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Factorization Formula

that are consistent for both the peak and tail regions, and carry out detailed calculations of

perturbative quantities in the factorization theorem. We verify that the matching conditions

which define the Wilson coefficients at the scales Q and m are infrared safe, compute one-

loop perturbative corrections to the matrix elements, and carry out the next-to-leading-log

renormalization group summation of large logs. For the peak region these are logs between

the scales Q, m, Γ, and ΛQCD, while away from the peak they are between Q2, m2, and the

variables M2
t − m2

t and M2
t̄ − m2

t described below.

As an observable sensitive to the top mass, we considered in Ref. [2] the double differential

invariant mass distribution in the peak region around the top resonance:

d2σ

dM2
t dM2

t̄

, M2
t,t̄ − m2 ∼ mΓ ≪ m2 , (1)

where

M2
t =

( ∑

i∈Xt

pµ
i

)2
, M2

t̄ =
( ∑

i∈Xt̄

pµ
i

)2
. (2)

Here Xt and Xt̄ represent a prescription to associate final state hadronic four momenta to

top and antitop invariant masses respectively. For simplicity we call Xt,t̄ the top and antitop

jets, and Mt,t̄ the invariant mass of the top and antitop jets respectively. The distribution

in Eq. (1) has a width Γ ∼ Γt + QΛQCD/m which can be larger than the top quark width

Γt. The restriction M2
t,t̄ −m2 ∼ mΓ ≪ m2 defines the peak region, which is the region most

sensitive to the top quark mass m. Here the dynamics is characterized by energy deposits

contained predominantly in two back-to-back regions of the detector with opening angles of

order m/Q associated with the energetic jets or leptons coming from the top and antitop

decays, plus collinear radiation. The region between the top decay jets is populated by soft

particles, whose momentum is assigned to one of M2
t or M2

t̄ . The tail region is defined by

invariant masses starting just past the peak where the cross-section begins to fall off rapidly,

namely where m2 ≫ M2
t,t̄ − m2 and either M2

t,t̄ − m2 >∼ mΓ or M2
t,t̄ − m2 ≫ mΓ. Farther

out, when M2
t,t̄−m2 ∼ m2, we have an ultra-tail region where the cross-section is very small.

We do not consider the region where M2
t,t̄ ∼ Qm. The observable in Eq. (1) in the peak and

tail regions is the main focus of our analysis. We also briefly consider the cross-section in

the ultra-tail region.

The result for the double differential cross-section in the peak region to all orders in αs

is given by [2]

dσ

dM2
t dM2

t̄

= σ0 HQ(Q, µm)Hm

(
mJ ,

Q

mJ
, µm, µ

)

×
∫

dℓ+dℓ−B+

(
ŝt −

Qℓ+

mJ
,Γt, µ

)
B−

(
ŝt̄ −

Qℓ−

mJ
,Γt, µ

)
S(ℓ+, ℓ−, µ)

+ O
(mαs(m)

Q

)
+ O

(m2

Q2

)
+ O

(Γt

m

)
+ O

(st, st̄

m2

)
, (3)
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FIG. 1: Sequence of effective field theories used to compute the invariant mass distribution.

where, as indicated, power corrections are suppressed by αsm/Q, m2/Q2, Γt/m, or st,t̄/m2.

Here mJ is the short-distance top quark mass we wish to measure, and for convenience we

have defined

ŝt =
st

mJ
=

M2
t − m2

J

mJ
, ŝt̄ =

st̄

mJ
=

M2
t̄ − m2

J

mJ
, (4)

where ŝt,t̄ ∼ Γ are of natural size in the peak region. In Eq. (3) the normalization factor σ0

is the total Born-level cross-section, the HQ and Hm are perturbative coefficients describing

hard effects at the scales Q and mJ , B± are perturbative jet functions that describe the

evolution and decay of the the top and antitop close to the mass shell, and S is a nonpertur-

bative soft function describing the soft radiation between the jets. To sum large logs B± and

S will be evolved to distinct renormalization scales µ, as we discuss in section IIC below.

For the tail region Eq. (3) becomes

dσ

dM2
t dM2

t̄

= σ0 HQ Hm B+ ⊗ B− ⊗ Spart + O
(ΛQCDQ

st,t̄

)
+ O

(mαs(m)

Q
,
m2

Q2
,
Γt

m

)
, (5)

so the only changes are that the soft-function S = Spart(ℓ+, ℓ−, µ) becomes calculable, and

we have an additional O(ΛQCDQ/st,t̄) nonperturbative correction from the power expansion

of the soft-function which we will include in our analysis. The result in Eq. (3) was derived

by matching QCD onto the Soft Collinear Effective Theory(SCET) [3, 4, 5, 6, 7] which

in turn was matched onto Heavy Quark Effective Theory(HQET) [8, 9, 10, 11, 12, 13]

generalized for unstable particles [14, 15, 16, 17] as illustrated in Fig. 1. The decoupling of

perturbative and nonperturbative effects into the B± jet functions and the S soft function

was achieved through a factorization theorem in SCET and HQET, aspects of which are

similar to factorization for massless event shapes [18, 19, 20, 21]. The result in Eq. (3) is an

event shape distribution for massive particles, and can be used to determine common event

shapes such as thrust or jet-mass distributions. Note that a subset of our results can also
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Figure 1: Six jet event initiated by a top quark pair, tt̄ → bW b̄W → bqq′b̄qq′. The plane
separating the two hemispheres is perpendicular to the thrust axis and intersects the thrust
axis at the interaction point. The total invariant mass inside each hemisphere is measured.
Our analysis applies equally well to the lepton+jets and the dilepton channels (not shown).

arising from the initial state. Assuming a c.m. energy Q ≫ mt, mt being the top quark
mass, one can employ the hierarchy of scales

Q ≫ mt ≫ Γt > ΛQCD (1)

to establish a factorization theorem for the doubly differential top-antitop invariant mass
distribution in the peak region around the top resonance:

d2σ

dM2
t dM2

t̄

, M2
t,t̄ − m2 ∼ mΓ≪ m2 . (2)

The invariant masses M2
t = (

∑

i∈Xt
pµ

i )2, M2
t̄ = (

∑

i∈Xt̄

pµ
i )2 depend on a prescription Xt,t̄

which associates final state momenta pµ
i to top and antitop invariant masses, respectively.

For invariant masses in the resonance region the events are characterized by energy deposits
predominantly contained in two back-to-back regions with opening angles mt/Q associated
with the energetic jets or leptons from the top decay plus collinear radiation, and by addi-
tional soft radiation populating the regions between the jets, see Fig. 1. We assume that
the prescriptions Xt,t̄ assign all soft radiation to either M2

t or M2
t̄ where the probability

of radiation being assigned to Xt or Xt̄ increases to unity when it approaches the top or
antitop direction. The result for the double differential cross-section in the peak region at
all orders in αs and to leading order in the power expansion in mtαs/Q, m2

t /Q2, Γt/mt and
Mt,t̄ − mt is given by [8]

dσ

dM2
t dM2

t̄

= σ0 HQ(Q, µm)Hm

(

mJ ,
Q

mJ
, µm, µ

)

[

ŝt,t̄ =
M2

t − m2
J

mJ

]

×
∫

dℓ+dℓ−B+

(

ŝt −
Qℓ+

mJ
,Γt, µ

)

B−

(

ŝt̄ −
Qℓ−

mJ
,Γt, µ

)

S(ℓ+, ℓ−, µ) . (3)

In Eq. (3) the normalization factor σ0 is the total Born-level cross-section, the HQ and Hm

are perturbative coefficients describing hard effects at the scales Q and mJ , B± are pertur-
bative jet functions that describe the evolution and decay of the the top and antitop close
to the mass shell, and S is a nonperturbative soft function describing the soft radiation be-
tween the jets. The result was derived using the hierarchy of scales (1), matching QCD onto

LCWS/ILC2007

• Top jet hemisphere mass distribution sensitive to top mass:

• Peak region:

1

Implications of Electroweak Symmetry Breaking; Workshop May 7th, 8th

�mt � 100 MeV (1)

e+e� ⇤ tt̄X (2)

Q⇥ m⇥ � > ⇥QCD (3)

I. LIST OF POTENTIAL SPEAKERS

1. Lisa Randall

2. JoAnne Hewett

3. Ben Grinstein

4. Elizabeth Simmons

5. Sekhar Chivukula

6. Markus Luty

7. Kaustubh Agashe

8. Kathryn Zurek

9. Howard Haber

10. Carlos Wagner

11. Graham Kribs

12. Michael Schmitt

13. Matt Herndon

14. Bruce Mellado

15. Stefano Profumo

16. Hiren Patel

17. Matt Godringer

thrust
 axis

soft particles

n-collinear n-collinear

hemisphere-a hemisphere-b

Figure 1: Six jet event initiated by a top quark pair, tt̄ → bW b̄W → bqq′b̄qq′. The plane
separating the two hemispheres is perpendicular to the thrust axis and intersects the thrust
axis at the interaction point. The total invariant mass inside each hemisphere is measured.
Our analysis applies equally well to the lepton+jets and the dilepton channels (not shown).

arising from the initial state. Assuming a c.m. energy Q ≫ mt, mt being the top quark
mass, one can employ the hierarchy of scales

Q ≫ mt ≫ Γt > ΛQCD (1)

to establish a factorization theorem for the doubly differential top-antitop invariant mass
distribution in the peak region around the top resonance:
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which associates final state momenta pµ
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For invariant masses in the resonance region the events are characterized by energy deposits
predominantly contained in two back-to-back regions with opening angles mt/Q associated
with the energetic jets or leptons from the top decay plus collinear radiation, and by addi-
tional soft radiation populating the regions between the jets, see Fig. 1. We assume that
the prescriptions Xt,t̄ assign all soft radiation to either M2

t or M2
t̄ where the probability

of radiation being assigned to Xt or Xt̄ increases to unity when it approaches the top or
antitop direction. The result for the double differential cross-section in the peak region at
all orders in αs and to leading order in the power expansion in mtαs/Q, m2
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In Eq. (3) the normalization factor σ0 is the total Born-level cross-section, the HQ and Hm

are perturbative coefficients describing hard effects at the scales Q and mJ , B± are pertur-
bative jet functions that describe the evolution and decay of the the top and antitop close
to the mass shell, and S is a nonperturbative soft function describing the soft radiation be-
tween the jets. The result was derived using the hierarchy of scales (1), matching QCD onto
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that are consistent for both the peak and tail regions, and carry out detailed calculations of

perturbative quantities in the factorization theorem. We verify that the matching conditions

which define the Wilson coefficients at the scales Q and m are infrared safe, compute one-

loop perturbative corrections to the matrix elements, and carry out the next-to-leading-log

renormalization group summation of large logs. For the peak region these are logs between

the scales Q, m, Γ, and ΛQCD, while away from the peak they are between Q2, m2, and the
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t and M2
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t described below.

As an observable sensitive to the top mass, we considered in Ref. [2] the double differential

invariant mass distribution in the peak region around the top resonance:
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Here Xt and Xt̄ represent a prescription to associate final state hadronic four momenta to

top and antitop invariant masses respectively. For simplicity we call Xt,t̄ the top and antitop

jets, and Mt,t̄ the invariant mass of the top and antitop jets respectively. The distribution

in Eq. (1) has a width Γ ∼ Γt + QΛQCD/m which can be larger than the top quark width

Γt. The restriction M2
t,t̄ −m2 ∼ mΓ ≪ m2 defines the peak region, which is the region most

sensitive to the top quark mass m. Here the dynamics is characterized by energy deposits

contained predominantly in two back-to-back regions of the detector with opening angles of

order m/Q associated with the energetic jets or leptons coming from the top and antitop

decays, plus collinear radiation. The region between the top decay jets is populated by soft

particles, whose momentum is assigned to one of M2
t or M2

t̄ . The tail region is defined by

invariant masses starting just past the peak where the cross-section begins to fall off rapidly,

namely where m2 ≫ M2
t,t̄ − m2 and either M2

t,t̄ − m2 >∼ mΓ or M2
t,t̄ − m2 ≫ mΓ. Farther

out, when M2
t,t̄−m2 ∼ m2, we have an ultra-tail region where the cross-section is very small.

We do not consider the region where M2
t,t̄ ∼ Qm. The observable in Eq. (1) in the peak and

tail regions is the main focus of our analysis. We also briefly consider the cross-section in

the ultra-tail region.

The result for the double differential cross-section in the peak region to all orders in αs

is given by [2]
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= σ0 HQ(Q, µm)Hm
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ŝt −
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ŝt̄ −

Qℓ−

mJ
,Γt, µ

)
S(ℓ+, ℓ−, µ)

+ O
(mαs(m)

Q

)
+ O

(m2

Q2

)
+ O

(Γt

m

)
+ O

(st, st̄

m2

)
, (3)

5

that are consistent for both the peak and tail regions, and carry out detailed calculations of

perturbative quantities in the factorization theorem. We verify that the matching conditions

which define the Wilson coefficients at the scales Q and m are infrared safe, compute one-

loop perturbative corrections to the matrix elements, and carry out the next-to-leading-log

renormalization group summation of large logs. For the peak region these are logs between

the scales Q, m, Γ, and ΛQCD, while away from the peak they are between Q2, m2, and the

variables M2
t − m2

t and M2
t̄ − m2

t described below.

As an observable sensitive to the top mass, we considered in Ref. [2] the double differential

invariant mass distribution in the peak region around the top resonance:

d2σ

dM2
t dM2

t̄

, M2
t,t̄ − m2 ∼ mΓ ≪ m2 , (1)

where

M2
t =

( ∑

i∈Xt

pµ
i

)2
, M2

t̄ =
( ∑

i∈Xt̄

pµ
i

)2
. (2)

Here Xt and Xt̄ represent a prescription to associate final state hadronic four momenta to

top and antitop invariant masses respectively. For simplicity we call Xt,t̄ the top and antitop

jets, and Mt,t̄ the invariant mass of the top and antitop jets respectively. The distribution

in Eq. (1) has a width Γ ∼ Γt + QΛQCD/m which can be larger than the top quark width

Γt. The restriction M2
t,t̄ −m2 ∼ mΓ ≪ m2 defines the peak region, which is the region most

sensitive to the top quark mass m. Here the dynamics is characterized by energy deposits

contained predominantly in two back-to-back regions of the detector with opening angles of

order m/Q associated with the energetic jets or leptons coming from the top and antitop

decays, plus collinear radiation. The region between the top decay jets is populated by soft

particles, whose momentum is assigned to one of M2
t or M2

t̄ . The tail region is defined by

invariant masses starting just past the peak where the cross-section begins to fall off rapidly,

namely where m2 ≫ M2
t,t̄ − m2 and either M2

t,t̄ − m2 >∼ mΓ or M2
t,t̄ − m2 ≫ mΓ. Farther

out, when M2
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FIG. 1: Six jet event initiated by a top quark pair, tt̄ → bW b̄W → bqq′b̄qq′. The plane separating
the two hemispheres is perpendicular to the thrust axis and intersects the thrust axis at the
interaction point. The total invariant mass inside each hemisphere is measured. Our analysis

applies equally well to the lepton+jets and the dilepton channels (not shown).

to the top mass, so that M2
t − m2 ∼ mΓ and M2

t̄ −m2 ∼ mΓ. It is convenient to introduce

the shifted variables

ŝt,t̄ ≡
st,t̄

m
≡

M2
t,t̄ − m2

m
∼ Γ ≪ m , (1)

because it is only the invariant mass distribution close to the peak that we wish to predict.

Here the top width Γ is setting a lower bound on the width of the invariant mass distribution

and the shifted variable ŝt,t̄ can also be larger than Γ as long as ŝt,t̄ ≪ m. However, for

simplicity we will often write ŝt,t̄ ∼ Γ as we did in Eq. (1).

There are three relevant disparate scales governing the dynamics of the system,

Q ≫ m ≫ Γ > ΛQCD . (2)

This kinematic situation is characterized by energy deposits contained predominantly in

two back-to-back regions of the detector with opening angles of order m/Q associated to

the energetic jets coming from the top quark decay and collinear radiation. Frequently in

this work we refer to the jets coming from the top and antitop quark collectively as top

and antitop jet, respectively, but we stress that we do not require the jets from the top

and antitop decay products to be unresolved as pictured in Fig. 1 (for example one can still

identify a W and do b-tagging). The region between the top jets is predominantly populated

by soft particles with energies of order of the hadronic scale.

The EFT setup used to describe the dynamics in this kinematic situation is illustrated in

Fig. 2 and represents a sequence of different EFT’s. The use of different EFT’s is mandatory

to separate the various relevant physical fluctuations. The high energy dynamics for the

top quarks at the scale Q ≫ m can be described by quark and gluon degrees of freedom

that are collinear to the top and antitop jet axes, and by soft degrees of freedom that

5
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fixed, having in mind that it can be extracted from LEP data. In Fig. 15 we show F at NLL

for our default parameter set as a function of the two invariant mass variables Mt and Mt̄.

The underlying short-distance quark mass is mJ(µ = 2 GeV) = 172 GeV, and the peak of

the cross-section occurs for Mt and Mt̄ values which are ≃ 2.4 GeV larger. This peak shift

occurs due to the presence of the low energy radiation described by the soft function as dis-

cussed in Ref. [2]. At LO the shift is in the positive direction to Mpeak
t ≃ mJ +QS [1,0]

mod/(2mJ),

where here S [1,0] =
∫

dℓ+dℓ− ℓ+Smod(ℓ+, ℓ−) ∼ ΛQCD is the first moment of the underlying

soft-function model [2]. As described below, this linear behavior with Q/m persists at NLL

order, although the slope is no longer simply S [1,0]
mod. Above the peak one sees in Fig. 15 the

perturbative tails from gluon radiation, and that the tails are largest if we fix one of Mt or

Mt̄ at the peak.
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We propose a kinematic method based on factorization formulae for precisely measuring the top
quark mass mt in pp collisions using boosted top jets with light soft drop grooming. By using
light grooming, which is an order of magnitude less aggressive than typical grooming, we retain
a universal description of the top mass scheme and decay e↵ects, but still e↵ectively remove soft
contamination from the top jet. We derive field theory results for the hadronization corrections for
both groomed massless jets and lightly groomed top jets, showing that for heavy and light quark
jets they are both described by the same universal hadronic parameters. For massless jets this
universality is important An important phenomenological application of our results is that one can
obtain mt in a short distance scheme by fitting the hadron level jet mass distributions predicted by
our factorization formulae to data or by Monte-Carlo calibration. The peaked distributions for pp
and e+e� collisions are similar, up to sensitivity to underlying event which is significantly reduced
by soft drop. Since soft drop implies that each t or t̄ jet will independently contribute, the analysis
can include lepton+jet samples.
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I. INTRODUCTION

The top quark mass mt is one of the most important
Standard Model (SM) parameters. It significantly af-
fects studies of the SM vacuum stability [1] and the elec-
troweak precision observables [2]. The most precise top
mass measurements are based on kinematic reconstruc-
tion, yielding results such as

mMC
t = 172.44(49)GeV(CMS) [3] , (1)

mMC
t = 172.84(70)GeV(ATLAS) [4] ,

mMC
t = 174.34(64)GeV(Tevatron) [5] .

