}^{h} d z_{k}^{h} z_{i}^{h} z_{j}^{h} z_{k}^{h} S\left(k_{s, x}, \mu, \nu\right) \delta\left(\tau_{p}-\xi\left|\frac{k_{i, x}^{h}}{z_{i}^{h}}+\frac{k_{j, x}^{h}}{z_{j}^{h}}+\frac{k_{k, x}^{h}}{z_{k}^{h}}-k_{s, x}\right|\right) \\
& \times F_{1 \rightarrow i}\left(k_{i, x}^{h}, z_{i}^{h}, \mu, \nu\right) F_{2 \rightarrow j}\left(k_{j, x}^{h}, z_{j}^{h}, \mu, \nu\right) F_{3 \rightarrow k}\left(k_{k, x}^{h}, z_{k}^{h}, \mu, \nu\right)+\text { power corrections }
\end{aligned}
$$

- $x_{1}=2 E_{q} / Q, x_{2}=2 E_{\bar{q}} / Q, x_{3}=2 E_{g} / Q ; i, j, k$ belong to the three different jets; σ_{b} is the born cross section for $e^{+} e^{-} \rightarrow q \bar{q}$
D The domain of the integrals, constrained by the phase space cuts
H The hard function
S The soft function
F TMD fragmentation Functions

$$
\begin{aligned}
F_{q \rightarrow h}\left(b, z_{h}\right) & =\frac{1}{4 z_{h} N_{c}} \sum_{X} \int \frac{d \xi^{+}}{2 \pi} e^{-i p_{h}^{-} \xi^{+} / z_{h}}\langle 0| \bar{\chi}_{n}(\xi)|X, h\rangle \not \hbar\langle X, h| \chi(0)|0\rangle \\
\xi & =\left(\xi^{+}, i b_{0} / \nu, b, 0\right)
\end{aligned}
$$

Simplicity of the Factorization Formula

The TMDFF factorize into the standard FF and matching coefficients

$$
F_{i \rightarrow h}\left(k_{x}^{h}, z_{h}\right)=\sum_{j} \int \frac{d z}{z^{2}} f_{h / j}(z, \mu) \mathcal{I}_{j i}\left(\frac{k_{x}^{h}}{z}, \frac{z_{h}}{z}\right)\left[1+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{\left(k_{x}^{h}\right)^{2}}\right)\right] .
$$

Changing variables to

$$
\zeta_{i}=\frac{z_{i}}{x_{i}}, \quad d z_{i} d x_{i}=x_{i} d \zeta_{i} d x_{i}
$$

using the momentum-conservation sum rule,

$$
\sum_{h} \int d x x f_{h / i}(x, \mu)=1
$$

and after defining the jet functions as

$$
J_{i}(b)=\sum_{j} \int_{0}^{1} d \zeta \zeta \mathcal{I}_{i j}\left(\frac{b}{\zeta}, \zeta\right)
$$

we simplify our formula to
$\frac{1}{\hat{\sigma}_{0}} \frac{d \sigma}{d \tau_{p}}=\int_{D} d x_{1} d x_{2} H\left(x_{1}, x_{2}, \mu\right) \int_{-\infty}^{\infty} \frac{d b}{2 \pi \xi} \cos \left(b \tau_{p} / \xi\right) S(b, \mu, \nu) J_{q}(b, \mu, \nu) J_{\bar{q}}(b, \mu, \nu) J_{g}(b, \mu, \nu)$

Jet Functions

The quark and gluon jet functions are the same as for the EEC [Moult, Zhu], can be calculated to two loops [Ming-xing Luo et al]. To one loop, they are

$$
\begin{aligned}
& J_{q}(b, \mu, \nu)=J_{\bar{q}}(b, \mu, \nu)=1+\left(\frac{\alpha_{s}}{4 \pi}\right) C_{F}\left(-2 L_{b} L_{Q}+3 L_{b}+4-8 \zeta_{2}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
& J_{g}(b, \mu, \nu)=1+\left(\frac{\alpha_{s}}{4 \pi}\right)\left[-2 C_{A} L_{b} L_{Q}+\beta_{0} L_{b}+\left(\frac{65}{18}-8 \zeta_{2}\right) C_{A}-\frac{5}{18} n_{f}\right]+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{aligned}
$$

where $L_{b}=\ln \left(b^{2} \mu^{2} / b_{0}^{2}\right), L_{Q}=\ln \left(2 p^{0}\right)^{2} / \nu^{2}$, with p^{0} the energy of the jet.