These measurements are based on Monte Carlo (MC)
simulations and determine the mass parameter mMC

t of
the MC generator, which depends on the shower dynam-
ics and its interface with hadronization. Identifying these
values with a Lagrangian top-mass scheme mt induces an
additional ambiguity at the 0.5–1.0 GeV level [6, 7]. We
propose a factorization approach to remove this uncer-
tainty in pp ! tt̄ by constructing an observable that has
high kinematic sensitivity to mt and at the same time
allows for hadron level predictions from QCD employing
a short distance top-mass. It can be used to extract mt

from experimental data, or to calibrate the parameter
mMC

t as was done for 2-Jettiness in e+e� collisions [8].
We consider boosted tops whose decay products are

collimated in a single jet region, enabling a simultaneous
theoretical description of both the top production and de-
cay [9]. This requires Q � mt � �t where �t ' 1.4 GeV
is the top width and Q is twice the large momentum
along the boost direction. For pp collisions

Q = 2pT cosh(⌘J) (2)

with pT and ⌘J being the jet’s transverse momentum and
pseudo-rapidity, respectively. Since Q is very large we
can assume the jet is massless for this relation. Recently
an experimental analysis along these lines was carried out
by CMS [10]. For e+e� ! tt̄ a hadron level factorization
theorem for a distribution with high kinematic sensitivity
to a short distance mt was derived in [9, 11]. So far an
analogous approach has been missing for pp ! tt̄, due
to theory complications in controlling external radiation,
parameters like the jet radius R, and soft contamination
from initial state radiation and underlying event (UE),
which is often modeled in MC simulations by multiple
particle interactions (MPI).

Our method relies on deriving a new factorization the-
orem that enables the measurement of the jet mass mJ

on a jet of radius R ⇠ 1 with light soft drop grooming on
a boosted top sample, while accounting for hadroniza-
tion and underlying event e↵ects. The soft drop algo-
rithm [12, 13] removes peripheral soft radiation by com-
paring subsequent jet constituents i, j in an angular or-
dered cluster tree, using the Cambridge-Aachen (CA) al-
gorithm. The grooming stops when a soft drop condition
specified by fixed parameters zcut and � is satisfied. For
pp collisions the condition is

min[pTi, pTj ]

(pTi + pTj)
> zcut

⇣Rij

R0

⌘�
, (3)

where Rij is the angular distance in the rapidity-� plane,
R2

ij = 2(cosh(⌘i � ⌘j) � cos(�i � �j)), and in general R0

is a parameter that is part of the definition of the soft
drop algorithm. For e+e� collisions the condition is

min[Ei, Ej ]

(Ei + Ej)
> zcut

✓
p

2
sin(✓ij/2)

sin(Ree
0 /2)
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We propose a kinematic method based on factorization formulae for precisely measuring the top
quark mass mt in pp collisions using boosted top jets with light soft drop grooming. By using
light grooming, which is an order of magnitude less aggressive than typical grooming, we retain
a universal description of the top mass scheme and decay e↵ects, but still e↵ectively remove soft
contamination from the top jet. We derive field theory results for the hadronization corrections for
both groomed massless jets and lightly groomed top jets, showing that for heavy and light quark
jets they are both described by the same universal hadronic parameters. For massless jets this
universality is important An important phenomenological application of our results is that one can
obtain mt in a short distance scheme by fitting the hadron level jet mass distributions predicted by
our factorization formulae to data or by Monte-Carlo calibration. The peaked distributions for pp
and e+e� collisions are similar, up to sensitivity to underlying event which is significantly reduced
by soft drop. Since soft drop implies that each t or t̄ jet will independently contribute, the analysis
can include lepton+jet samples.

PACS numbers: 12.38.Bx, 12.38.Cy, 12.39.St, 24.85.+p Preprint: MIT-CTP 4923, UWThPh-2017-25

I. INTRODUCTION

The top quark mass mt is one of the most important
Standard Model (SM) parameters. It significantly af-
fects studies of the SM vacuum stability [1] and the elec-
troweak precision observables [2]. The most precise top
mass measurements are based on kinematic reconstruc-
tion, yielding results such as

mMC
t = 172.44(49)GeV(CMS) [3] , (1)

mMC
t = 172.84(70)GeV(ATLAS) [4] ,

mMC
t = 174.34(64)GeV(Tevatron) [5] .

These measurements are based on Monte Carlo (MC)
simulations and determine the mass parameter mMC

t of
the MC generator, which depends on the shower dynam-
ics and its interface with hadronization. Identifying these
values with a Lagrangian top-mass scheme mt induces an
additional ambiguity at the 0.5–1.0 GeV level [6, 7]. We
propose a factorization approach to remove this uncer-
tainty in pp ! tt̄ by constructing an observable that has
high kinematic sensitivity to mt and at the same time
allows for hadron level predictions from QCD employing
a short distance top-mass. It can be used to extract mt

from experimental data, or to calibrate the parameter
mMC

t as was done for 2-Jettiness in e+e� collisions [8].
We consider boosted tops whose decay products are

collimated in a single jet region, enabling a simultaneous
theoretical description of both the top production and de-
cay [9]. This requires Q � mt � �t where �t ' 1.4 GeV
is the top width and Q is twice the large momentum
along the boost direction. For pp collisions

Q = 2pT cosh(⌘J) (2)

with pT and ⌘J being the jet’s transverse momentum and
pseudo-rapidity, respectively. Since Q is very large we
can assume the jet is massless for this relation. Recently
an experimental analysis along these lines was carried out
by CMS [10]. For e+e� ! tt̄ a hadron level factorization
theorem for a distribution with high kinematic sensitivity
to a short distance mt was derived in [9, 11]. So far an
analogous approach has been missing for pp ! tt̄, due
to theory complications in controlling external radiation,
parameters like the jet radius R, and soft contamination
from initial state radiation and underlying event (UE),
which is often modeled in MC simulations by multiple
particle interactions (MPI).

Our method relies on deriving a new factorization the-
orem that enables the measurement of the jet mass mJ

on a jet of radius R ⇠ 1 with light soft drop grooming on
a boosted top sample, while accounting for hadroniza-
tion and underlying event e↵ects. The soft drop algo-
rithm [12, 13] removes peripheral soft radiation by com-
paring subsequent jet constituents i, j in an angular or-
dered cluster tree, using the Cambridge-Aachen (CA) al-
gorithm. The grooming stops when a soft drop condition
specified by fixed parameters zcut and � is satisfied. For
pp collisions the condition is

min[pTi, pTj ]

(pTi + pTj)
> zcut

⇣Rij

R0

⌘�
, (3)

where Rij is the angular distance in the rapidity-� plane,
R2

ij = 2(cosh(⌘i � ⌘j) � cos(�i � �j)), and in general R0

is a parameter that is part of the definition of the soft
drop algorithm. For e+e� collisions the condition is

min[Ei, Ej ]

(Ei + Ej)
> zcut

✓
p

2
sin(✓ij/2)

sin(Ree
0 /2)
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. (4)

• Additional 0.5 ~ 1 GeV uncertainty from relating Monte Carlo mass 
parameter           to a well-defined top mass renormalizaton scheme.



Factorization for Boosted Tops at Hadron Colliders

Can be extended to pp. •
pp� tt̄

d2�

dM2
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= tr

�
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Effect of UE/MPI

It is not ideal to have such a large shift from the 
contamination that needs to be modeled.

• Jet mass spectrum is quite sensitive to 
contamination:

• Same soft model for 
hadronization can describe UE

(Stewart, Tackmann, Waalewijin) 2
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FIG. 1. For the jet mass spectrum in Pythia8, the change from partonic to hadronization+MPI is described by a simple shift

in the tail, and a simple convolution everywhere, for both quark jets (left panel) and gluon jets (right panel).

yJ and R but not p
J
T , and can be factorized as [27–29]

S(kS , kB , yJ , R) =

Z
dk S

pert
 (kS � k, kB , yJ , R) (2)

⇥ F(k, yJ , R)
⇥
1 + O

�
⇤QCD/kB

�⇤
,

where S
pert
 contains the perturbative soft contributions.

F is a normalized nonperturbative shape function which
encodes the smearing e↵ect that the hadronization has on
the soft momentum kS . For kS ⇠ ⇤QCD, the full F(k)
is required and shifts the peak region of the jet mass
spectrum to higher jet masses.

In the perturbative tail of the jet mass spectrum, where
kS � ⇤QCD, S can be expanded,

S(kS , yJ , R) = S
pert


�
kS � ⌦(R), yJ , R

�

+ O
�
⇤2

QCD/k
3
S , ↵s⇤QCD/k

2
S

�
, (3)

where ⌦(R) =
R

dk k F(k) ⇠ ⇤QCD is a nonpertur-
bative parameter. In this region factorization predicts
a shift in the jet mass spectrum, which is described by
⌦(R). Below, we use the field-theoretic definition of ⌦

to quantify its R dependence and prove that it is indepen-
dent of yJ . The above treatment provides an excellent
description of hadronization in both B-meson decays and
e
+
e
� event shapes [30, 31].

Factorization also underlies the Monte Carlo descrip-
tion of the primary collision, where H corresponds to the
hard matrix element, while I, J , and S are described
by parton showers, and F corresponds to the hadroniza-
tion models. The standard parton shower paradigm does
not completely capture interference e↵ects between wide-
angle soft emissions from di↵erent primary partons that
appear at O(↵s) in S. Monte Carlo programs include
MPI (source 3), which are not in Eq. (1). See Ref. [32]
for a recent discussion. For our numerical studies, we
consider both Pythia8 [33, 34] with the ATLAS underly-
ing event tune AU2-MSTW2008LO [16] and Herwig++

2.7 [35, 36] with its default underlying event tune UE-EE-
5-MRST [18]. Both give a reasonable description of the

CMS jet mass spectrum in Z+jet events [20]. We also
compare to the Pythia8 default tune 4C.

We consider exclusive Z/H+jet events at Ecm = 7TeV
in both quark and gluon channels, with the leading jet
within a certain range of p

J
T and yJ , and we veto addi-

tional jets with p
J
T > 50 GeV. The jets are defined using

anti-kT [37, 38]. In Fig. 1, we show the jet mass spectrum
for quark and gluon jets with R = 1 after parton shower-
ing (black dotted line) and including both hadronization
and MPI (blue dashed line). Equation (3) predicts that
for m

2
J � ⇤QCDp

J
T the nonperturbative corrections shift

the tail of the jet mass spectrum by

m
2
J = (m2

J)pert + 2p
J
T ⌦(R) . (4)

We can regard the partonic result from Pythia8 as
the baseline purely perturbative result. Choosing ⌦ =
2.4 GeV for qg ! Zq and ⌦ = 2.7 GeV for qq̄ ! Zg

yields the green dot-dashed curves in Fig. 1. We see that
the e↵ect of both hadronization and MPI in the tail is
well captured by this shift. For hadronization, Eqs. (1,2)
predict a convolution with a nonperturbative function,

d�

dm
2
J

=

Z
dk

d�
partonic


dm
2
J

(m2
J � 2p

J
T k) F(k) . (5)

With the above ⌦’s, this convolution gives the red solid
curves in Fig. 1, yielding excellent agreement with the
hadronization+MPI result over the full range of the jet
mass spectrum.1 Both hadronization and MPI populate
the jet region with a smooth background of soft parti-
cles, which can explain why the MPI e↵ect is reproduced
alongside the hadronization by a convolution of the form

1
Here, F(k) = (4k/⌦2

) e
�2k/⌦ ; the simplest ansatz that satis-

fies the required properties: normalization, vanishing at k = 0,

falling o↵ exponentially for k ! 1, and having a first moment

⌦. Fixing the value of ⌦ from the tail, we find similar lev-

els of agreement across all values of pJT , yJ , R, for all partonic

channels, and for di↵erent jet veto cuts (including no jet veto).



Soft Drop
(Larkoski, Marzani, Soyez, Thaler, 2014)

• Soft drop grooming reduces sensitivity of the jet mass spectrum to 
soft contamination.
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Figure 1. Schematic of CA clustering and soft drop grooming algorithm. On the right the branches that
fail to satisfy the soft drop criteria, shown in gray, are discarded.

2 Review of Soft Drop and Partonic Factorization

2.1 Soft Drop Algorithm and Jet Mass

The soft drop algorithm [45] considers a jet of radius R, reclusters the particles into a angular
ordered cluster tree using the Cambridge-Aachen (CA) algorithm [58, 59], and then removes
peripheral soft radiation by comparing subsequent jet constituents i, j in the tree. The grooming
stops when a soft drop condition specified by fixed parameters zcut and � is satisfied. For pp

collisions the condition is
min[pT i, pTj ]

(pT i + pTj)
> zcut

⇣Rij

R0

⌘�
, (2.1)

where Rij is the angular distance in the rapidity-� plane, R2
ij = 2(cosh(⌘i � ⌘j) � cos(�i � �j)),

and in general R0 is a parameter that is part of the definition of the soft drop algorithm. For
e+e� collisions the condition is

min[Ei, Ej ]

(Ei + Ej)
> zcut

✓
p

2
sin(✓ij/2)

sin(Ree
0 /2)

◆�

. (2.2)

This is illustrated in Fig. 1 where ⇥sd = 1 � ⇥sd represents the pass/fail test being applied by
the soft drop groomer. Once Eq. (2.1) or Eq. (2.2) is satisfied all subsequent constituents in the
tree are kept, thus setting a new jet radius Rg < R for the groomed jet. In the original soft drop
algorithm [45] one chooses the parameter R0 = R, the original jet radius. For our application
which has a sufficiently large R ⇠ 1, we prefer to fix the parameter R0 = 1. When R ⇠ 1 this
implies that the particles kept within radius Rg are independent of the original value of R, and thus
the cross section can be expected to exhibit independence to varying R to good approximation.

In the limit Rij ⌧ 1 with jet constituents close to the jet axis, we can also rewrite Eq. (2.1)
in terms of energies Ei = pT i cosh ⌘i and polar angles ✓ij ⌧ 1, so the pp formula becomes

zij =
min[Ei, Ej ]

(Ei + Ej)
> z̃cut ✓�ij , (2.3)

where here we defined the shorthand

z̃cut = zcut
cosh� ⌘J

R�
0

. (2.4)

– 4 –
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Soft Drop Factorization 
(Fyre, Larkoski, Schwartz,Yan, 2016)
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Figure 2: Location of modes appearing in the soft drop factorization theorem in the plane

defined by energy fraction z and splitting angle ✓ of emissions in the jet. The solid diagonal

line separates the regions of phase space where emissions pass and fail soft drop. All emissions

along the dashed line that pass soft drop contribute at leading power to the measured value

of e(↵)
2

.

For a jet to have e(↵)
2

⌧ 1, all particles must be either soft or collinear to the jet axis. In

particular, a particle with energy E = zEJ at an angle ✓ from the jet axis must satisfy

z✓↵ . e(↵)
2

. (3.1)

This is a line in the log(1/z)-log(1/✓) plane, as shown in Fig. 2. Anything below the dashed

line in this figure is too hard to be consistent with a given value of e(↵)
2

. The soft drop criterion

is that

zcut . z✓�� , (3.2)

This is the region below the solid line in Fig. 2.

To find the relevant modes for the factorized expression, we need to identify the distinct

characteristic momentum scalings that approach the singular regions of phase space in the

limit e(↵)
2

⌧ zcut ⌧ 1. For a particular scaling, the constraints in Eqs. (3.1) and (3.2) will

either remain relevant or decouple. We can characterize the relevant regions by their scalings

in light-cone coordinates. Defining nµ as the jet direction and n̄µ as the direction backwards

to the jet, then light-cone coordinates are triplets p = (p�, p+, p?) where p� = n̄ ·p, p+ = n ·p

and p? are the components transverse to n. On-shell massless particles have p+p� = p2?.

The energy fraction is z = p0/Q = 1

2
(p+ +p�)/Q and the angle to the jet axis in the collinear

limit is ✓ = p?/p0.
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Figure 3: Illustration of the multi-stage matching procedure to derive the soft drop fac-

torization theorem. As discussed in the text, we first match QCD to SCET, then factorize

the jet function into collinear and collinear-soft modes. Canonical scales of all modes in the

factorization theorem are shown on the right, ordered in virtuality where we assume that

↵ > 1 and � � 0.

full QCD to get the hard function, then decouple the soft and collinear degrees of freedom

to pull the jet and soft functions apart [15–18]. Alternatively, one can use the method of

regions approach [54, 55], or the on-shell phase space approach [56–58]. Importantly, e(↵)
2

is

insensitive to recoil e↵ects from soft emissions that displace the jet axis from the direction of

hard, collinear particles [20, 40], and so the jet and soft functions are completely decoupled.

Next we write down the hard-soft-jet factorization formula in the presence of soft drop

grooming, assuming the hierarchy e(↵)
2

⌧ zcut ⌧ 1. With this assumption, soft radiation

emitted at large angles must necessarily fail the soft drop criterion. Thus, all wide angle soft

radiation in the jets (in this case, the hemisphere jets) is groomed and cannot contribute to

the observable. All that remains of the global soft function is a zcut-dependent normalization

factor SG(zcut). This leads to

d2�

de(↵)
2,L

de(↵)
2,R

= H(Q2) ⇥ SG(zcut) ⇥ Jze

⇣
zcut, e

(↵)

2,L

⌘
⇥ Jze

⇣
zcut, e

(↵)

2,R

⌘
. (3.8)

SG(zcut) gives the cross section for the radiation from a set of Wilson lines that

fails the soft drop criterion. An explicit calculation of SG for hemisphere jets at one-

loop is given in Appendix C. With the collinear and soft modes decoupled, we can lower the

virtuality of the collinear modes without further matching.

The jet function Jze still depends on multiple scales, so to resum all the large logarithms it

must be re-factorized. To see that it refactorizes, note first that in addition to being collinear,

radiation in the jet function that is sensitive to the scale set by zcut must also be soft, by

the assumption that zcut ⌧ 1. Equivalently, emissions with order-1 energy fractions are not

constrained by the scale zcut. We can thus factorize the jet function into two pieces depending
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e(�)
2 ⌧ zcut ⌧ 1

SC(zcute
(�)
2 )

SG(zcut)

Figure 1: Schematic of the modes in the factorization theorem for soft-drop groomed hemi-

spheres in e+e� ! dijets events. SG(zcut) denotes the soft wide-angle modes, SC(zcute
(↵)

2
)

denotes the collinear-soft modes, and J(e(↵)
2

) denotes the jet modes.

As we will explain in detail, there are several important consequences of this factorization

formula. Because the formula depends on the observables e(↵)
2,L

, e(↵)
2,R

only through collinear ob-

jects each of which has a single scale, there are no non-global logarithms. The elimination

of the purely soft contribution also makes the shape of soft-drop groomed jet shapes largely

independent of what else is going on in the event. For example, the shape of the left hemi-

sphere jet mass is independent of what is present in the right hemisphere. Additionally, the

scale associated with the collinear-soft mode is parametrically larger than the soft scale as-

sociated with ungroomed masses, so non-perturbative corrections such as hadronization are

correspondingly smaller.

This factorization theorem allows us to go beyond NLL accuracy to arbitrary accuracy.

In this paper, we show that next-to-next-to-leading logarithmic (NNLL) accuracy is readily

achievable. We focus on ↵ = 2 where the two-point energy correlation function is equal to the

squared jet mass (up to a trivial normalization). This lets us extract most of the necessary

two-loop anomalous dimensions from the existing literature. For � = 0, the global soft

function SG(zcut) is closely related to the soft function with an energy veto [28, 29] which is

known to two-loop order. There are additional clustering e↵ects from the soft drop algorithm,

but these are straightforward to calculate. Interestingly, we find that the clustering e↵ects in

the soft drop groomer are intimately related to similar e↵ects observed in jet veto calculations

[30–34]. For � = 1, we compute the two-loop anomalous dimension of SG(zcut) numerically
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Figure 2: Location of modes appearing in the soft drop factorization theorem in the plane

defined by energy fraction z and splitting angle ✓ of emissions in the jet. The solid diagonal

line separates the regions of phase space where emissions pass and fail soft drop. All emissions

along the dashed line that pass soft drop contribute at leading power to the measured value

of e(↵)
2

.

For a jet to have e(↵)
2

⌧ 1, all particles must be either soft or collinear to the jet axis. In

particular, a particle with energy E = zEJ at an angle ✓ from the jet axis must satisfy

z✓↵ . e(↵)
2

. (3.1)

This is a line in the log(1/z)-log(1/✓) plane, as shown in Fig. 2. Anything below the dashed

line in this figure is too hard to be consistent with a given value of e(↵)
2

. The soft drop criterion

is that

zcut . z✓�� , (3.2)

This is the region below the solid line in Fig. 2.

To find the relevant modes for the factorized expression, we need to identify the distinct

characteristic momentum scalings that approach the singular regions of phase space in the

limit e(↵)
2

⌧ zcut ⌧ 1. For a particular scaling, the constraints in Eqs. (3.1) and (3.2) will

either remain relevant or decouple. We can characterize the relevant regions by their scalings

in light-cone coordinates. Defining nµ as the jet direction and n̄µ as the direction backwards

to the jet, then light-cone coordinates are triplets p = (p�, p+, p?) where p� = n̄ ·p, p+ = n ·p

and p? are the components transverse to n. On-shell massless particles have p+p� = p2?.

The energy fraction is z = p0/Q = 1

2
(p+ +p�)/Q and the angle to the jet axis in the collinear

limit is ✓ = p?/p0.
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torization theorem. As discussed in the text, we first match QCD to SCET, then factorize

the jet function into collinear and collinear-soft modes. Canonical scales of all modes in the

factorization theorem are shown on the right, ordered in virtuality where we assume that

↵ > 1 and � � 0.

full QCD to get the hard function, then decouple the soft and collinear degrees of freedom

to pull the jet and soft functions apart [15–18]. Alternatively, one can use the method of

regions approach [54, 55], or the on-shell phase space approach [56–58]. Importantly, e(↵)
2

is

insensitive to recoil e↵ects from soft emissions that displace the jet axis from the direction of

hard, collinear particles [20, 40], and so the jet and soft functions are completely decoupled.

Next we write down the hard-soft-jet factorization formula in the presence of soft drop

grooming, assuming the hierarchy e(↵)
2

⌧ zcut ⌧ 1. With this assumption, soft radiation

emitted at large angles must necessarily fail the soft drop criterion. Thus, all wide angle soft

radiation in the jets (in this case, the hemisphere jets) is groomed and cannot contribute to

the observable. All that remains of the global soft function is a zcut-dependent normalization

factor SG(zcut). This leads to
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de(↵)
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de(↵)
2,R

= H(Q2) ⇥ SG(zcut) ⇥ Jze

⇣
zcut, e

(↵)
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⌘
⇥ Jze

⇣
zcut, e

(↵)
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⌘
. (3.8)

SG(zcut) gives the cross section for the radiation from a set of Wilson lines that

fails the soft drop criterion. An explicit calculation of SG for hemisphere jets at one-

loop is given in Appendix C. With the collinear and soft modes decoupled, we can lower the

virtuality of the collinear modes without further matching.

The jet function Jze still depends on multiple scales, so to resum all the large logarithms it

must be re-factorized. To see that it refactorizes, note first that in addition to being collinear,

radiation in the jet function that is sensitive to the scale set by zcut must also be soft, by

the assumption that zcut ⌧ 1. Equivalently, emissions with order-1 energy fractions are not

constrained by the scale zcut. We can thus factorize the jet function into two pieces depending
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) denotes the jet modes.

As we will explain in detail, there are several important consequences of this factorization

formula. Because the formula depends on the observables e(↵)
2,L

, e(↵)
2,R

only through collinear ob-

jects each of which has a single scale, there are no non-global logarithms. The elimination

of the purely soft contribution also makes the shape of soft-drop groomed jet shapes largely

independent of what else is going on in the event. For example, the shape of the left hemi-

sphere jet mass is independent of what is present in the right hemisphere. Additionally, the

scale associated with the collinear-soft mode is parametrically larger than the soft scale as-

sociated with ungroomed masses, so non-perturbative corrections such as hadronization are

correspondingly smaller.

This factorization theorem allows us to go beyond NLL accuracy to arbitrary accuracy.

In this paper, we show that next-to-next-to-leading logarithmic (NNLL) accuracy is readily

achievable. We focus on ↵ = 2 where the two-point energy correlation function is equal to the

squared jet mass (up to a trivial normalization). This lets us extract most of the necessary

two-loop anomalous dimensions from the existing literature. For � = 0, the global soft

function SG(zcut) is closely related to the soft function with an energy veto [28, 29] which is

known to two-loop order. There are additional clustering e↵ects from the soft drop algorithm,

but these are straightforward to calculate. Interestingly, we find that the clustering e↵ects in

the soft drop groomer are intimately related to similar e↵ects observed in jet veto calculations

[30–34]. For � = 1, we compute the two-loop anomalous dimension of SG(zcut) numerically
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of e(↵)
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.

For a jet to have e(↵)
2

⌧ 1, all particles must be either soft or collinear to the jet axis. In

particular, a particle with energy E = zEJ at an angle ✓ from the jet axis must satisfy

z✓↵ . e(↵)
2

. (3.1)

This is a line in the log(1/z)-log(1/✓) plane, as shown in Fig. 2. Anything below the dashed

line in this figure is too hard to be consistent with a given value of e(↵)
2

. The soft drop criterion

is that

zcut . z✓�� , (3.2)

This is the region below the solid line in Fig. 2.

To find the relevant modes for the factorized expression, we need to identify the distinct

characteristic momentum scalings that approach the singular regions of phase space in the

limit e(↵)
2

⌧ zcut ⌧ 1. For a particular scaling, the constraints in Eqs. (3.1) and (3.2) will

either remain relevant or decouple. We can characterize the relevant regions by their scalings

in light-cone coordinates. Defining nµ as the jet direction and n̄µ as the direction backwards

to the jet, then light-cone coordinates are triplets p = (p�, p+, p?) where p� = n̄ ·p, p+ = n ·p

and p? are the components transverse to n. On-shell massless particles have p+p� = p2?.

The energy fraction is z = p0/Q = 1

2
(p+ +p�)/Q and the angle to the jet axis in the collinear

limit is ✓ = p?/p0.
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In this paper, we open the door to systematically improvable jet substructure calculations

by presenting an all-orders factorization theorem for the soft-drop [8] groomed observables

using soft-collinear e↵ective theory (SCET) [15–18]. An overview of the method we discuss

here and some of our results were presented recently in Ref. [19]. This paper provides a more

detailed presentation of those results as well as a derivation of the factorization formula and

its remarkable properties.

The soft drop groomer walks through the branching history of a jet, discarding soft

branches until a su�ciently hard branching is found. This is enforced by e↵ectively requiring

min[Ei, Ej ]

Ei + Ej

> zcut

✓
✓ij
R

◆
�

, (1.1)

where Ei and Ej are the energies of the particles in that step of the branching, ✓ij is their

relative angle, and R is the radius of the jet. zcut is a parameter that sets the scale of soft,

wide angle emissions in the jet; the typical value is zcut = 0.1. � is a parameter that controls

the aggressiveness of the groomer: � = 1 removes the groomer, � = 0 coincides with mMDT

and is simply an energy cut, and � < 0 removes all soft and collinear singularities. We will

consider � � 0. If Eq. (1.1) is not satisfied, the softer of the two branches is removed from the

jet, and the grooming procedure continues on the harder branch. When Eq. (1.1) is satisfied,

the procedure terminates and the groomed jet is returned. For concreteness, on this groomed

jet, we measure the two-point energy correlation functions e(↵)
2

with angular exponent ↵ > 0

[20–22].

In e+e� ! dijets events, the factorization formula we derive in this paper for soft-drop

groomed left and right hemisphere jets is:

d2�

de(↵)
2,L

de(↵)
2,R

= H(Q2)SG(zcut)
h
SC(zcute

(↵)

2,L
) ⌦ J(e(↵)

2,L
)
i h

SC(zcute
(↵)

2,R
) ⌦ J(e(↵)

2,R
)
i

. (1.2)

This factorization theorem applies when zcut ⌧ 1 and the left- and right-hemisphere energy

correlation functions are asymptotically small: e(↵)
2,L

, e(↵)
2,R

⌧ zcut ⌧ 1. We illustrate the

physical configuration corresponding to this factorization theorem in Fig. 1. In Eq. (1.2),

H(Q2) is the hard function for e+e� ! qq̄. SG(zcut) is the global soft function, which is

only sensitive to the scale set by zcut since all of its emissions fail soft drop. SC(zcute
(↵)

2,L
)

is a soft function that is boosted along the direction of the jet in the left hemisphere; its

corresponding modes are referred to as collinear-soft [23–28]. Emissions in SC(zcute
(↵)

2,L
) may

or may not pass the soft drop requirement and are therefore constrained by both zcut and

e(↵)
2,L

. Importantly, this collinear-soft mode depends on only a single scale which we generically

denote by zcute
(↵)

2,L
. (For ↵ 6= 2 or � > 0, the single scale is a di↵erent combination of zcut

and e(↵)
2,L

; we simply call it zcute
(↵)

2,L
for notational brevity.) J(e(↵)

2,L
) is the jet function for the

left hemisphere jet, and all emissions in the jet function parametrically pass the soft drop

requirement. Thus, the jet function is independent of the scale set by zcut, and only depends

on e(↵)
2,L

. ⌦ denotes convolution in e(↵)
2,L

, and a similar collinear-soft and jet factorization exists

for the right hemisphere.
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as a result of which the projection ⇥
��
NP now solely de-

pends on k
i variables:

⇥
��
NP

⇣
k?
k� , 2, ��

⌘
= ⇥

✓
|��|�

⇡

3

◆
⇥

✓
1 �

k?
k�

◆
(24)

+ ⇥

✓
⇡

3
� |��|

◆
⇥

✓
2 cos(��) �

k?
k�

◆
.

Thus the contribution of an NP particle with momentum
q

µ to the jet mass is given by

Q q
+ =

✓cs

2
Q k

+
, for ⇥

��
NP

⇣
k?
k� , 2, ��

⌘
= 1 . (25)

The same argument can be repeated for the operator

⇥
�
NP in Eq. (21) where the rescaling in Eq. (22) is done

with ✓i. In this case Eq. (19) now becomes

⇥
pi+qi
sd = ⇥

pi

sd +
2

✓i
�

✓
zpi � zcut

⇣
✓i

R0

⌘�
◆

(26)

⇥
1

Q

�
k
�
i (1 + �) � � ki? cos(��)

�
,

The correction has a positive sign when an NP particle is

clustered with the subjet with ⇥
�
NP(k�

i /k?, 2, ��) = 1.
We get a negative correction when the NP particle is lost

and ⇥
�
NP(k�

i /k?, 2, ��) = 0.
We note that the shift correction results from an ex-

pansion in the + components: q
+
/p

+
cs ⌧ 1 in the SDOE

region, whereas the boundary correction from expansion
in the � components: q

�
i /p

�
i ⌧ 1. On expressing them

in terms of the boosted momenta k
µ the perturbative in-

formation is factored out as ✓cs/2 and 2/✓i for the two ef-
fects. Since the perturbative cross section has azimuthal
symmetry, the dependence on �� in Eqs. (25) and (26)
can be eliminated by shifting �k ! �k + �cs,i.

We show in Ref. [17] that as a result of these two ef-
fects, the power corrections to the partonic cross section
have the following form

d�
had


dm
2
J

=
d�̂

dm
2
J

� Q ⌦��
1

d

dm
2
J

✓
C1(m

2
J , Q, zcut, �)

d�̂

dm
2
J

◆

+
⌥

1 (�)

Q
C2(m

2
J , Q; zcut, �)

d�̂

dm
2
J

, (27)

where ⌦��
1 and ⌥

1 (�) are the hadronic parameters re-
lated to the shift and boundary power corrections re-
spectively and depend on the partonic channel . The
superscript ‘��’ for the shift correction is meant to dis-
tinguish it from the power correction in the ungroomed
event shapes and that it results from a specific geometry
of the catchment area shown in Fig. 3. The Wilson co-
e�cients C1(m2

J , Q, zcut, �) and C2(m2
J , Q, zcut, �) have

the interpretation of resummed average of the factors of
angles in Eqs. (25) and (26):

C1(m
2
J , Q, zcut, �) ⇠

⌧
✓cs

2

�
, (28)

C2(m
2
J , Q; zcut, �) ⇠

⌧
2

✓i
�

✓
zpi � zcut

⇣
✓i

R0

⌘�
◆�

. (29)

We now state the result for the factorization formula
for the hadronic groomed jet mass cross section:

d�
had


dm
2
J

=
X

=q,g

D(�J , zcut, �, µ)

Z 1

0
d`

+
J

�
m

2
J � Q `

+
, µ

�

⇥

Z 1

0
dk S


c

h�
`
+
� C1(m

2
J , Q) k

�
Q

1
1+�

cut , �, µ

i
(30)

⇥

✓
1 � Q k

dC1(m2
J , Q)

dm
2
J

+
⌥

1 (�)

Q
C2(m

2
J , Q)

◆
F


��(k) ,

where we have suppressed the zcut and � arguments in
the Wilson coe�cients for the sake of brevity. The nor-
malized shape function F


��(k) satisfies:

Z 1

0
dk k F


��(k) = ⌦��

1 ,

Z 1

0
dk F


��(k) = 1 . (31)

We see that a key feature of nonperturbative correc-
tions in Eq. (30) is the universality properties of hadronic
parameters. First we note that the power corrections
are independent of the energy Q and the jet mass mJ ,
however, the Wilson coe�cients do have a nontrivial de-
pendence on these parameters. Following Eq. (25) we
note that the catchment area for the shift correction in
the SDOE region is solely set by the perturbative sub-
jets, all of the zcut and � dependence is accounted by
C1(m2

J , Q, zcut, �), and thus the parameter ⌦��
1 is both

zcut and � independent. The boundary power correction
⌥

1 (�) is, however, � dependent as can be gleaned from
Eqs. (26) and (29). Thus we conclude that the power cor-
rections to groomed jet mass cannot be simply described
by a simple shape function convolution as has been the
case for ungroomed event shape. We further remark that
the function F


�� from the field theory derivation does

not formally contain corrections from underlying event
or multiple-parton interactions, but it is known that it
may serve as a useful model for these e↵ects [21].

In the next section we will show that the same univer-
sal leading power correction ⌦��

1 shows up for the leading
non-perturbative corrections for a jet generated by a mas-
sive top quark at NLL, even when accounting for the top
decay products.

III. HADRON LEVEL FACTORIZATION FOR
TOP JETS

Next we derive a hadron level factorization formula
that predicts the top jet mass MJ spectrum for a boosted
top quark Q � mt with light soft drop grooming, as in
Fig. 1. We focus entirely on the peak region since this is
the most important region for a top mass measurement.
The peak region is given by

M
2
J � m

2
t ⇠ mt� , (32)

with � determined by the top width �t together with
broadening e↵ects from non-perturbative radiation. We
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clustered with the subjet with ⇥
�
NP(k�

i /k?, 2, ��) = 1.
We get a negative correction when the NP particle is lost

and ⇥
�
NP(k�

i /k?, 2, ��) = 0.
We note that the shift correction results from an ex-

pansion in the + components: q
+
/p

+
cs ⌧ 1 in the SDOE

region, whereas the boundary correction from expansion
in the � components: q

�
i /p

�
i ⌧ 1. On expressing them

in terms of the boosted momenta k
µ the perturbative in-

formation is factored out as ✓cs/2 and 2/✓i for the two ef-
fects. Since the perturbative cross section has azimuthal
symmetry, the dependence on �� in Eqs. (25) and (26)
can be eliminated by shifting �k ! �k + �cs,i.

We show in Ref. [17] that as a result of these two ef-
fects, the power corrections to the partonic cross section
have the following form
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, (27)

where ⌦��
1 and ⌥

1 (�) are the hadronic parameters re-
lated to the shift and boundary power corrections re-
spectively and depend on the partonic channel . The
superscript ‘��’ for the shift correction is meant to dis-
tinguish it from the power correction in the ungroomed
event shapes and that it results from a specific geometry
of the catchment area shown in Fig. 3. The Wilson co-
e�cients C1(m2

J , Q, zcut, �) and C2(m2
J , Q, zcut, �) have

the interpretation of resummed average of the factors of
angles in Eqs. (25) and (26):
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, (28)
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We now state the result for the factorization formula
for the hadronic groomed jet mass cross section:
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2
J

=
X

=q,g

D(�J , zcut, �, µ)
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where we have suppressed the zcut and � arguments in
the Wilson coe�cients for the sake of brevity. The nor-
malized shape function F


��(k) satisfies:

Z 1

0
dk k F


��(k) = ⌦��

1 ,

Z 1

0
dk F


��(k) = 1 . (31)

We see that a key feature of nonperturbative correc-
tions in Eq. (30) is the universality properties of hadronic
parameters. First we note that the power corrections
are independent of the energy Q and the jet mass mJ ,
however, the Wilson coe�cients do have a nontrivial de-
pendence on these parameters. Following Eq. (25) we
note that the catchment area for the shift correction in
the SDOE region is solely set by the perturbative sub-
jets, all of the zcut and � dependence is accounted by
C1(m2

J , Q, zcut, �), and thus the parameter ⌦��
1 is both

zcut and � independent. The boundary power correction
⌥

1 (�) is, however, � dependent as can be gleaned from
Eqs. (26) and (29). Thus we conclude that the power cor-
rections to groomed jet mass cannot be simply described
by a simple shape function convolution as has been the
case for ungroomed event shape. We further remark that
the function F


�� from the field theory derivation does

not formally contain corrections from underlying event
or multiple-parton interactions, but it is known that it
may serve as a useful model for these e↵ects [21].

In the next section we will show that the same univer-
sal leading power correction ⌦��

1 shows up for the leading
non-perturbative corrections for a jet generated by a mas-
sive top quark at NLL, even when accounting for the top
decay products.

III. HADRON LEVEL FACTORIZATION FOR
TOP JETS

Next we derive a hadron level factorization formula
that predicts the top jet mass MJ spectrum for a boosted
top quark Q � mt with light soft drop grooming, as in
Fig. 1. We focus entirely on the peak region since this is
the most important region for a top mass measurement.
The peak region is given by

M
2
J � m

2
t ⇠ mt� , (32)

with � determined by the top width �t together with
broadening e↵ects from non-perturbative radiation. We

Non-perturbative 
“shift” term 

Non-perturbative 
“Boundary” term 

Perturbative Coefficient
of shift term

Perturbative Coefficient
of Boundary term

• Lessons learned:

• Non-perturbative effects are tied to the perturbative branching history of the jet
• Two types of non-perturbative effects: “shift correction” and “boundary correction”

• “Shift”: contribution from the jet mass from NP radiation kept 
in the groomed jet

• “Boundary”: Modification of the soft drop test on a perturbative subjet 
in the presence of NP radiation
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as a result of which the projection ⇥
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i variables:
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Thus the contribution of an NP particle with momentum
q

µ to the jet mass is given by

Q q
+ =
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, for ⇥
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⇣
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k� , 2, ��

⌘
= 1 . (25)

The same argument can be repeated for the operator

⇥
�
NP in Eq. (21) where the rescaling in Eq. (22) is done

with ✓i. In this case Eq. (19) now becomes

⇥
pi+qi
sd = ⇥

pi

sd +
2

✓i
�

✓
zpi � zcut

⇣
✓i

R0

⌘�
◆

(26)
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The correction has a positive sign when an NP particle is

clustered with the subjet with ⇥
�
NP(k�

i /k?, 2, ��) = 1.
We get a negative correction when the NP particle is lost

and ⇥
�
NP(k�

i /k?, 2, ��) = 0.
We note that the shift correction results from an ex-

pansion in the + components: q
+
/p

+
cs ⌧ 1 in the SDOE

region, whereas the boundary correction from expansion
in the � components: q

�
i /p

�
i ⌧ 1. On expressing them

in terms of the boosted momenta k
µ the perturbative in-

formation is factored out as ✓cs/2 and 2/✓i for the two ef-
fects. Since the perturbative cross section has azimuthal
symmetry, the dependence on �� in Eqs. (25) and (26)
can be eliminated by shifting �k ! �k + �cs,i.