Hard Function

Our hard function incorporates virtual correlations for $e^{+} e^{-} \rightarrow 3$ Jets

- LO

- NLO

- NNLO (for future work) [Garland, Gehrmann, Glover, Koukoutsakis, Remiddi]year

The soft function

$$
\left.S\left(n_{q}, n_{\bar{q}}, n_{g}, b_{x}\right)=\operatorname{tr}\langle 0| \mathrm{T}\left[Y_{n_{q}} Y_{n_{\bar{q}}} Y_{g}\left(0, b_{x}, 0,0\right)\right] \overline{\mathrm{T}}\left[Y_{n_{q}}^{\dagger} Y_{n_{\bar{q}}}^{\dagger} Y_{g}^{\dagger}(0,0,0,0)\right]\right]|0\rangle
$$

Figure: The spatial structure of the ETPC soft function. Each set of Wilson lines lies in the trijet plane, and their relative displacement is perpendicular to the plane

- Used the exponential regulator to deal with the rapidity divergences [Li et al, 2016]

$$
\int d^{d} k \theta\left(k^{0}\right) \delta\left(k^{2}\right) \rightarrow \int d^{d} k \theta\left(k^{0}\right) \delta\left(k^{2}\right) e^{-2 k^{0} \tau e^{-\gamma_{E}}}, \quad \nu=\frac{1}{\tau}
$$

Soft Function: Factorization

The crucial reason why our formula is amenable to analytic higher order calculations is that the soft function factorize into three dipole soft functions

- Impossible to construct scaling invariant from three light-like vectors.
- Double real [Catani and Grazzini, 1999]
- Real-virtual [Catani and Grazzini, 2000], the one-loop current is

$$
J_{a}^{\mu(1)}(q, \epsilon) \propto i f_{a b c} \sum_{i \neq j} T_{i}^{b} T_{j}^{c}\left(\frac{p_{i}^{\mu}}{p_{i} \cdot q}-\frac{p_{j}^{\mu}}{p_{j} \cdot q}\right)\left[\frac{p_{i} \cdot p_{j}}{\left(p_{i} \cdot q\right)\left(p_{j} \cdot q\right)}\right]^{\epsilon}
$$

for the ETPC (also for the transverse EEC), q is perpendicular to the plane of Wilson lines
$\Rightarrow[\cdots \cdots] \propto \frac{1}{q_{\perp}^{2}}$ does not depend on Wilson lines p_{i}

- Multiply the tree-level soft-gluon current $\sum_{k} T_{k} \frac{p_{k}^{\mu}}{p_{k} \cdot q}$
\Rightarrow There are no interference among three different Wilson lines.
The tripole soft function is the product of three dipole soft function (at least to two loops),
$S\left(n_{q}, n_{\bar{q}}, n_{g}, b_{x}, \mu, \nu\right)=\hat{S}_{q \bar{q}}\left(b_{x}, \mu, \nu, n_{q}, n_{\bar{q}}\right) \hat{S}_{q g}\left(b_{x}, \mu, \nu, n_{q}, n_{g}\right) \hat{S}_{\bar{q} g}\left(b_{x}, \mu, \nu, n_{\bar{q}}, n_{g}\right)$

Dipole Soft Function

$\hat{S}_{i j}\left(b_{x}, \mu, \nu, n_{i}, n_{j}\right)=S_{i j}\left(b_{x}, \mu, \nu \sqrt{n_{i} \cdot n_{j} / 2}\right)$
$S_{i j}$ The back-to-back dipole soft function, to three loops [Li and Zhu, 2017]

- In the lightcone coordinate, $k^{\mu}=n_{j}^{\mu} \frac{k \cdot n_{i}}{n_{i} \cdot n_{j}}+n_{i}^{\mu} \frac{k \cdot n_{j}}{n_{i} \cdot n_{j}}+k_{\perp}$. Let $n_{i j}=n_{i} \cdot n_{j}$, $k^{ \pm}=k \cdot n_{i, j}, v^{\mu}=(1,0,0,0)$, then $k^{0}=k \cdot v=\frac{k^{+}+k^{-}}{n_{i j}}+k_{\perp} \cdot v_{\perp}$.
- The integral for soft functions (using the rapidity regulator [Li et al, 2016])

$$
\begin{aligned}
I\left(b, \tau, n_{i}, n_{j}\right)= & \int d^{d} k \delta^{+}\left(k^{2}\right) \exp \left(-2 k^{0} \tau e^{-\gamma_{E}}+i b_{\perp} \cdot k\right) \ldots \cdots \\
= & \int \frac{d k^{+} d k^{-}}{n_{i j} / 2} d^{d-2} k_{\perp} \delta^{+}\left(\frac{k^{+} k^{-}}{n_{i j} / 2}+k_{\perp}^{2}\right) \\
& \cdot \exp \left(-\frac{k^{+}+k^{-}}{n_{i j} / 2} \tau e^{-\gamma_{E}}+\left(-2 v_{\perp} e^{-\gamma_{E}} \tau+i b_{\perp}\right) \cdot k_{\perp}\right) \cdots \cdots
\end{aligned}
$$

- The \ldots... denotes integrands
- Since we will take $\tau_{p} \rightarrow 0$, while keeping b_{\perp} finite, we ignore τv_{\perp}
- $k^{ \pm} \rightarrow q^{ \pm}=k^{ \pm} / \sqrt{n_{i j} / 2}$, the integral is the same as the back-to-back dipole soft function except we replace $\nu(=1 / \tau)$ with $\nu \sqrt{n_{i j} / 2}$
$I=\int d q^{+} d q^{-} d^{d-2} k_{\perp} \delta^{+}\left(q^{+} q^{-}+k_{\perp}^{2}\right) \exp \left[-\left(q^{+}+q^{-}\right) \frac{\tau}{\sqrt{n_{i j} / 2}} e^{-\gamma_{E}}+i b_{\perp} \cdot k_{\perp}\right]$