We show in Ref. [17] that as a result of these two ef-
fects, the power corrections to the partonic cross section
have the following form

d�
had


dm
2
J

=
d�̂

dm
2
J

� Q ⌦��
1

d

dm
2
J

✓
C1(m

2
J , Q, zcut, �)

d�̂

dm
2
J

◆

+
⌥

1 (�)

Q
C2(m

2
J , Q; zcut, �)

d�̂

dm
2
J
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where ⌦��
1 and ⌥

1 (�) are the hadronic parameters re-
lated to the shift and boundary power corrections re-
spectively and depend on the partonic channel . The
superscript ‘��’ for the shift correction is meant to dis-
tinguish it from the power correction in the ungroomed
event shapes and that it results from a specific geometry
of the catchment area shown in Fig. 3. The Wilson co-
e�cients C1(m2

J , Q, zcut, �) and C2(m2
J , Q, zcut, �) have

the interpretation of resummed average of the factors of
angles in Eqs. (25) and (26):
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We now state the result for the factorization formula
for the hadronic groomed jet mass cross section:

d�
had
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2
J

=
X

=q,g

D(�J , zcut, �, µ)
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where we have suppressed the zcut and � arguments in
the Wilson coe�cients for the sake of brevity. The nor-
malized shape function F


��(k) satisfies:

Z 1

0
dk k F


��(k) = ⌦��

1 ,

Z 1

0
dk F


��(k) = 1 . (31)

We see that a key feature of nonperturbative correc-
tions in Eq. (30) is the universality properties of hadronic
parameters. First we note that the power corrections
are independent of the energy Q and the jet mass mJ ,
however, the Wilson coe�cients do have a nontrivial de-
pendence on these parameters. Following Eq. (25) we
note that the catchment area for the shift correction in
the SDOE region is solely set by the perturbative sub-
jets, all of the zcut and � dependence is accounted by
C1(m2

J , Q, zcut, �), and thus the parameter ⌦��
1 is both

zcut and � independent. The boundary power correction
⌥

1 (�) is, however, � dependent as can be gleaned from
Eqs. (26) and (29). Thus we conclude that the power cor-
rections to groomed jet mass cannot be simply described
by a simple shape function convolution as has been the
case for ungroomed event shape. We further remark that
the function F


�� from the field theory derivation does

not formally contain corrections from underlying event
or multiple-parton interactions, but it is known that it
may serve as a useful model for these e↵ects [21].

In the next section we will show that the same univer-
sal leading power correction ⌦��

1 shows up for the leading
non-perturbative corrections for a jet generated by a mas-
sive top quark at NLL, even when accounting for the top
decay products.

III. HADRON LEVEL FACTORIZATION FOR
TOP JETS

Next we derive a hadron level factorization formula
that predicts the top jet mass MJ spectrum for a boosted
top quark Q � mt with light soft drop grooming, as in
Fig. 1. We focus entirely on the peak region since this is
the most important region for a top mass measurement.
The peak region is given by

M
2
J � m

2
t ⇠ mt� , (32)

with � determined by the top width �t together with
broadening e↵ects from non-perturbative radiation. We
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Thus the contribution of an NP particle with momentum
q

µ to the jet mass is given by

Q q
+ =

✓cs

2
Q k

+
, for ⇥

��
NP

⇣
k?
k� , 2, ��

⌘
= 1 . (25)

The same argument can be repeated for the operator

⇥
�
NP in Eq. (21) where the rescaling in Eq. (22) is done

with ✓i. In this case Eq. (19) now becomes

⇥
pi+qi
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The correction has a positive sign when an NP particle is

clustered with the subjet with ⇥
�
NP(k�

i /k?, 2, ��) = 1.
We get a negative correction when the NP particle is lost

and ⇥
�
NP(k�

i /k?, 2, ��) = 0.
We note that the shift correction results from an ex-

pansion in the + components: q
+
/p

+
cs ⌧ 1 in the SDOE

region, whereas the boundary correction from expansion
in the � components: q

�
i /p

�
i ⌧ 1. On expressing them

in terms of the boosted momenta k
µ the perturbative in-

formation is factored out as ✓cs/2 and 2/✓i for the two ef-
fects. Since the perturbative cross section has azimuthal
symmetry, the dependence on �� in Eqs. (25) and (26)
can be eliminated by shifting �k ! �k + �cs,i.

We show in Ref. [17] that as a result of these two ef-
fects, the power corrections to the partonic cross section
have the following form
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where ⌦��
1 and ⌥

1 (�) are the hadronic parameters re-
lated to the shift and boundary power corrections re-
spectively and depend on the partonic channel . The
superscript ‘��’ for the shift correction is meant to dis-
tinguish it from the power correction in the ungroomed
event shapes and that it results from a specific geometry
of the catchment area shown in Fig. 3. The Wilson co-
e�cients C1(m2

J , Q, zcut, �) and C2(m2
J , Q, zcut, �) have

the interpretation of resummed average of the factors of
angles in Eqs. (25) and (26):
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We now state the result for the factorization formula
for the hadronic groomed jet mass cross section:
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where we have suppressed the zcut and � arguments in
the Wilson coe�cients for the sake of brevity. The nor-
malized shape function F


��(k) satisfies:
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0
dk k F
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1 ,

Z 1

0
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��(k) = 1 . (31)

We see that a key feature of nonperturbative correc-
tions in Eq. (30) is the universality properties of hadronic
parameters. First we note that the power corrections
are independent of the energy Q and the jet mass mJ ,
however, the Wilson coe�cients do have a nontrivial de-
pendence on these parameters. Following Eq. (25) we
note that the catchment area for the shift correction in
the SDOE region is solely set by the perturbative sub-
jets, all of the zcut and � dependence is accounted by
C1(m2

J , Q, zcut, �), and thus the parameter ⌦��
1 is both

zcut and � independent. The boundary power correction
⌥

1 (�) is, however, � dependent as can be gleaned from
Eqs. (26) and (29). Thus we conclude that the power cor-
rections to groomed jet mass cannot be simply described
by a simple shape function convolution as has been the
case for ungroomed event shape. We further remark that
the function F


�� from the field theory derivation does

not formally contain corrections from underlying event
or multiple-parton interactions, but it is known that it
may serve as a useful model for these e↵ects [21].

In the next section we will show that the same univer-
sal leading power correction ⌦��

1 shows up for the leading
non-perturbative corrections for a jet generated by a mas-
sive top quark at NLL, even when accounting for the top
decay products.

III. HADRON LEVEL FACTORIZATION FOR
TOP JETS

Next we derive a hadron level factorization formula
that predicts the top jet mass MJ spectrum for a boosted
top quark Q � mt with light soft drop grooming, as in
Fig. 1. We focus entirely on the peak region since this is
the most important region for a top mass measurement.
The peak region is given by

M
2
J � m

2
t ⇠ mt� , (32)

with � determined by the top width �t together with
broadening e↵ects from non-perturbative radiation. We
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Thus the contribution of an NP particle with momentum
q

µ to the jet mass is given by
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+ =

✓cs

2
Q k

+
, for ⇥
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The same argument can be repeated for the operator
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with ✓i. In this case Eq. (19) now becomes
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The correction has a positive sign when an NP particle is

clustered with the subjet with ⇥
�
NP(k�

i /k?, 2, ��) = 1.
We get a negative correction when the NP particle is lost

and ⇥
�
NP(k�

i /k?, 2, ��) = 0.
We note that the shift correction results from an ex-

pansion in the + components: q
+
/p

+
cs ⌧ 1 in the SDOE

region, whereas the boundary correction from expansion
in the � components: q

�
i /p

�
i ⌧ 1. On expressing them

in terms of the boosted momenta k
µ the perturbative in-

formation is factored out as ✓cs/2 and 2/✓i for the two ef-
fects. Since the perturbative cross section has azimuthal
symmetry, the dependence on �� in Eqs. (25) and (26)
can be eliminated by shifting �k ! �k + �cs,i.

We show in Ref. [17] that as a result of these two ef-
fects, the power corrections to the partonic cross section
have the following form
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where ⌦��
1 and ⌥

1 (�) are the hadronic parameters re-
lated to the shift and boundary power corrections re-
spectively and depend on the partonic channel . The
superscript ‘��’ for the shift correction is meant to dis-
tinguish it from the power correction in the ungroomed
event shapes and that it results from a specific geometry
of the catchment area shown in Fig. 3. The Wilson co-
e�cients C1(m2

J , Q, zcut, �) and C2(m2
J , Q, zcut, �) have

the interpretation of resummed average of the factors of
angles in Eqs. (25) and (26):
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We now state the result for the factorization formula
for the hadronic groomed jet mass cross section:
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where we have suppressed the zcut and � arguments in
the Wilson coe�cients for the sake of brevity. The nor-
malized shape function F


��(k) satisfies:
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We see that a key feature of nonperturbative correc-
tions in Eq. (30) is the universality properties of hadronic
parameters. First we note that the power corrections
are independent of the energy Q and the jet mass mJ ,
however, the Wilson coe�cients do have a nontrivial de-
pendence on these parameters. Following Eq. (25) we
note that the catchment area for the shift correction in
the SDOE region is solely set by the perturbative sub-
jets, all of the zcut and � dependence is accounted by
C1(m2

J , Q, zcut, �), and thus the parameter ⌦��
1 is both

zcut and � independent. The boundary power correction
⌥

1 (�) is, however, � dependent as can be gleaned from
Eqs. (26) and (29). Thus we conclude that the power cor-
rections to groomed jet mass cannot be simply described
by a simple shape function convolution as has been the
case for ungroomed event shape. We further remark that
the function F


�� from the field theory derivation does

not formally contain corrections from underlying event
or multiple-parton interactions, but it is known that it
may serve as a useful model for these e↵ects [21].

In the next section we will show that the same univer-
sal leading power correction ⌦��

1 shows up for the leading
non-perturbative corrections for a jet generated by a mas-
sive top quark at NLL, even when accounting for the top
decay products.

III. HADRON LEVEL FACTORIZATION FOR
TOP JETS

Next we derive a hadron level factorization formula
that predicts the top jet mass MJ spectrum for a boosted
top quark Q � mt with light soft drop grooming, as in
Fig. 1. We focus entirely on the peak region since this is
the most important region for a top mass measurement.
The peak region is given by

M
2
J � m

2
t ⇠ mt� , (32)

with � determined by the top width �t together with
broadening e↵ects from non-perturbative radiation. We
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• NP effects are not simply described by a shape function at this 
order.

• At NLL, at leading order in the OPE, the factorization for the groomed 
massless jet distribution can be written as:
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ŝ

µ�

⌘
2 B+,�

M
2

a
=

X

i2a

⇣
p
µ

i

⌘2

(23)

H
(nl)
m

(m,
Q

m
, µ) = 1 +

↵
(nl)
s (µ)

4⇡
CF

⇣
2Lm

2
� 2Lm + 8 +

⇡
2

3

⌘

+
⇣
↵
(nl)
s (µ)

4⇡

⌘2

C
2

F

n
2Lm

4
� 4Lm

3 +
⇣
18 +

2⇡2

3

⌘
Lm

2
�

⇣
19�

10⇡2

3
+ 48⇣3

⌘
Lm

+
305

4
+ 10⇡2

� 16⇡2 log 2� 12⇣3 �
79⇡4

90

o

+
⇣
↵
(nl)
s (µ)

4⇡

⌘2

CACF

n
�

22

9
Lm

3 +
⇣167

9
�

2⇡2

3

⌘
Lm

2
�

⇣1165
27

+
56⇡2

9
� 60⇣3

⌘
Lm

+
12877

324
+

323⇡2

54
+ 8⇡2 log 2 +

178⇣3
9

�
47⇡4

90

o

+
⇣
↵
(nl)
s (µ)

4⇡

⌘2

CFnlTF

n8

9
Lm

3
�

52

9
Lm

2 +
⇣308
27

+
16⇡2

9

⌘
Lm �

1541

81
�

74⇡2

27
�

104⇣3
9

o

+
⇣
↵
(nl)
s (µ)

4⇡

⌘2

CFTF

n
�

16

9
Lm

3
�

4

9
Lm

2 +
⇣260
27

+
4⇡2

3

⌘
Lm +

5107

81
�

82⇡2

27
�

8⇣3
9

�

⇣8
3
Lm

2 +
80

9
Lm +

224

27

⌘
ln
⇣
Q

2

m2

⌘o

renormalized because of quantum corrections
Pick a specific renormalization scheme

m
bare

! m
bare + ⌃(mbare)

⌃(m) = 3

4
CF

↵s

⇡
m

⇣
1

✏
+ finite

⌘
+O(↵2

s
)

m
bare = m

ren + �m

In dimensional regularization

Popular choices for schemes: Pole mass and MS mass

• Pole Mass - Remove the full one loop correction ⌃

• MS mass - Remove the 1/✏ term from ⌃

MS

M
peak = mt + �t(↵s + ↵

2

s
+ . . .) +

Q⇤QCD

mt

6

model this

Hm: A. Hoang, AP, P. PietruIewicz, I. Stewart 2015
Fleming, Hoang, Mantry, Stewart 2007, 2008

logarithmic (DL) accuracy as

1

σtot

dσ

dt

∣

∣

∣

∣

PT
=

dR
PT

(t)

dt
, R

PT
(t)

DL
= exp

(

−
4αs(Q)

3π
ln2 t

)

(4)

with R
PT

(t) called the radiator function. One can systematically improve perturbative approxi-
mation by including additional nonleading logarithmic terms in R

PT
(t) and matching the result

into exact higher order calculations using the ln R−scheme [13]. The perturbative Sudakov spec-
trum extends over the interval 0 ≤ t ≤ tmax and vanishes at the end points. The peak of the
distribution is located close to t = 0 and it is shifted towards larger t as one improves pertur-
bative approximation. Its position, tp = O(Λ

QCD
/Q), is sensitive to the emission of soft gluons

with energy ∼ Λ
QCD

indicating that the physical spectrum around the peak is of nonperturbative
origin.

Let us now estimate the effects of nonperturbative soft gluon emissions on the thrust dis-
tribution (3). We take into account that in the leading order in 1/(Q2t) the transverse size of
two quark jets k2

⊥ = O(Q2t) can be neglected, that is soft gluons with the energy ∼ Qt can not
resolve the internal structure of jets. This means that considering soft gluon emissions we may
apply the eikonal approximation and effectively replace quark jets by two relativistic classical
particles that carry the color charges of quarks and move apart along the light-cone directions p+

and p−. The interaction of the quark jets with soft gluons is factorized into the unitary eikonal
phase W (0) given by the product of two Wilson lines calculated along classical trajectories of
two particles
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)
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with gauge fields Aµ(x) describing soft gluons. Denoting the total momentum of soft gluons
emitted into the right and left hemispheres as kR =

∑

i∈R ki and kL =
∑

i∈L ki, correspondingly,
one finds the thrust (1) as t = 2(kRp+)/Q2 + 2(kLp−)/Q2 and obtains the following expression
for the differential distribution
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with k± = k0±k3. Here, the matrix element of the Wilson line operator describes the interaction
of quarks with soft gluons and the summation goes over the final states N of soft gluons with
the total momentum k = kR + kL. Expression (6) follows from the universality of soft gluon
radiation and it takes into account both perturbative and nonperturbative corrections [9].

Let us neglect for the moment the perturbative contribution to the matrix element of the
Wilson line in (6). Then, introducing the shape function
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one can estimate the nonperturbative contribution to the thrust distribution as
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The nonperturbative function f(ε) is localized at small energies ε and according to (8) it deter-
mines the shape of the spectrum at small t = O(Λ
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/Q).
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Includes a non-perturbative function:

Korchemsky, Sterman 1999

Improved understanding of hadronization corrections
Hoang, Stewart 2007
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Top Jet Mass with Soft Drop

• We implement soft drop grooming of top jets 
with three main objectives: 0.1 0.3 0.5 0.7 0.9 1.1
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Figure 5: Phase space for emissions relevant for groomed jet radius Rg in the (log 1

z , log R0
✓ )

plane. The soft dropped region is gray and the first emission satisfying the soft drop criteria

is illustrated by the red dot. The forbidden emission region (the Sudakov exponent) is shaded

in pink.

the jet radius is set, so multiple emissions do not contribute to this observable. We have also

verified that non-global contributions are suppressed by Rg for � < 1, analogously to the

energy correlation case. For these reasons, we believe that the expression in Eq. (4.1) is fully

accurate to single-logarithmic level,8 though for consistency with the rest of this paper, we

will only evaluate Eq. (4.1) to MLL accuracy.

4.2 Comparison to Monte Carlo

There are two di↵erent ways one can define the groomed jet radius in Monte Carlo. The first

method is to simply measure the Rg value of the C/A branching that satisfies the soft drop

condition. A second approach, more directly relevant for pileup mitigation, is to determine

the e↵ective radius of the groomed jet from its active area [108]. The active area of a jet

is defined as the area over which infinitesimally soft particles are clustered into the jet. An

e↵ective jet radius Re↵ can then be defined from the groomed jet active area using:

Re↵ ⌘

✓
Aactive

⇡⇠

◆1/2

, (4.2)

8Strictly speaking, NLL accuracy requires evaluating the strong coupling at two loops, i.e. with �1, in the

CMW scheme [126].
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Groomed Jet Radius: Rg
Larkoski, Marzani, Soyez, Thaler 2014

Lower 
pT

from decay products

- Remove most of the soft contamination from the top jet
- Retain the top decay products within the final groomed jet
- Leave the top mass scheme information unaffected

• The peak region of the groomed top jet mass spectrum gives enhanced 
sensitivity to the top mass:

3.1 Modes and Power Counting Analysis

Following along the lines of derivation in Ref. [5] we consider an emission (or a decay product)

of energy E and at an angle ✓ o↵ the top quark and note that for this emission to contribute

to the invariant mass measurement in the peak region it needs to satisfy

ŝ = 2 v+.k ⇠ � , (3.3)

where � � �t is the physical width of the distribution in the peak region. Here k is the four

momentum and z is the energy fraction relative to the jet energy:
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�
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�
. (3.4)

For center of mass energy Q we have z = 2E/Q = k�/Q, and ✓ ⇠ 2k?/k�. Hence the peak

region constraint becomes
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Eq. (3.3) states that the scale of fluctuations of momenta in bHQET theory is O(�t). Both

ultra-collinear or ultra-soft modes in bHQET satisfy this constraint.

Now, application of soft drop puts another constraint:

z & zcut✓
� . (3.6)

Requiring grooming of ultra-soft modes with ✓ ⇠ 1 implies

zcut > z ⇠
2m�t

Q2
, (3.7)

whereas, to keep the ultra-collinear modes with ✓uc ⇠ 2m/Q we require
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The decay products have same boost as the ultra-collinear particles, or ✓decay ⇠ ✓uc, but with

much higher energy zdecay ⇠ 1. Hence, this condition is strong enough to ensure that the top

decays products are kept. Hence, we demand that zcut be parametrically separated from the

scales derived above:

✓
Q

2m
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kept

�t

m
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�
ucollinear
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zcut �
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2m�t

Q2
. (3.9)

However, the fact that angle of the decay products relative to the jet axis is the same as

that of ultra-collinear modes has an important consequence: For zcut in the range given by

Eq. (3.9) the soft drop criteria in Eq. (3.2) is satisfied when the algorithm reaches the branch

that corresponds to one of the three pairs of sub-jets of the decay products after having vetoed

away the ultra soft particles at larger angles. Thus Rg e↵ectively corresponds to �R ⇠ ✓decay
between the decay products.
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Soft Drop Larkoski, Marzani, Soyez, Thaler 2014

Grooms soft radiation from the jet

z > zcut ��

two grooming parameters

min(pTi, pTj)
pTi + pTj

> zcut

��Rij

R0

��

(cf.  Jesse Thaler’s recent colloquium)

Can still carry out calculations: Larkoski, Marzani, Soyez, Thaler 2014
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Top Jet Mass with Soft Drop
A. Hoang, S. Mantry, AP, I. Stewart

a) Peak Region Constraint: b) Soft Drop Constraint:

Constraints on 
Soft Drop parameters:

“light grooming here”

Ensure soft drop
does not touch mass

Ensure soft drop
removes most contamination

1

Gravity
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Gravity is the weakest of all the known forces that operate in our universe, being about one

trillion trillion trillion times smaller than the electromagnetic force that binds electrons and

nuclei into the atoms. And yet, gravity reigns supreme in determining the overall structure

and evolution of our universe, going all the way back to the moment of the Big Bang 13.8

billion years ago. Gravity is responsible for the formation of galaxies, stars, and planets

and keeping us confined to the Earth. Under extreme conditions, gravity leads to exotic

phenomena such as Black Holes, Gravitational Waves, and the bending of light beams.

Counterintuitively, the theory of gravity also explains the currently observed accelerated

expansion of our universe as a response to a form of energy called “dark energy”, distributed
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0
, µ⇤, µ�)UB�(ŝt̄ � ŝt̄
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TABLE I: E↵ective Theory Modes

Mode (p+, p�, p?) z ✓
2
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Global Soft (S) zQ(1, 1, 1) ⇠ zcut ⇠ 1

Collinear-Soft (CS) zQ( ✓
2
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✓
2) 877 ⇠ ( mtŝ

QQcut
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1
2+�

3 31 25 415

4 35 144 2356

5 45 300 556

Gravity is the weakest of all the known forces that operate in our universe, being about one

trillion trillion trillion times smaller than the electromagnetic force that binds electrons and

nuclei into the atoms. And yet, gravity reigns supreme in determining the overall structure

and evolution of our universe, going all the way back to the moment of the Big Bang 13.8

billion years ago. Gravity is responsible for the formation of galaxies, stars, and planets

and keeping us confined to the Earth. Under extreme conditions, gravity leads to exotic

3.1 Modes and Power Counting Analysis

Following along the lines of derivation in Ref. [5] we consider an emission (or a decay product)

of energy E and at an angle ✓ o↵ the top quark and note that for this emission to contribute

to the invariant mass measurement in the peak region it needs to satisfy

ŝ = 2 v+.k ⇠ � , (3.3)

where � � �t is the physical width of the distribution in the peak region. Here k is the four

momentum and z is the energy fraction relative to the jet energy:

kµj =
�
k+, k�, k?

�
=

�
E(1� cos ✓), E(1 + cos ✓), k?

�
. (3.4)

For center of mass energy Q we have z = 2E/Q = k�/Q, and ✓ ⇠ 2k?/k�. Hence the peak

region constraint becomes

z


(1� cos ✓) +

m2

Q2
(1 + cos ✓)

�
⇠

2m�t

Q2
. (3.5)

Eq. (3.3) states that the scale of fluctuations of momenta in bHQET theory is O(�t). Both

ultra-collinear or ultra-soft modes in bHQET satisfy this constraint.

Now, application of soft drop puts another constraint:

z & zcut✓
� . (3.6)

Requiring grooming of ultra-soft modes with ✓ ⇠ 1 implies

zcut > z ⇠
2m�t

Q2
, (3.7)

whereas, to keep the ultra-collinear modes with ✓uc ⇠ 2m/Q we require

zcut

✓
2m

Q
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< z ⇠
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m
)

�t

m
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2m

◆�

> zcut . (3.8)

The decay products have same boost as the ultra-collinear particles, or ✓decay ⇠ ✓uc, but with

much higher energy zdecay ⇠ 1. Hence, this condition is strong enough to ensure that the top

decays products are kept. Hence, we demand that zcut be parametrically separated from the

scales derived above:

✓
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products
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m
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�
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usoft
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Q2
. (3.9)

However, the fact that angle of the decay products relative to the jet axis is the same as

that of ultra-collinear modes has an important consequence: For zcut in the range given by

Eq. (3.9) the soft drop criteria in Eq. (3.2) is satisfied when the algorithm reaches the branch

that corresponds to one of the three pairs of sub-jets of the decay products after having vetoed

away the ultra soft particles at larger angles. Thus Rg e↵ectively corresponds to �R ⇠ ✓decay
between the decay products.
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Grooms soft radiation from the jet

z > zcut ��

two grooming parameters

min(pTi, pTj)
pTi + pTj

> zcut

��Rij

R0

��

(cf.  Jesse Thaler’s recent colloquium)
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Top Jet Mass with Soft Drop
A. Hoang, S. Mantry, AP, I. Stewart

a) Peak Region Constraint: b) Soft Drop Constraint:

Constraints on 
Soft Drop parameters:

“light grooming here”

Ensure soft drop
does not touch mass

Ensure soft drop
removes most contamination
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3.1 Modes and Power Counting Analysis
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to the invariant mass measurement in the peak region it needs to satisfy

ŝ = 2 v+.k ⇠ � , (3.3)

where � � �t is the physical width of the distribution in the peak region. Here k is the four

momentum and z is the energy fraction relative to the jet energy:
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E(1� cos ✓), E(1 + cos ✓), k?
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For center of mass energy Q we have z = 2E/Q = k�/Q, and ✓ ⇠ 2k?/k�. Hence the peak

region constraint becomes
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(1� cos ✓) +
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(1 + cos ✓)
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. (3.5)

Eq. (3.3) states that the scale of fluctuations of momenta in bHQET theory is O(�t). Both

ultra-collinear or ultra-soft modes in bHQET satisfy this constraint.

Now, application of soft drop puts another constraint:

z & zcut✓
� . (3.6)

Requiring grooming of ultra-soft modes with ✓ ⇠ 1 implies

zcut > z ⇠
2m�t
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, (3.7)

whereas, to keep the ultra-collinear modes with ✓uc ⇠ 2m/Q we require
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The decay products have same boost as the ultra-collinear particles, or ✓decay ⇠ ✓uc, but with

much higher energy zdecay ⇠ 1. Hence, this condition is strong enough to ensure that the top

decays products are kept. Hence, we demand that zcut be parametrically separated from the

scales derived above:
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However, the fact that angle of the decay products relative to the jet axis is the same as

that of ultra-collinear modes has an important consequence: For zcut in the range given by

Eq. (3.9) the soft drop criteria in Eq. (3.2) is satisfied when the algorithm reaches the branch

that corresponds to one of the three pairs of sub-jets of the decay products after having vetoed

away the ultra soft particles at larger angles. Thus Rg e↵ectively corresponds to �R ⇠ ✓decay
between the decay products.

– 6 –

3.1 Modes and Power Counting Analysis

Following along the lines of derivation in Ref. [5] we consider an emission (or a decay product)

of energy E and at an angle ✓ o↵ the top quark and note that for this emission to contribute

to the invariant mass measurement in the peak region it needs to satisfy

ŝ = 2 v+.k ⇠ � , (3.3)

where � � �t is the physical width of the distribution in the peak region. Here k is the four

momentum and z is the energy fraction relative to the jet energy:

kµj =
�
k+, k�, k?

�
=

�
E(1� cos ✓), E(1 + cos ✓), k?

�
. (3.4)

For center of mass energy Q we have z = 2E/Q = k�/Q, and ✓ ⇠ 2k?/k�. Hence the peak

region constraint becomes

z


(1� cos ✓) +

m2

Q2
(1 + cos ✓)

�
⇠

2m�t

Q2
. (3.5)

Eq. (3.3) states that the scale of fluctuations of momenta in bHQET theory is O(�t). Both

ultra-collinear or ultra-soft modes in bHQET satisfy this constraint.

Now, application of soft drop puts another constraint:

z & zcut✓
� . (3.6)

Requiring grooming of ultra-soft modes with ✓ ⇠ 1 implies

zcut > z ⇠
2m�t

Q2
, (3.7)

whereas, to keep the ultra-collinear modes with ✓uc ⇠ 2m/Q we require

zcut

✓
2m

Q

◆�

< z ⇠
�t

m
)

�t

m

✓
Q

2m

◆�

> zcut . (3.8)

The decay products have same boost as the ultra-collinear particles, or ✓decay ⇠ ✓uc, but with

much higher energy zdecay ⇠ 1. Hence, this condition is strong enough to ensure that the top

decays products are kept. Hence, we demand that zcut be parametrically separated from the

scales derived above:

✓
Q

2m

◆�

�
decay

products
kept

�t

m

✓
Q

2m

◆�

�
ucollinear

kept

zcut �
usoft
vetoed

2m�t

Q2
. (3.9)

However, the fact that angle of the decay products relative to the jet axis is the same as

that of ultra-collinear modes has an important consequence: For zcut in the range given by

Eq. (3.9) the soft drop criteria in Eq. (3.2) is satisfied when the algorithm reaches the branch

that corresponds to one of the three pairs of sub-jets of the decay products after having vetoed

away the ultra soft particles at larger angles. Thus Rg e↵ectively corresponds to �R ⇠ ✓decay
between the decay products.

– 6 –

35

Soft Drop Larkoski, Marzani, Soyez, Thaler 2014

Grooms soft radiation from the jet

z > zcut ��

two grooming parameters

min(pTi, pTj)
pTi + pTj

> zcut

��Rij

R0

��

(cf.  Jesse Thaler’s recent colloquium)

Can still carry out calculations: Larkoski, Marzani, Soyez, Thaler 2014

Fri, Larkoski, Schwartz, Yan 2016500 1000 1500 200010-5

10-4

10-3

10-2

0.1

1

pT [GeV]

z c
ut

ultracollinear vetoed

allowed region β = 2

ultrasoft not vetoed

1

P(x|Q) =
1

�tot({Q})

Z
dx1 dx2 d�(y)

f(x1) f(x2)

x1 x2 s
�({Q},y)W (x,y)

�t

m

⇣
Q

2m

⌘�

� zcut �
2m�t

Q2
(1)

L(x|Q) = f(N)⇧i=1,NP(xi|Q)

�
2 = ⌃i=l, 4jets

(p̂i
T
� p

i

T
)2

�
2

i

+ ⌃j=x,y

(p̂UE

j
� p

UE

j
)2

�
2

j

+
(mjj �mW )2

�2

W

+
(ml⌫ �mW )2

�2

W

+
(mbjj �m

reco

t
)2

�2

t

+
(mbl⌫ �m

reco

t
)2

�2

t

Lsample = L
m

reco
t

shape
⇥ L

mjj

shape
⇥ Lne⌫ ⇥ Lbg

R ⇠

X

n

rn ↵
n

rn ! Ka
n
n!nb

N? ⇠
1

|a|↵

T = max
n

P
i
|pi.n|P
i
|pi|

R(⌧) =

Z
⌧

0

d⌧
0 1

�0

d�

d⌧
0 = 1 +

2↵s

3⇡
[�2 ln2

⌧ � 3 ln ⌧ + . . .]

1

�0

d�dijet

d⌧
= H(Q2

, µ)

Z
dp

2

Ja
dp

2

Jb
dk J(p2

Ja
, µ)J(p2

Jb
, µ)ST (k, µ)�

⇣
⌧ �

p
2

Ja
+ p

2

Jb

Q2
�

k

Q

⌘

HQ(Q, µ) = |CQ|
2
, Hm

⇣
m,

Q

m
, µ

⌘
= |Cm|

2
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a) Peak Region Constraint: b) Soft Drop Constraint:

Constraints on 
Soft Drop parameters:

“light grooming here”

Ensure soft drop
does not touch mass

Ensure soft drop
removes most contamination
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However, the fact that angle of the decay products relative to the jet axis is the same as

that of ultra-collinear modes has an important consequence: For zcut in the range given by

Eq. (3.9) the soft drop criteria in Eq. (3.2) is satisfied when the algorithm reaches the branch

that corresponds to one of the three pairs of sub-jets of the decay products after having vetoed
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between the decay products.
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(cf.  Jesse Thaler’s recent colloquium)
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Top Jet Mass with Soft Drop
A. Hoang, S. Mantry, AP, I. Stewart

a) Peak Region Constraint: b) Soft Drop Constraint:

Constraints on 
Soft Drop parameters:

“light grooming here”

Ensure soft drop
does not touch mass

Ensure soft drop
removes most contamination

Light Grooming Region

z (1-z)

• We use a more restrictive light grooming region that simplifies the theoretical 
framework:
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When Eq. (3) or Eq. (4) is satisfied all subsequent con-
stituents in the tree are kept, thus setting a new jet radius
Rg < R for the groomed jet. In the limit Rij ⌧ 1 with
jet constituents close to the jet axis, we can also rewrite
Eq. (3) in terms of energies Ei = pTi cosh ⌘i and polar
angles ✓ij ⌧ 1 as

min[Ei, Ej ]

(Ei + Ej)
> zcut

⇣cosh ⌘J

R0

⌘�
✓�

ij ⌘ z̃cut ✓�
ij , (5)

where we used cosh ⌘i = cosh ⌘j + O(✓ij) to write the
extra factor in terms of the jet’s rapidity. In the origi-
nal soft drop algorithm [13] one chooses the parameter
R0 = R, the original jet radius. For our application
which has a su�ciently large R, we prefer to fix the pa-
rameter R0 = 1. This implies that the particles kept
within radius Rg are independent of the original value of
R, and thus avoids making the cross section dependent
on the original jet radius. When ✓ij ⌧ 1 the form in
Eq. (5) with z̃cut = zcut cosh�(⌘J) is easier to use for the
factorization mode analysis.

With soft drop grooming the jet mass is defined by
starting with the constituents of the jet of radius R, and
then summing only over the constituents Jsd that remain
after soft-drop has been applied,

m2
J =

✓ X

i2Jsd

pµ
i

◆2

. (6)

This grooming retains strong kinematic sensitivity to mt

as in direct reconstruction methods, removes contamina-
tion from other parts of the collision, and allows for a fac-
torization based description, as has been demonstrated
for massless jets [14]. Monte-Carlo studies of top quarks
have also shown to have reduced tuning dependence with
soft drop [15].

Here we make use of the Soft-Collinear E↵ective The-
ory [16] to derive peak region factorization formulae for
the cross-section to produce tt̄ pairs. Our calculation
requires light grooming defined by

�t

h2mt
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& zcut, (7a)
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The dimensionless parameter h, defined below in
Eq. (39), is related to the angles of the top decay prod-
ucts. For the Q values of interest it has an average value
around hhi ⇠ 2. The first constraint in Eq. (7a) enables
a simple treatment of the top-decay products. It also
ensures �t/mt(Q/2mt)�

� zcut so that boosted ultra-
collinear (UC) massless gluon and quark radiation associ-
ated with the top quark is not modified. This constraint
is significantly stronger than that needed to retain the
decay products, (Q/2mt)�

� zcut, and guarantees that
there will be a clear peak around the top mass. In the
factorization theorem discussed below this allows us to

FIG. 1. Allowed values of zcut which are strong enough to
isolate the jet from contaminating radiation (above red band),
but not so strong as to invalidate the factorization formulae
we derive (below blue band).

have control over the scheme for mt that occurs in the
inclusive heavy quark jet function [9]. The second con-
straint in Eq. (7b) ensures that wide angle soft radiation
is groomed away, isolating the jet and removing the ma-
jority of soft contamination. These results follow directly
from an SCET analysis of the degrees of freedom in the
presence of the soft drop constraints. A more detailed
discussion can be found in [17].

The allowed zcut region satisfying Eq. (7) is shown as
a function of pT in Fig. 1 for a jet with ⌘J = 0. Here the
upper blue line is obtained by replacing & by an equal-
ity in Eq. (7a), and the lower red line is obtained by
replacing the “a � b” by “a = 3b” in Eq. (7b). We take
� = 2 as our default choice. Taking pT ' 750 GeV, us-
ing the average cosh(⌘J) = hcosh(⌘J)i = 1.3, and setting
h = 2 the constraints in Eq. (7) become 0.01 & zcut and

z1/4
cut � .056 which is satisfied by zcut ' 0.01. This light

grooming is an order of magnitude smaller than typically
used for jets at the LHC, but as we will see, is still very
e↵ective for mt measurements. For smaller � < 2 the
allowed region is more constrained, so for experimentally
accessible pT s the expansions used to derive the factor-
ization formulae are less convergent. It is known that soft
drop reduces pileup corrections, and although we will not
include these e↵ects in the study done here, it would be
worth doing so in the future. We comment further on
what such a pileup study should address in our conclu-
sions.

In this paper we present the key aspects of the fac-
torized cross-sections with a focus on results at next-
to-leading-logarithmic (NLL) resummation of large log-
arithms and hadronization corrections. In Ref. [9, 11]
it was shown that nonperturbative hadronization correc-
tions play an important role for measurements of the top
mass from boosted top jets in e+e� ! tt̄. This remains
true for pp ! tt̄. We will provide a rigorous description
of hadronization corrections derived from field theory for
soft drop groomed jets that are initiated by either mass-
less quarks or gluons, and for heavy unstable top quarks.
We show that although the leading hadronization e↵ects
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ucts. For the Q values of interest it has an average value
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a simple treatment of the top-decay products. It also
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� zcut so that boosted ultra-
collinear (UC) massless gluon and quark radiation associ-
ated with the top quark is not modified. This constraint
is significantly stronger than that needed to retain the
decay products, (Q/2mt)�

� zcut, and guarantees that
there will be a clear peak around the top mass. In the
factorization theorem discussed below this allows us to
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have control over the scheme for mt that occurs in the
inclusive heavy quark jet function [9]. The second con-
straint in Eq. (7b) ensures that wide angle soft radiation
is groomed away, isolating the jet and removing the ma-
jority of soft contamination. These results follow directly
from an SCET analysis of the degrees of freedom in the
presence of the soft drop constraints. A more detailed
discussion can be found in [17].

The allowed zcut region satisfying Eq. (7) is shown as
a function of pT in Fig. 1 for a jet with ⌘J = 0. Here the
upper blue line is obtained by replacing & by an equal-
ity in Eq. (7a), and the lower red line is obtained by
replacing the “a � b” by “a = 3b” in Eq. (7b). We take
� = 2 as our default choice. Taking pT ' 750 GeV, us-
ing the average cosh(⌘J) = hcosh(⌘J)i = 1.3, and setting
h = 2 the constraints in Eq. (7) become 0.01 & zcut and

z1/4
cut � .056 which is satisfied by zcut ' 0.01. This light

grooming is an order of magnitude smaller than typically
used for jets at the LHC, but as we will see, is still very
e↵ective for mt measurements. For smaller � < 2 the
allowed region is more constrained, so for experimentally
accessible pT s the expansions used to derive the factor-
ization formulae are less convergent. It is known that soft
drop reduces pileup corrections, and although we will not
include these e↵ects in the study done here, it would be
worth doing so in the future. We comment further on
what such a pileup study should address in our conclu-
sions.

In this paper we present the key aspects of the fac-
torized cross-sections with a focus on results at next-
to-leading-logarithmic (NLL) resummation of large log-
arithms and hadronization corrections. In Ref. [9, 11]
it was shown that nonperturbative hadronization correc-
tions play an important role for measurements of the top
mass from boosted top jets in e+e� ! tt̄. This remains
true for pp ! tt̄. We will provide a rigorous description
of hadronization corrections derived from field theory for
soft drop groomed jets that are initiated by either mass-
less quarks or gluons, and for heavy unstable top quarks.
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When Eq. (3) or Eq. (4) is satisfied all subsequent con-
stituents in the tree are kept, thus setting a new jet radius
Rg < R for the groomed jet.