Renormalization Group Equations

$$
\begin{aligned}
\frac{d H}{d \ln \mu^{2}} & =\left[\frac{C_{A}+2 C_{F}}{2} \gamma_{\text {cusp }}\left(\alpha_{s}\right) \ln \frac{Q^{2}}{\mu^{2}}+\gamma_{H}\left(y, z, \alpha_{s}\right)\right] H, \\
\frac{d \ln S}{d \ln \mu^{2}} & =\left[\frac{2 C_{F}+C_{A}}{2}\left(\gamma_{\text {cusp }}\left[\alpha_{s}\right] \ln \frac{\mu^{2}}{\nu^{2}}-\gamma_{s}\left[\alpha_{s}\right]\right)+\frac{C_{A}}{2} \gamma_{\text {cusp }}\left[\alpha_{s}\right] \ln \frac{x_{3}^{2}\left(1-x_{3}\right)}{\left(1-x_{1}\right)\left(1-x_{2}\right)}\right. \\
& \left.+C_{F} \gamma_{\text {cusp }}\left[\alpha_{s}\right] \ln \frac{x_{1} x_{2}}{1-x_{3}}\right], \\
\frac{d \ln S}{d \ln \nu^{2}} & =\frac{2 C_{F}+C_{A}}{2}\left(\int_{\mu^{2}}^{b_{0}^{2} / b^{2}} \frac{d \bar{\mu}^{2}}{\bar{\mu}^{2}} \gamma_{\text {cusp }}\left(\alpha_{s}[\bar{\mu}]\right)+\gamma_{r}\left(\alpha_{s}\left[b_{0} / b\right]\right)\right), \\
\frac{d J_{i}}{d \ln \mu^{2}} & =\left(-\frac{1}{2} c_{i} \gamma_{\text {cusp }} \ln \frac{4\left(p_{i}^{0}\right)^{2}}{\nu^{2}}+\gamma_{J, i}\right) J_{i}, \\
\frac{d J_{i}}{d \ln \nu^{2}} & =\frac{c_{i}}{2}\left(\int_{b_{0}^{2} / b^{2}} \frac{d \bar{\mu}^{2}}{\bar{\mu}^{2}} \gamma_{\text {cusp }}\left[\alpha_{s}(\bar{\mu})\right]-\gamma_{r}\left[\alpha_{s}\left(b_{0} / b\right)\right]\right) J_{i} .
\end{aligned}
$$

- All the anomalous dimensions are known to at least three loops
- RG invariant condition

$$
\gamma_{H}-\frac{C_{A}+2 C_{F}}{2} \gamma_{s}-2 \gamma_{J, q}-\gamma_{J, g}=0
$$

Renormalization Group Evolution

Setting $\mu=\mu_{j}=b_{0} / b, \nu=\nu_{j}=Q$,

There is rapidity evolution for the soft function

Numerical Implementation

- Apply the NLOJet++ code [Nagy] to calculate the fixed-order ETPC: 4-jet LO + (5-jet real + 4-jet virtual) NLO
- Use these two different settings:
(1) $a_{\text {cut }}=0.6\left(\sin \theta_{i j}>a_{\text {cut }}, \sin \theta_{j k}>a_{\text {cut }}, \sin \theta_{k i}>a_{\text {cut }}\right)$
(2) $y_{\text {cut }}=0.1\left(y_{3}>y_{\text {cut }}\right)$
- Verify our factorization formula by comparing the predicted singular fixed-order results with NLOJet++
- Resummation + power corrections

Validation from NLOJet++
 Preliminary!

- Expanding the factorization formula with $\frac{\alpha_{s}}{4 \pi}$, the b integral can be calculated numerically for each order.
- The LO of $\frac{d \sigma}{d \ln \tau_{p}}$ is linear in $\ln \tau_{p}$, and the NLO is a cubic polynomial.
- The formula-predicted of $\frac{d \sigma}{d \ln \tau_{p}}$ approaches the full fixed-order results given by NLOJet ++ , in the $\tau \rightarrow 0$ limit.

Our factorization formula proves to be right, comparing with the NLOJet++ fixed-order results in the $\tau_{p} \rightarrow 0$ limit

Resummation

Preliminary!

$$
a_{\mathrm{cut}}=0.6
$$

$$
y_{\mathrm{cut}}=0.1
$$

- The fixed-order results are unreasonable at the $\tau_{p} \rightarrow 0$ limit; resummation is necessary
- The reduction of scale uncertainties from NLO to NNLL+NLO
- The perturbative corrections from NLL+LO to NNLL+NLO are large
- NLO LO do not overlap; NLL NNLL overlap, converge

Conclusions

- We initiated the study of a new event shape observable called the Energy Triple-Product Correlation
- Hadronization Effects
- Derived a factorization formula for the ETPC in the coplanar limit
- Presented the results of NNLL+NLO

Thank You!