In the limit Rij ⌧ 1 with jet constituents close to the
jet axis, we can also rewrite Eq. (3) in terms of energies
Ei = pTi cosh ⌘i and polar angles ✓ij ⌧ 1 as

min[Ei, Ej ]

(Ei + Ej)
> zcut

⇣cosh ⌘J

R0

⌘�
✓

�
ij ⌘ z̃cut ✓

�
ij , (5)

where we used cosh ⌘i = cosh ⌘j + O(✓ij) to write the
extra factor in terms of the jet’s rapidity. In the original
soft drop algorithm [13] one chooses the parameter R0 =
R, the original jet’s radius. For our application which
has a su�ciently large R, we prefer to fix the parameter
R0 = 1. This implies that the particles kept within radius
Rg are independent of the original value of R, and thus
avoids making the cross section dependent on the original
jet radius. When ✓ij ⌧ 1 the form in Eq. (5) with z̃cut =

zcut cosh�(⌘J)/R
�
0 is easier to use for the factorization

mode analysis in pp. For ee the same formula is valid for
✓ij ⌧ 1 but here we have z̃

ee
cut = zcut(

p
2 sin(Ree

0 /2))�� .
With soft drop grooming the jet mass is defined by

starting with the constituents of the jet of radius R, and
then summing only over the constituents Jsd that remain
after soft-drop has been applied,

m
2
J =

✓ X

i2Jsd

p
µ
i

◆2

. (6)

This grooming retains strong kinematic sensitivity to mt

as in direct reconstruction methods, removes contamina-
tion from other parts of the collision, and allows for a fac-
torization based description, as has been demonstrated
for massless jets [14]. Monte-Carlo studies of top quarks
have also shown to have reduced tuning dependence with
soft drop [15].

Here we make use of the Soft-Collinear E↵ective The-
ory (SCET) [16] to derive peak region factorization for-
mulae for the cross-section to produce tt̄ pairs. Our cal-
culation requires light grooming defined by
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⇣
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The dimensionless parameter h, defined below in
Eq. (38), is related to the angles of the top decay prod-
ucts. For the Q values of interest it has an average
value around hhi ⇠ 2. The first constraint in Eq. (7a)
enables a simple treatment of the top-decay products.
It also ensures �t/mt(Q/2mt)�

� zcut so that boosted
ultra-collinear (UC) massless gluon and quark radiation
associated with the top quark is not modified by soft
drop. This constraint is significantly stronger than that
needed to retain the decay products, (Q/2mt)�

� zcut,
and guarantees that there will be a clear peak around the

FIG. 1. Allowed values of zcut which are strong enough to

isolate the jet from contaminating radiation (above red band),

but not so strong as to invalidate the factorization formulae

we derive (below blue band).

top mass. In the factorization theorem discussed below
this allows us to have control over the scheme for mt that
occurs in the inclusive heavy quark jet function [9]. The
second constraint in Eq. (7b) ensures that wide angle soft
radiation is groomed away, isolating the jet and removing
the majority of soft contamination. These results follow
directly from an SCET analysis of the degrees of freedom
in the presence of the soft drop constraints, as we discuss
further below.

The allowed zcut region satisfying Eq. (7) is shown as
a function of pT in Fig. 1 for a jet with ⌘J = 0. Here the
upper blue line is obtained by replacing & by an equal-
ity in Eq. (7a), and the lower red line is obtained by
replacing the “a � b” by “a = 3b” in Eq. (7b). We take
� = 2 as our default choice. Taking pT ' 750 GeV, us-
ing the average cosh(⌘J) = hcosh(⌘J)i = 1.3, and setting
h = 2 the constraints in Eq. (7) become 0.01 & zcut and

z
1/4
cut � .056 which is satisfied by zcut ' 0.01. This light

grooming is an order of magnitude smaller than typically
used for jets at the LHC, but as we will see, is still very
e↵ective for mt measurements. For smaller � < 2 the
allowed region is more constrained, so for experimentally
accessible pT s the expansions used to derive the factor-
ization formulae are less convergent. It is known that soft
drop reduces pileup corrections, and although we will not
include these e↵ects in the study done here, it would be
worth doing so in the future. We comment further on
what such a pileup study should address in our conclu-
sions.

In this paper we present the key aspects of the fac-
torized cross-section with a focus on results with a next-
to-leading-logarithmic (NLL) resummation of large log-
arithms and including hadronization corrections. In
Ref. [9, 11] it was shown that nonperturbative hadroniza-
tion corrections play an important role for measurements
of the top mass from boosted top jets in e

+
e
�
! tt̄. This

remains true for pp ! tt̄. We will review results from
Ref. [17] that give a rigorous description of hadroniza-
tion corrections derived from field theory for soft drop
groomed jets that are initiated by either massless quarks

- Simplified treatment of decay products:

- Decoupling the effects of 
energetic collinear radiation in 
the top jet from wider-angle 
soft radiation:



3.1 Modes and Power Counting Analysis

Following along the lines of derivation in Ref. [5] we consider an emission (or a decay product)

of energy E and at an angle ✓ o↵ the top quark and note that for this emission to contribute

to the invariant mass measurement in the peak region it needs to satisfy

ŝ = 2 v+.k ⇠ � , (3.3)

where � � �t is the physical width of the distribution in the peak region. Here k is the four

momentum and z is the energy fraction relative to the jet energy:
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�
. (3.4)

For center of mass energy Q we have z = 2E/Q = k�/Q, and ✓ ⇠ 2k?/k�. Hence the peak

region constraint becomes
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Eq. (3.3) states that the scale of fluctuations of momenta in bHQET theory is O(�t). Both

ultra-collinear or ultra-soft modes in bHQET satisfy this constraint.

Now, application of soft drop puts another constraint:
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The decay products have same boost as the ultra-collinear particles, or ✓decay ⇠ ✓uc, but with

much higher energy zdecay ⇠ 1. Hence, this condition is strong enough to ensure that the top

decays products are kept. Hence, we demand that zcut be parametrically separated from the

scales derived above:

✓
Q

2m

◆�

�
decay

products
kept

�t

m

✓
Q

2m

◆�

�
ucollinear

kept

zcut �
usoft
vetoed

2m�t

Q2
. (3.9)

However, the fact that angle of the decay products relative to the jet axis is the same as

that of ultra-collinear modes has an important consequence: For zcut in the range given by

Eq. (3.9) the soft drop criteria in Eq. (3.2) is satisfied when the algorithm reaches the branch

that corresponds to one of the three pairs of sub-jets of the decay products after having vetoed

away the ultra soft particles at larger angles. Thus Rg e↵ectively corresponds to �R ⇠ ✓decay
between the decay products.
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Eq. (3.3) states that the scale of fluctuations of momenta in bHQET theory is O(�t). Both

ultra-collinear or ultra-soft modes in bHQET satisfy this constraint.

Now, application of soft drop puts another constraint:

z & zcut✓
� . (3.6)
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much higher energy zdecay ⇠ 1. Hence, this condition is strong enough to ensure that the top

decays products are kept. Hence, we demand that zcut be parametrically separated from the
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However, the fact that angle of the decay products relative to the jet axis is the same as

that of ultra-collinear modes has an important consequence: For zcut in the range given by

Eq. (3.9) the soft drop criteria in Eq. (3.2) is satisfied when the algorithm reaches the branch

that corresponds to one of the three pairs of sub-jets of the decay products after having vetoed

away the ultra soft particles at larger angles. Thus Rg e↵ectively corresponds to �R ⇠ ✓decay
between the decay products.
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a) Peak Region Constraint: b) Soft Drop Constraint:

Constraints on 
Soft Drop parameters:

“light grooming here”

Ensure soft drop
does not touch mass

Ensure soft drop
removes most contamination

3.1 Modes and Power Counting Analysis

Following along the lines of derivation in Ref. [5] we consider an emission (or a decay product)

of energy E and at an angle ✓ o↵ the top quark and note that for this emission to contribute

to the invariant mass measurement in the peak region it needs to satisfy

ŝ = 2 v+.k ⇠ � , (3.3)

where � � �t is the physical width of the distribution in the peak region. Here k is the four

momentum and z is the energy fraction relative to the jet energy:

kµj =
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=
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For center of mass energy Q we have z = 2E/Q = k�/Q, and ✓ ⇠ 2k?/k�. Hence the peak

region constraint becomes
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Eq. (3.3) states that the scale of fluctuations of momenta in bHQET theory is O(�t). Both

ultra-collinear or ultra-soft modes in bHQET satisfy this constraint.

Now, application of soft drop puts another constraint:

z & zcut✓
� . (3.6)

Requiring grooming of ultra-soft modes with ✓ ⇠ 1 implies
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The decay products have same boost as the ultra-collinear particles, or ✓decay ⇠ ✓uc, but with

much higher energy zdecay ⇠ 1. Hence, this condition is strong enough to ensure that the top

decays products are kept. Hence, we demand that zcut be parametrically separated from the

scales derived above:

✓
Q

2m

◆�

�
decay

products
kept

�t

m

✓
Q

2m

◆�

�
ucollinear

kept

zcut �
usoft
vetoed

2m�t

Q2
. (3.9)

However, the fact that angle of the decay products relative to the jet axis is the same as

that of ultra-collinear modes has an important consequence: For zcut in the range given by

Eq. (3.9) the soft drop criteria in Eq. (3.2) is satisfied when the algorithm reaches the branch

that corresponds to one of the three pairs of sub-jets of the decay products after having vetoed

away the ultra soft particles at larger angles. Thus Rg e↵ectively corresponds to �R ⇠ ✓decay
between the decay products.
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Top Jet Mass with Soft Drop
A. Hoang, S. Mantry, AP, I. Stewart

a) Peak Region Constraint: b) Soft Drop Constraint:

Constraints on 
Soft Drop parameters:

“light grooming here”

Ensure soft drop
does not touch mass

Ensure soft drop
removes most contamination

Light Grooming Region

z (1-z)

• We use a more restrictive light grooming region that simplifies the theoretical 
framework:
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When Eq. (3) or Eq. (4) is satisfied all subsequent con-
stituents in the tree are kept, thus setting a new jet radius
Rg < R for the groomed jet. In the limit Rij ⌧ 1 with
jet constituents close to the jet axis, we can also rewrite
Eq. (3) in terms of energies Ei = pTi cosh ⌘i and polar
angles ✓ij ⌧ 1 as

min[Ei, Ej ]

(Ei + Ej)
> zcut

⇣cosh ⌘J

R0

⌘�
✓�

ij ⌘ z̃cut ✓�
ij , (5)

where we used cosh ⌘i = cosh ⌘j + O(✓ij) to write the
extra factor in terms of the jet’s rapidity. In the origi-
nal soft drop algorithm [13] one chooses the parameter
R0 = R, the original jet radius. For our application
which has a su�ciently large R, we prefer to fix the pa-
rameter R0 = 1. This implies that the particles kept
within radius Rg are independent of the original value of
R, and thus avoids making the cross section dependent
on the original jet radius. When ✓ij ⌧ 1 the form in
Eq. (5) with z̃cut = zcut cosh�(⌘J) is easier to use for the
factorization mode analysis.

With soft drop grooming the jet mass is defined by
starting with the constituents of the jet of radius R, and
then summing only over the constituents Jsd that remain
after soft-drop has been applied,

m2
J =

✓ X

i2Jsd

pµ
i

◆2

. (6)

This grooming retains strong kinematic sensitivity to mt

as in direct reconstruction methods, removes contamina-
tion from other parts of the collision, and allows for a fac-
torization based description, as has been demonstrated
for massless jets [14]. Monte-Carlo studies of top quarks
have also shown to have reduced tuning dependence with
soft drop [15].

Here we make use of the Soft-Collinear E↵ective The-
ory [16] to derive peak region factorization formulae for
the cross-section to produce tt̄ pairs. Our calculation
requires light grooming defined by
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& zcut, (7a)
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The dimensionless parameter h, defined below in
Eq. (39), is related to the angles of the top decay prod-
ucts. For the Q values of interest it has an average value
around hhi ⇠ 2. The first constraint in Eq. (7a) enables
a simple treatment of the top-decay products. It also
ensures �t/mt(Q/2mt)�

� zcut so that boosted ultra-
collinear (UC) massless gluon and quark radiation associ-
ated with the top quark is not modified. This constraint
is significantly stronger than that needed to retain the
decay products, (Q/2mt)�

� zcut, and guarantees that
there will be a clear peak around the top mass. In the
factorization theorem discussed below this allows us to

FIG. 1. Allowed values of zcut which are strong enough to
isolate the jet from contaminating radiation (above red band),
but not so strong as to invalidate the factorization formulae
we derive (below blue band).

have control over the scheme for mt that occurs in the
inclusive heavy quark jet function [9]. The second con-
straint in Eq. (7b) ensures that wide angle soft radiation
is groomed away, isolating the jet and removing the ma-
jority of soft contamination. These results follow directly
from an SCET analysis of the degrees of freedom in the
presence of the soft drop constraints. A more detailed
discussion can be found in [17].

The allowed zcut region satisfying Eq. (7) is shown as
a function of pT in Fig. 1 for a jet with ⌘J = 0. Here the
upper blue line is obtained by replacing & by an equal-
ity in Eq. (7a), and the lower red line is obtained by
replacing the “a � b” by “a = 3b” in Eq. (7b). We take
� = 2 as our default choice. Taking pT ' 750 GeV, us-
ing the average cosh(⌘J) = hcosh(⌘J)i = 1.3, and setting
h = 2 the constraints in Eq. (7) become 0.01 & zcut and

z1/4
cut � .056 which is satisfied by zcut ' 0.01. This light

grooming is an order of magnitude smaller than typically
used for jets at the LHC, but as we will see, is still very
e↵ective for mt measurements. For smaller � < 2 the
allowed region is more constrained, so for experimentally
accessible pT s the expansions used to derive the factor-
ization formulae are less convergent. It is known that soft
drop reduces pileup corrections, and although we will not
include these e↵ects in the study done here, it would be
worth doing so in the future. We comment further on
what such a pileup study should address in our conclu-
sions.

In this paper we present the key aspects of the fac-
torized cross-sections with a focus on results at next-
to-leading-logarithmic (NLL) resummation of large log-
arithms and hadronization corrections. In Ref. [9, 11]
it was shown that nonperturbative hadronization correc-
tions play an important role for measurements of the top
mass from boosted top jets in e+e� ! tt̄. This remains
true for pp ! tt̄. We will provide a rigorous description
of hadronization corrections derived from field theory for
soft drop groomed jets that are initiated by either mass-
less quarks or gluons, and for heavy unstable top quarks.
We show that although the leading hadronization e↵ects
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have control over the scheme for mt that occurs in the
inclusive heavy quark jet function [9]. The second con-
straint in Eq. (7b) ensures that wide angle soft radiation
is groomed away, isolating the jet and removing the ma-
jority of soft contamination. These results follow directly
from an SCET analysis of the degrees of freedom in the
presence of the soft drop constraints. A more detailed
discussion can be found in [17].

The allowed zcut region satisfying Eq. (7) is shown as
a function of pT in Fig. 1 for a jet with ⌘J = 0. Here the
upper blue line is obtained by replacing & by an equal-
ity in Eq. (7a), and the lower red line is obtained by
replacing the “a � b” by “a = 3b” in Eq. (7b). We take
� = 2 as our default choice. Taking pT ' 750 GeV, us-
ing the average cosh(⌘J) = hcosh(⌘J)i = 1.3, and setting
h = 2 the constraints in Eq. (7) become 0.01 & zcut and
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grooming is an order of magnitude smaller than typically
used for jets at the LHC, but as we will see, is still very
e↵ective for mt measurements. For smaller � < 2 the
allowed region is more constrained, so for experimentally
accessible pT s the expansions used to derive the factor-
ization formulae are less convergent. It is known that soft
drop reduces pileup corrections, and although we will not
include these e↵ects in the study done here, it would be
worth doing so in the future. We comment further on
what such a pileup study should address in our conclu-
sions.

In this paper we present the key aspects of the fac-
torized cross-sections with a focus on results at next-
to-leading-logarithmic (NLL) resummation of large log-
arithms and hadronization corrections. In Ref. [9, 11]
it was shown that nonperturbative hadronization correc-
tions play an important role for measurements of the top
mass from boosted top jets in e+e� ! tt̄. This remains
true for pp ! tt̄. We will provide a rigorous description
of hadronization corrections derived from field theory for
soft drop groomed jets that are initiated by either mass-
less quarks or gluons, and for heavy unstable top quarks.
We show that although the leading hadronization e↵ects
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- Simplified treatment of decay products:

- Decoupling the effects of 
energetic collinear radiation in 
the top jet from wider-angle 
soft radiation:

2

When Eq. (3) or Eq. (4) is satisfied all subsequent con-
stituents in the tree are kept, thus setting a new jet radius
Rg < R for the groomed jet.

In the limit Rij ⌧ 1 with jet constituents close to the
jet axis, we can also rewrite Eq. (3) in terms of energies
Ei = pTi cosh ⌘i and polar angles ✓ij ⌧ 1 as
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where we used cosh ⌘i = cosh ⌘j + O(✓ij) to write the
extra factor in terms of the jet’s rapidity. In the original
soft drop algorithm [13] one chooses the parameter R0 =
R, the original jet’s radius. For our application which
has a su�ciently large R, we prefer to fix the parameter
R0 = 1. This implies that the particles kept within radius
Rg are independent of the original value of R, and thus
avoids making the cross section dependent on the original
jet radius. When ✓ij ⌧ 1 the form in Eq. (5) with z̃cut =
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mode analysis in pp. For ee the same formula is valid for
✓ij ⌧ 1 but here we have z̃

ee
cut = zcut(

p
2 sin(Ree

0 /2))�� .
With soft drop grooming the jet mass is defined by

starting with the constituents of the jet of radius R, and
then summing only over the constituents Jsd that remain
after soft-drop has been applied,

m
2
J =

✓ X

i2Jsd

p
µ
i

◆2

. (6)

This grooming retains strong kinematic sensitivity to mt

as in direct reconstruction methods, removes contamina-
tion from other parts of the collision, and allows for a fac-
torization based description, as has been demonstrated
for massless jets [14]. Monte-Carlo studies of top quarks
have also shown to have reduced tuning dependence with
soft drop [15].

Here we make use of the Soft-Collinear E↵ective The-
ory (SCET) [16] to derive peak region factorization for-
mulae for the cross-section to produce tt̄ pairs. Our cal-
culation requires light grooming defined by

�t

h2mt

⇣
Q

2hmt cosh ⌘J

⌘�
& zcut, (7a)

z

1
2+�

cut �
1

2

✓
�t

mt

4m
2
t

Q2

1

cosh�
⌘J

◆ 1
2+�

. (7b)

The dimensionless parameter h, defined below in
Eq. (38), is related to the angles of the top decay prod-
ucts. For the Q values of interest it has an average
value around hhi ⇠ 2. The first constraint in Eq. (7a)
enables a simple treatment of the top-decay products.
It also ensures �t/mt(Q/2mt)�

� zcut so that boosted
ultra-collinear (UC) massless gluon and quark radiation
associated with the top quark is not modified by soft
drop. This constraint is significantly stronger than that
needed to retain the decay products, (Q/2mt)�

� zcut,
and guarantees that there will be a clear peak around the

FIG. 1. Allowed values of zcut which are strong enough to

isolate the jet from contaminating radiation (above red band),

but not so strong as to invalidate the factorization formulae

we derive (below blue band).

top mass. In the factorization theorem discussed below
this allows us to have control over the scheme for mt that
occurs in the inclusive heavy quark jet function [9]. The
second constraint in Eq. (7b) ensures that wide angle soft
radiation is groomed away, isolating the jet and removing
the majority of soft contamination. These results follow
directly from an SCET analysis of the degrees of freedom
in the presence of the soft drop constraints, as we discuss
further below.

The allowed zcut region satisfying Eq. (7) is shown as
a function of pT in Fig. 1 for a jet with ⌘J = 0. Here the
upper blue line is obtained by replacing & by an equal-
ity in Eq. (7a), and the lower red line is obtained by
replacing the “a � b” by “a = 3b” in Eq. (7b). We take
� = 2 as our default choice. Taking pT ' 750 GeV, us-
ing the average cosh(⌘J) = hcosh(⌘J)i = 1.3, and setting
h = 2 the constraints in Eq. (7) become 0.01 & zcut and

z
1/4
cut � .056 which is satisfied by zcut ' 0.01. This light

grooming is an order of magnitude smaller than typically
used for jets at the LHC, but as we will see, is still very
e↵ective for mt measurements. For smaller � < 2 the
allowed region is more constrained, so for experimentally
accessible pT s the expansions used to derive the factor-
ization formulae are less convergent. It is known that soft
drop reduces pileup corrections, and although we will not
include these e↵ects in the study done here, it would be
worth doing so in the future. We comment further on
what such a pileup study should address in our conclu-
sions.

In this paper we present the key aspects of the fac-
torized cross-section with a focus on results with a next-
to-leading-logarithmic (NLL) resummation of large log-
arithms and including hadronization corrections. In
Ref. [9, 11] it was shown that nonperturbative hadroniza-
tion corrections play an important role for measurements
of the top mass from boosted top jets in e

+
e
�
! tt̄. This

remains true for pp ! tt̄. We will review results from
Ref. [17] that give a rigorous description of hadroniza-
tion corrections derived from field theory for soft drop
groomed jets that are initiated by either massless quarks

“Light Grooming”



Effective Theory Modes

• The relevant effective theory modes: 

• Soft Drop (SD) and Peak Region constraints determine the relevant 
effective theory modes:
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a)

b)

FIG. 4. Relevant SCET modes for soft drop jet mass for a top
jet. The dashed vertical line corresponds to the angle of the
furthest top-decay product from the jet axis which determines
h, shown with two di↵erent values in (a) and (b). This leads
to a dependence on h in the factorization formula. The other
parameters (pt, ⌘J , zcut, �) are held fixed.

the pair xy = qq̄0, qb, or q̄0b that is closest in angle, which
are grouped together in a subjet, while the third particle
we call z is in a di↵erent subjet. For case ii) soft drop
stops due to the comparison of these two subjets. In
the definition of ✓d the angle ✓̃(xy)t is measured between
the top decay axis and the parent subjet obtained by
adding the four momenta pµ

x + pµ
y , with the analogous

definition for ✓̃zt. The angle ✓d is also directly related to
the parameter h used above in Eq. (7a).

We now turn to the calculation of ✓d and h. Since these
subjets are dominated by the energetic decay products,
✓d can be directly calculated in terms of the t ! bqq̄0

phase space variables

✓d = ✓d(�d, mt/Q) . (38)

We define �d as the 5 independent dimensionless kine-
matic variables of the top-decay t ! bqq̄0 in its rest frame
(4 angles and one energy fraction). The dependence on
mt/Q arises from boosting to the frame with the high pT

top-quark, where the angles used by soft drop are com-
puted. The h function which appeared already in Eq. (7),
and will be needed below for the decay component of the
factorization theorem, is then defined by

tan
⇣✓d

2

⌘
=

mt

Q
h
⇣
�d,

mt

Q

⌘
. (39)

The mt/Q prefactor here pulls out the dominant depen-
dence that ✓d has on the boost of the top quark, indicat-

ing that ✓d ! 0 as Q/mt ! 1. The use of tangent in
Eq. (39) makes the p+ component of the ⇤ modes scale
in a manner proportional to h without further approxi-
mations: p+⇤ ⇠ (mt/Q)h⇤QCD. For the full scaling of the
(p+, p�, p?) components of ⇤ mode momenta in case ii)
we therefore have

pµ
⇤ ⇠ ⇤QCD

⇣
⇣d,

1

⇣d
, 1
⌘

, ⇣d ⌘
mt

Q
h . (40)

[Do we want to mention case i) scaling already here?]
We also define ✓0d for the other angle from the compar-

ison of decay product subjets in Eq. (37), and a corre-
sponding variable h0, via

✓0d ⌘ min
⇣
✓̃(xy)t, ✓̃zt

⌘
, tan

⇣✓0d
2

⌘
=

mt

Q
h0
⇣
�d,

mt

Q

⌘
.

(41)

(TODO) If the decay products in the top rest frame TODO:

Andre
should
improve
this
descrip-
tion.

are in the most symmetric configuration then the boost
results in h ' h0

' 1. For any other configuration we
have h > 1 and h0 < 1.

Since mt/Q ⌧ 1, at the stage of clustering where the
comparisons in Eq. (37) are made the xy and z sub-
jets containing top decay products carry almost all of
the jet-momentum. Hence at leading order in the power
counting they are in the same plane as the total jet 3-
momentum vector, and the angle between the top decay
product subjets is ✓d + ✓0d. Then this sum has to be
compared with the angle ✓sc of the first CS subjet en-
countered in traversing the CA tree backwards that has
large enough pT and Rij to stop the soft drop grooming
via Eq. (3). From an exact calculation which is weighted
by the full top-decay di↵erential cross section, we find
that on averaging over �d we have hh0

i/hhi ' 0.22 for
Q/mt = 5. This ratio decreases to hh0

i/hhi . 0.12 when
Q/mt � 11, which is the range of interest for our analy-
sis. Therefore for our treatment of the ⇤ modes we can
safely assume ✓0d ⌧ ✓d or equivalently h0

⌧ h. This im-
plies that which of the two cases we are in is determined
by a simple comparison of which subjets are at a wider
angle, with angles that are both defined relative to the
top jet axis:

case i) if ✓cs > ✓d , (42)

case ii) if ✓cs < ✓d .

Examples are shown in the panels in Fig. 4a for case i)
and in Fig. 4b for case ii), by considering two di↵erent
values for h, implying two di↵erent values of ✓d.

Figure 4 implies that the factorization theorems for a
jet initiated by an unstable massive quark will have sig-
nificant di↵erences from the massless quark jet case. In
particular, if in the power counting ✓cs ⇠ ✓d then the
comparison in Eq. (42) will also be made inside the op-

erator defining the collinear-soft function, denoted S(d)
C .

It will therefore depend on information about the decay
products, and in general di↵er from the Sq

C function ap-
pearing in Eq. (18). In general, resolving the comparison

To derive
fact. theorem:  

Remove soft 
contamination.

Decouples top-jet from rest of the event!      

Light Soft Drop for tops zcut � 0.01

THEORY TOOLS: GUIDELINES, USAGE, ROBUSTNESS

HOW DO WE USE THESE THEORETICAL TOOLS?
Groomed top jet mass cross section:
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where the induced nonperturbative model function is
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3.7 Angular Distribution of Decay Products

We outline calculation of Dt.

3.8 Summing Logarithms and Consistency

We demonstrate independence of the cross section on various renormalization scales by deriving

consistency relations for the SCET and bHQET+ theory.

4 NLL Implementation

4.1 Factorization Formulas for jets without grooming

4.1.1 Tree-level Cross Section

Here we derive the explicit tree-level result of the factorization formula. The beam function at

the soft scale µSa
is related to that at the beam jet scale µa by the RG evolution equation

Bna
(xa, ta, µSa

) =

Z
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0
a UBa
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0
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;µa)Bna
(xa, t

0
a, µa). (4.1)

At tree level the evolution factor just reduces to a delta function
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0
a), (4.2)
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⇡(ŝ0 2 + �2
t
)
dt(�d, m/Q) . (3.30)

d�(�J)

dMJ

= N(�J , zcut,�, µ)

Z
d` JB

⇣
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3.7 Angular Distribution of Decay Products

We outline calculation of Dt.

3.8 Summing Logarithms and Consistency

We demonstrate independence of the cross section on various renormalization scales by deriving

consistency relations for the SCET and bHQET+ theory.

4 NLL Implementation

4.1 Factorization Formulas for jets without grooming

4.1.1 Tree-level Cross Section

Here we derive the explicit tree-level result of the factorization formula. The beam function at
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Hoang, Mantry, AP, Stewart 2017

‣ Fully correct computation: gluon radiation off the top and decays 
properly accounted for. Width dependence of radiation taken 
care of. 

‣ Scale settings: Bulk of higher order corrections already taken 
care of through scale settings. Experience from ee studies. 

‣ Resummation of logarithms: EFT approach designed for specific 
kinematics of this process.

Merits of EFT calculation:

top decay products & radiation

leftover “collinear-soft” radiation 
R

soft radiation groomed 
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The top quark mass mt is one of the most important
Standard Model (SM) parameters. It significantly af-
fects studies of the SM vacuum stability [1] and the elec-
troweak precision observables [2]. The most precise top
mass measurements are based on kinematic reconstruc-
tion, yielding results such as mMC

t = 172.44(49) GeV
(CMS) [3], mMC

t = 172.84(70) GeV (ATLAS) [4] and
mMC

t = 174.34(64) GeV (Tevatron) [5]. These measure-
ments are based on Monte Carlo (MC) simulations and
determine the mass parameter mMC

t of the MC genera-
tor, which depends on the shower dynamics and its in-
terface with hadronization. Identifying these values with
a Lagrangian top-mass scheme mt induces an additional
ambiguity at the 0.5–1.0 GeV level [6, 7]. We propose
a factorization approach to remove this uncertainty in
pp ! tt̄ by constructing an observable that has high kine-
matic sensitivity to mt and at the same time allows for
hadron level predictions from QCD employing a short
distance top-mass. It can be used to extract mt from ex-
perimental data, or to calibrate the parameter mMC

t as
was done for 2-Jettiness in e+e� collisions [8].

We consider boosted tops whose decay products are
collimated in a single jet region, enabling a simultaneous
theoretical description of both the top production and de-
cay [9]. This requires Q � mt � �t where �t ' 1.4GeV
is the top width andQ is twice the large momentum along
the boost direction. For pp collisions Q = 2pT cosh(⌘)
with pT and ⌘ being the jet’s transverse momentum and
pseudo-rapidity, respectively. Recently an experimental
analysis along these lines was carried out by CMS [10].
For e+e� ! tt̄ a hadron level factorization theorem for
a distribution with high kinematic sensitivity to a short
distance mt was derived in [9, 11]. So far an analogous
approach has been missing for pp ! tt̄, due to theory
complications in controlling external radiation, parame-
ters like the jet radius R, and soft contamination from
initial state radiation and underlying event (UE), which
is often modeled in MC simulations by multiple particle

interactions (MPI).
Our method relies on deriving new factorization the-

orems that enable the measurement of the jet mass MJ

on a jet of radius R ⇠ 1 with light soft drop grooming in
a boosted top sample. The soft drop algorithm [12, 13]
removes peripheral soft radiation by comparing subse-
quent jet constituents i, j in an angular ordered cluster
tree until

min[pTi, pTj ]/(pTi + pTj) > zcut(Rij/R)� , (1)

is satisfied. Here Rij is the angular distance in the
rapidity-� plane, and zcut and � are fixed soft drop pa-
rameters. When Eq. (1) is satisfied all subsequent con-
stituents in the tree are kept, thus setting a new jet ra-
dius Rg < R for the groomed jet. This retains strong
kinematic sensitivity to mt as in the template method,
grooms away contamination from other parts of the colli-
sion, and allows for a factorization based description [14].
It also reduces tuning dependence in MC simulations [15].
We make use of the Soft-Collinear E↵ective Theory [16]

to derive peak region factorization formulae for the cross-
section, with the modes pictured in Fig. 1a. Our calcu-
lation requires light grooming which satisfies

�t

4mt

⇣ Q
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>
⇠ zcut , z

1
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1
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✓
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Q2
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The first constraint enables a simple treatment of the
top-decay products and ensures �t/mt(Q/2mt)� � zcut
so that boosted ultra-collinear (UC) massless radiation
associated with the top quark is not modified. These
e↵ects are then described by the same inclusive jet func-
tion JB(ŝ, �m,�t, µ) as in [9, 11], providing control over
the scheme for mt through �m = mpole

t �mt. This con-
straint is significantly stronger than that needed to retain
the decay products, (Q/2mt)� � zcut. The second con-
straint ensures that wide angle soft radiation (y-axis of
Fig. 1a above the green dot) is groomed away, isolating
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tion, yielding results such as mMC
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(CMS) [3], mMC

t = 172.84(70) GeV (ATLAS) [4] and
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tor, which depends on the shower dynamics and its in-
terface with hadronization. Identifying these values with
a Lagrangian top-mass scheme mt induces an additional
ambiguity at the 0.5–1.0 GeV level [6, 7]. We propose
a factorization approach to remove this uncertainty in
pp ! tt̄ by constructing an observable that has high kine-
matic sensitivity to mt and at the same time allows for
hadron level predictions from QCD employing a short
distance top-mass. It can be used to extract mt from ex-
perimental data, or to calibrate the parameter mMC

t as
was done for 2-Jettiness in e+e� collisions [8].

We consider boosted tops whose decay products are
collimated in a single jet region, enabling a simultaneous
theoretical description of both the top production and de-
cay [9]. This requires Q � mt � �t where �t ' 1.4GeV
is the top width andQ is twice the large momentum along
the boost direction. For pp collisions Q = 2pT cosh(⌘)
with pT and ⌘ being the jet’s transverse momentum and
pseudo-rapidity, respectively. Recently an experimental
analysis along these lines was carried out by CMS [10].
For e+e� ! tt̄ a hadron level factorization theorem for
a distribution with high kinematic sensitivity to a short
distance mt was derived in [9, 11]. So far an analogous
approach has been missing for pp ! tt̄, due to theory
complications in controlling external radiation, parame-
ters like the jet radius R, and soft contamination from
initial state radiation and underlying event (UE), which
is often modeled in MC simulations by multiple particle

interactions (MPI).
Our method relies on deriving new factorization the-

orems that enable the measurement of the jet mass MJ

on a jet of radius R ⇠ 1 with light soft drop grooming in
a boosted top sample. The soft drop algorithm [12, 13]
removes peripheral soft radiation by comparing subse-
quent jet constituents i, j in an angular ordered cluster
tree until

min[pTi, pTj ]/(pTi + pTj) > zcut(Rij/R)� , (1)

is satisfied. Here Rij is the angular distance in the
rapidity-� plane, and zcut and � are fixed soft drop pa-
rameters. When Eq. (1) is satisfied all subsequent con-
stituents in the tree are kept, thus setting a new jet ra-
dius Rg < R for the groomed jet. This retains strong
kinematic sensitivity to mt as in the template method,
grooms away contamination from other parts of the colli-
sion, and allows for a factorization based description [14].
It also reduces tuning dependence in MC simulations [15].
We make use of the Soft-Collinear E↵ective Theory [16]

to derive peak region factorization formulae for the cross-
section, with the modes pictured in Fig. 1a. Our calcu-
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so that boosted ultra-collinear (UC) massless radiation
associated with the top quark is not modified. These
e↵ects are then described by the same inclusive jet func-
tion JB(ŝ, �m,�t, µ) as in [9, 11], providing control over
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the decay products, (Q/2mt)� � zcut. The second con-
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Figure 5. Modes on z-✓ plane for the “decay” case.

3.1.3 E↵ects of Top-Decay Products

In the previous section we analyzed a case with pT = 1500GeV. For high-pT top jets the decay

products are more collimated and hence in this case the location of the non-perturbative mode

is analogous to the case of jets from massless quarks. In particular for high-pT the dashed line

in Fig. 4 is always on the right hand side of the ⇤ modes.

However, for an intermediate pT range of experimental interest the dashed line moves

further to the left, and we find that the dominant non-perturbative modes are located on the

dashed line. This occurs because the brown line now hits the dashed line instead of the orange

line. This is shown in Fig. 5 for pT = 750 GeV.

In such case the the non perturbative modes have the angle set by the decay product that

is furthest away from the top jet axis and stops the groomer:

✓⇤ ⇠ ✓d . (3.26)

We refer to the two cases in Figs. 4 and 5 as “high-pT ” and “decay” cases respectively. We

can ask at what Q we transition between the two pictures by comparing the p+ components

of the ⇤ modes, since the contribution of a mode to the measurement is proportional to the

plus component contribution as shown in Eq. (2.8). We first parameterize the plus component

of ⇤ mode in Fig. 5 as follows

p+⇤ = ⇤QCD
m

Q
h(✓d) , (3.27)

where we have factored out the leading dependence on the boost Q/m and parameterized the

subleading dependence in an O(1) number, h(✓d), that is related to the fraction of the top

quark energy carried by the decay product at angle ✓d. Comparing the p+ components for the

“decay” and “high-pT ” cases in Eqs. (3.27) and (3.25) we find that the “decay” case is relevant

for

pdecay+⇤ & phigh pT +
⇤ ) Q . 2mh

✓
mhzcut
⇤QCD

◆ 1
�

. (3.28)

– 28 –

Modes:
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a)

b)

FIG. 4. Relevant SCET modes for soft drop jet mass for a top
jet. The dashed vertical line corresponds to the angle of the
furthest top-decay product from the jet axis which determines
h, shown with two di↵erent values in (a) and (b). This leads
to a dependence on h in the factorization formula. The other
parameters (pt, ⌘J , zcut, �) are held fixed.

the pair xy = qq̄0, qb, or q̄0b that is closest in angle, which
are grouped together in a subjet, while the third particle
we call z is in a di↵erent subjet. For case ii) soft drop
stops due to the comparison of these two subjets. In
the definition of ✓d the angle ✓̃(xy)t is measured between
the top decay axis and the parent subjet obtained by
adding the four momenta pµ

x + pµ
y , with the analogous

definition for ✓̃zt. The angle ✓d is also directly related to
the parameter h used above in Eq. (7a).

We now turn to the calculation of ✓d and h. Since these
subjets are dominated by the energetic decay products,
✓d can be directly calculated in terms of the t ! bqq̄0

phase space variables

✓d = ✓d(�d, mt/Q) . (38)

We define �d as the 5 independent dimensionless kine-
matic variables of the top-decay t ! bqq̄0 in its rest frame
(4 angles and one energy fraction). The dependence on
mt/Q arises from boosting to the frame with the high pT

top-quark, where the angles used by soft drop are com-
puted. The h function which appeared already in Eq. (7),
and will be needed below for the decay component of the
factorization theorem, is then defined by

tan
⇣✓d

2

⌘
=

mt

Q
h
⇣
�d,

mt

Q

⌘
. (39)

The mt/Q prefactor here pulls out the dominant depen-
dence that ✓d has on the boost of the top quark, indicat-

ing that ✓d ! 0 as Q/mt ! 1. The use of tangent in
Eq. (39) makes the p+ component of the ⇤ modes scale
in a manner proportional to h without further approxi-
mations: p+⇤ ⇠ (mt/Q)h⇤QCD. For the full scaling of the
(p+, p�, p?) components of ⇤ mode momenta in case ii)
we therefore have

pµ
⇤ ⇠ ⇤QCD

⇣
⇣d,

1

⇣d
, 1
⌘

, ⇣d ⌘
mt

Q
h . (40)

[Do we want to mention case i) scaling already here?]
We also define ✓0d for the other angle from the compar-

ison of decay product subjets in Eq. (37), and a corre-
sponding variable h0, via

✓0d ⌘ min
⇣
✓̃(xy)t, ✓̃zt

⌘
, tan

⇣✓0d
2

⌘
=

mt

Q
h0
⇣
�d,

mt

Q

⌘
.

(41)

(TODO) If the decay products in the top rest frame TODO:

Andre
should
improve
this
descrip-
tion.

are in the most symmetric configuration then the boost
results in h ' h0

' 1. For any other configuration we
have h > 1 and h0 < 1.

Since mt/Q ⌧ 1, at the stage of clustering where the
comparisons in Eq. (37) are made the xy and z sub-
jets containing top decay products carry almost all of
the jet-momentum. Hence at leading order in the power
counting they are in the same plane as the total jet 3-
momentum vector, and the angle between the top decay
product subjets is ✓d + ✓0d. Then this sum has to be
compared with the angle ✓sc of the first CS subjet en-
countered in traversing the CA tree backwards that has
large enough pT and Rij to stop the soft drop grooming
via Eq. (3). From an exact calculation which is weighted
by the full top-decay di↵erential cross section, we find
that on averaging over �d we have hh0

i/hhi ' 0.22 for
Q/mt = 5. This ratio decreases to hh0

i/hhi . 0.12 when
Q/mt � 11, which is the range of interest for our analy-
sis. Therefore for our treatment of the ⇤ modes we can
safely assume ✓0d ⌧ ✓d or equivalently h0

⌧ h. This im-
plies that which of the two cases we are in is determined
by a simple comparison of which subjets are at a wider
angle, with angles that are both defined relative to the
top jet axis:

case i) if ✓cs > ✓d , (42)

case ii) if ✓cs < ✓d .

Examples are shown in the panels in Fig. 4a for case i)
and in Fig. 4b for case ii), by considering two di↵erent
values for h, implying two di↵erent values of ✓d.

Figure 4 implies that the factorization theorems for a
jet initiated by an unstable massive quark will have sig-
nificant di↵erences from the massless quark jet case. In
particular, if in the power counting ✓cs ⇠ ✓d then the
comparison in Eq. (42) will also be made inside the op-

erator defining the collinear-soft function, denoted S(d)
C .

It will therefore depend on information about the decay
products, and in general di↵er from the Sq

C function ap-
pearing in Eq. (18). In general, resolving the comparison

updates since the last  
top mass talk
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3.1 Modes and Power Counting Analysis

Following along the lines of derivation in Ref. [5] we consider an emission (or a decay product)

of energy E and at an angle ✓ o↵ the top quark and note that for this emission to contribute

to the invariant mass measurement in the peak region it needs to satisfy

ŝ = 2 v+.k ⇠ � , (3.3)

where � � �t is the physical width of the distribution in the peak region. Here k is the four

momentum and z is the energy fraction relative to the jet energy:

kµj =
�
k+, k�, k?

�
=

�
E(1� cos ✓), E(1 + cos ✓), k?

�
. (3.4)

For center of mass energy Q we have z = 2E/Q = k�/Q, and ✓ ⇠ 2k?/k�. Hence the peak

region constraint becomes

z


(1� cos ✓) +

m2

Q2
(1 + cos ✓)

�
⇠

2m�t

Q2
. (3.5)

Eq. (3.3) states that the scale of fluctuations of momenta in bHQET theory is O(�t). Both

ultra-collinear or ultra-soft modes in bHQET satisfy this constraint.

Now, application of soft drop puts another constraint:

z & zcut✓
� . (3.6)

Requiring grooming of ultra-soft modes with ✓ ⇠ 1 implies

zcut > z ⇠
2m�t

Q2
, (3.7)

whereas, to keep the ultra-collinear modes with ✓uc ⇠ 2m/Q we require

zcut

✓
2m

Q

◆�

< z ⇠
�t

m
)

�t

m

✓
Q

2m

◆�

> zcut . (3.8)

The decay products have same boost as the ultra-collinear particles, or ✓decay ⇠ ✓uc, but with

much higher energy zdecay ⇠ 1. Hence, this condition is strong enough to ensure that the top

decays products are kept. Hence, we demand that zcut be parametrically separated from the

scales derived above:

✓
Q

2m

◆�

�
decay

products
kept

�t

m

✓
Q

2m

◆�

�
ucollinear

kept

zcut �
usoft
vetoed

2m�t

Q2
. (3.9)

However, the fact that angle of the decay products relative to the jet axis is the same as

that of ultra-collinear modes has an important consequence: For zcut in the range given by

Eq. (3.9) the soft drop criteria in Eq. (3.2) is satisfied when the algorithm reaches the branch

that corresponds to one of the three pairs of sub-jets of the decay products after having vetoed

away the ultra soft particles at larger angles. Thus Rg e↵ectively corresponds to �R ⇠ ✓decay
between the decay products.
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Soft Drop Larkoski, Marzani, Soyez, Thaler 2014

Grooms soft radiation from the jet

z > zcut ��

two grooming parameters

min(pTi, pTj)
pTi + pTj

> zcut

��Rij

R0

��

(cf.  Jesse Thaler’s recent colloquium)

Can still carry out calculations: Larkoski, Marzani, Soyez, Thaler 2014
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Top Jet Mass with Soft Drop
A. Hoang, S. Mantry, AP, I. Stewart

a) Peak Region Constraint: b) Soft Drop Constraint:

Constraints on 
Soft Drop parameters:

“light grooming here”

Ensure soft drop
does not touch mass

Ensure soft drop
removes most contamination
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where we have defined expansion parameters

� =
m

Q
, ⌘ ⌘

"✓
2m

Q

◆
�

zcut
m

�t

# 1
�+2

. (3.13)

To be able to factorize the contributions to the cross section between collinear-soft modes and

ultracollinear modes we demand the hierarchy

1 � ⌘ � � . (3.14)

This results gives us the condition

z
1

2+�

cut � 1

2

✓
�t

m

4m2

Q2

◆ 1
2+�

, (3.15)

which is a stronger constraint on the lower bound of zcut than that in Eq. (3.9) from grooming

the ultra-soft radiation. (A numerical study of this constraint is given below in Sec. 3.2.) As

another consequence of Eq. (3.14) we note that the collinear-soft mode is more perturbative

than the ultra-soft mode:

p2cs = �2
t

"✓
2m

Q

◆
�

zcut
m

�t

# 2
�+2

= ⌘2�2
t � p2us = �2

t�
2 . (3.16)

In addition to vetoing the ultra-soft modes, soft drop will groom away all wide angle modes

with energy fraction up to z ⇠ zcut. These modes do not contribute to the measurement but

they a↵ect the overall normalization of the cross section. Again such modes also appear for

massless quark jets in Ref. [47] and we refer to them as either “Global Soft” or just “Soft”

with the momentum scaling as

pSG
⇠ zcutQ

2
(1, 1, 1) . (3.17)

We will see later on that they are also needed to ensure the consistency of the functions

appearing in the factorized cross section under renormalization group evolution.

In Fig. 3 we represent the modes discussed above, on the standard p+-p� plane, including

collinear-soft (CS), ultra-collinear (UC), and Soft. We also display the non-perturbative modes

(⇤) that will be discussed in a later section. In this plane modes with fixed invariant mass lie

on one of the indicated hyperbola, with smaller invariant masses lying on hyperbola that come

closer to the origin. This gives us a sense of relative o↵shellness of the modes we considered

above. As shown in the figure, and following Eq. (3.12), the p+ components of both the CS

and UC modes have the same scaling and the other two components of collinear-soft modes are

parametrically smaller, a feature similar to that of ultra-soft modes before grooming. Hence

the two modes in Eq. (3.12) will couple in the jet mass factorization theorem through their p+

momenta. This agrees with our EFT picture where the minus component is fixed to be the

hard scale and the jet mass is determined by the plus component in the peak region, as shown

in Eqs. (2.11) and (2.17).

We notice from Fig. 3 that soft modes have higher invariant mass than the collinear-soft

modes. To see this we rewrite the constraints in Eq. (3.9) as

✏ = zcut

✓
2m

Q

◆
�
✓
m

�t

◆
⌧ 1 , � =

4

zcut

m2

Q2

�t

m
⌧ 1 , (3.18)
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In the ungroomed factoriztion theorem it was the ultra-soft modes that introduced cou-

plings between the top quark jet, and other elements in the event, such as the t̄ jet and beam

radiation. Demanding that ultra-soft modes with ✓ ⇠ 1 and z ⇠ 2m�/Q2 will always be

groomed away implies a lower bound on zcut,

zcut �
2m�

Q2
. (3.7)

On the other hand, to always keep the ultra-collinear modes which have ✓uc ⇠ 2m/Q and

z ⇠ �/m we require

zcut

✓
2m

Q

◆
�

⌧ �

m
=) �

m

✓
Q

2m

◆
�

� zcut . (3.8)

This constraint puts an upper limit on the soft drop parameter zcut. Due to the fact that the

small �/m ' 0.01 factor is not overcome by the boost factor (Q/2m)� this forces us into a

light soft drop region.

The decay products have same boost as the ultra-collinear particles, or ✓decay ⇠ ✓uc, but

with much higher energy zdecay ⇠ 1. A typical value is zdecay ⇠ 1/3. Hence, the condition in

Eq. (3.8) is strong enough to ensure that the top decays products are kept. From the constraints

considered so far for the modes that existed in the ungroomed factorization theorem we find:

zdecay

✓
Q

2m

◆
�

�
decay

products
kept

�

m

✓
Q

2m

◆
�

�
ucollinear

kept

zcut �
usoft
vetoed

�

m

2m2

Q2
. (3.9)

For boosted top quarks Q � m and there is always a parametric window where these con-

straints are satisfied. We will see below that both constraints on zcut in Eq. (3.9) will become

a bit stronger once the full set of expansions needed for the factorization theorem have been

considered.

While the wide angle ✓ ⇠ 1 ultra-soft modes are vetoed away, the introduction of the soft

drop constraint allows new modes to become active. We now have collinear-soft (CS) modes

with momenta pµcs defined as the modes having the minimum energy and largest angle that

passes the soft drop criteria in Eq. (3.6), and still satisfies Eq. (3.5) so that particles of this type

contribute to the jet mass measurement. These modes were introduced for describing soft drop

factorization in Ref. [47] and also appear in other physical applications of jet physics, being

part of the generic SCET+ framework which contains additional modes that are simultaneously

collinear and soft, discussed in Refs. [87–90]. Parameterizing

pµcs ⇠ Qzmin

✓
✓2max

4
, 1,

✓max

2

◆
, (3.10)

this definition of the collinear-soft modes gives

zmin =
�t

m

✓
4m2

Q2

◆ �

�+2
✓
zcut

m

�

◆ 2
�+2

, ✓max =

✓
4

zcut

m2

Q2

�

m

◆ 1
2+�

. (3.11)

Hence, after the application of soft drop we are left with the following perturbative modes:

pµcs ⇠ �t

Q

m
(�2, ⌘2, � ⌘) , pµuc ⇠ �t

Q

m
(�2 , 1, �) , (3.12)
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✓
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where we have defined expansion parameters
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on one of the indicated hyperbola, with smaller invariant masses lying on hyperbola that come
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• Expansion parameters:
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• Hierarchy of expansion parameters

will be discussed later
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FIG. 4. Relevant SCET modes for soft drop jet mass for a top
jet. The dashed vertical line corresponds to the angle of the
furthest top-decay product from the jet axis which determines
h, shown with two di↵erent values in (a) and (b). This leads
to a dependence on h in the factorization formula. The other
parameters (pt, ⌘J , zcut, �) are held fixed.

the pair xy = qq̄0, qb, or q̄0b that is closest in angle, which
are grouped together in a subjet, while the third particle
we call z is in a di↵erent subjet. For case ii) soft drop
stops due to the comparison of these two subjets. In
the definition of ✓d the angle ✓̃(xy)t is measured between
the top decay axis and the parent subjet obtained by
adding the four momenta pµ

x + pµ
y , with the analogous

definition for ✓̃zt. The angle ✓d is also directly related to
the parameter h used above in Eq. (7a).

We now turn to the calculation of ✓d and h. Since these
subjets are dominated by the energetic decay products,
✓d can be directly calculated in terms of the t ! bqq̄0

phase space variables

✓d = ✓d(�d, mt/Q) . (38)

We define �d as the 5 independent dimensionless kine-
matic variables of the top-decay t ! bqq̄0 in its rest frame
(4 angles and one energy fraction). The dependence on
mt/Q arises from boosting to the frame with the high pT

top-quark, where the angles used by soft drop are com-
puted. The h function which appeared already in Eq. (7),
and will be needed below for the decay component of the
factorization theorem, is then defined by

tan
⇣✓d

2

⌘
=

mt

Q
h
⇣
�d,

mt

Q

⌘
. (39)

The mt/Q prefactor here pulls out the dominant depen-
dence that ✓d has on the boost of the top quark, indicat-

ing that ✓d ! 0 as Q/mt ! 1. The use of tangent in
Eq. (39) makes the p+ component of the ⇤ modes scale
in a manner proportional to h without further approxi-
mations: p+⇤ ⇠ (mt/Q)h⇤QCD. For the full scaling of the
(p+, p�, p?) components of ⇤ mode momenta in case ii)
we therefore have

pµ
⇤ ⇠ ⇤QCD

⇣
⇣d,

1

⇣d
, 1
⌘

, ⇣d ⌘
mt

Q
h . (40)

[Do we want to mention case i) scaling already here?]
We also define ✓0d for the other angle from the compar-

ison of decay product subjets in Eq. (37), and a corre-
sponding variable h0, via

✓0d ⌘ min
⇣
✓̃(xy)t, ✓̃zt

⌘
, tan

⇣✓0d
2

⌘
=

mt

Q
h0
⇣
�d,

mt

Q

⌘
.

(41)

(TODO) If the decay products in the top rest frame TODO:

Andre
should
improve
this
descrip-
tion.

are in the most symmetric configuration then the boost
results in h ' h0

' 1. For any other configuration we
have h > 1 and h0 < 1.

Since mt/Q ⌧ 1, at the stage of clustering where the
comparisons in Eq. (37) are made the xy and z sub-
jets containing top decay products carry almost all of
the jet-momentum. Hence at leading order in the power
counting they are in the same plane as the total jet 3-
momentum vector, and the angle between the top decay
product subjets is ✓d + ✓0d. Then this sum has to be
compared with the angle ✓sc of the first CS subjet en-
countered in traversing the CA tree backwards that has
large enough pT and Rij to stop the soft drop grooming
via Eq. (3). From an exact calculation which is weighted
by the full top-decay di↵erential cross section, we find
that on averaging over �d we have hh0

i/hhi ' 0.22 for
Q/mt = 5. This ratio decreases to hh0

i/hhi . 0.12 when
Q/mt � 11, which is the range of interest for our analy-
sis. Therefore for our treatment of the ⇤ modes we can
safely assume ✓0d ⌧ ✓d or equivalently h0

⌧ h. This im-
plies that which of the two cases we are in is determined
by a simple comparison of which subjets are at a wider
angle, with angles that are both defined relative to the
top jet axis:

case i) if ✓cs > ✓d , (42)

case ii) if ✓cs < ✓d .

Examples are shown in the panels in Fig. 4a for case i)
and in Fig. 4b for case ii), by considering two di↵erent
values for h, implying two di↵erent values of ✓d.

Figure 4 implies that the factorization theorems for a
jet initiated by an unstable massive quark will have sig-
nificant di↵erences from the massless quark jet case. In
particular, if in the power counting ✓cs ⇠ ✓d then the
comparison in Eq. (42) will also be made inside the op-

erator defining the collinear-soft function, denoted S(d)
C .

It will therefore depend on information about the decay
products, and in general di↵er from the Sq

C function ap-
pearing in Eq. (18). In general, resolving the comparison
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definition for ✓̃zt. The angle ✓d is also directly related to
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(TODO) If the decay products in the top rest frame TODO:

Andre
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descrip-
tion.

are in the most symmetric configuration then the boost
results in h ' h0

' 1. For any other configuration we
have h > 1 and h0 < 1.

Since mt/Q ⌧ 1, at the stage of clustering where the
comparisons in Eq. (37) are made the xy and z sub-
jets containing top decay products carry almost all of
the jet-momentum. Hence at leading order in the power
counting they are in the same plane as the total jet 3-
momentum vector, and the angle between the top decay
product subjets is ✓d + ✓0d. Then this sum has to be
compared with the angle ✓sc of the first CS subjet en-
countered in traversing the CA tree backwards that has
large enough pT and Rij to stop the soft drop grooming
via Eq. (3). From an exact calculation which is weighted
by the full top-decay di↵erential cross section, we find
that on averaging over �d we have hh0

i/hhi ' 0.22 for
Q/mt = 5. This ratio decreases to hh0

i/hhi . 0.12 when
Q/mt � 11, which is the range of interest for our analy-
sis. Therefore for our treatment of the ⇤ modes we can
safely assume ✓0d ⌧ ✓d or equivalently h0

⌧ h. This im-
plies that which of the two cases we are in is determined
by a simple comparison of which subjets are at a wider
angle, with angles that are both defined relative to the
top jet axis:

case i) if ✓cs > ✓d , (42)

case ii) if ✓cs < ✓d .

Examples are shown in the panels in Fig. 4a for case i)
and in Fig. 4b for case ii), by considering two di↵erent
values for h, implying two di↵erent values of ✓d.

Figure 4 implies that the factorization theorems for a
jet initiated by an unstable massive quark will have sig-
nificant di↵erences from the massless quark jet case. In
particular, if in the power counting ✓cs ⇠ ✓d then the
comparison in Eq. (42) will also be made inside the op-

erator defining the collinear-soft function, denoted S(d)
C .

It will therefore depend on information about the decay
products, and in general di↵er from the Sq

C function ap-
pearing in Eq. (18). In general, resolving the comparison

• Two possibilities for the termination of soft drop:

- SD could terminate on a collinear-soft (CS) subjet 
- SD could terminate on a subjet containing top decay products
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FIG. 4. Relevant SCET modes for soft drop jet mass for a top
jet. The dashed vertical line corresponds to the angle of the
furthest top-decay product from the jet axis which determines
h, shown with two di↵erent values in (a) and (b). This leads
to a dependence on h in the factorization formula. The other
parameters (pt, ⌘J , zcut, �) are held fixed.

the pair xy = qq̄0, qb, or q̄0b that is closest in angle, which
are grouped together in a subjet, while the third particle
we call z is in a di↵erent subjet. For case ii) soft drop
stops due to the comparison of these two subjets. In
the definition of ✓d the angle ✓̃(xy)t is measured between
the top decay axis and the parent subjet obtained by
adding the four momenta pµ

x + pµ
y , with the analogous

definition for ✓̃zt. The angle ✓d is also directly related to
the parameter h used above in Eq. (7a).

We now turn to the calculation of ✓d and h. Since these
subjets are dominated by the energetic decay products,
✓d can be directly calculated in terms of the t ! bqq̄0

phase space variables

✓d = ✓d(�d, mt/Q) . (38)

We define �d as the 5 independent dimensionless kine-
matic variables of the top-decay t ! bqq̄0 in its rest frame
(4 angles and one energy fraction). The dependence on
mt/Q arises from boosting to the frame with the high pT

top-quark, where the angles used by soft drop are com-
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ing that ✓d ! 0 as Q/mt ! 1. The use of tangent in
Eq. (39) makes the p+ component of the ⇤ modes scale
in a manner proportional to h without further approxi-
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(TODO) If the decay products in the top rest frame TODO:

Andre
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improve
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tion.
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mt

Q
h0
⇣
�d,

mt

Q

⌘
.

(41)

(TODO) If the decay products in the top rest frame TODO:

Andre
should
improve
this
descrip-
tion.

are in the most symmetric configuration then the boost
results in h ' h0

' 1. For any other configuration we
have h > 1 and h0 < 1.

Since mt/Q ⌧ 1, at the stage of clustering where the
comparisons in Eq. (37) are made the xy and z sub-
jets containing top decay products carry almost all of
the jet-momentum. Hence at leading order in the power
counting they are in the same plane as the total jet 3-
momentum vector, and the angle between the top decay
product subjets is ✓d + ✓0d. Then this sum has to be
compared with the angle ✓sc of the first CS subjet en-
countered in traversing the CA tree backwards that has
large enough pT and Rij to stop the soft drop grooming
via Eq. (3). From an exact calculation which is weighted
by the full top-decay di↵erential cross section, we find
that on averaging over �d we have hh0

i/hhi ' 0.22 for
Q/mt = 5. This ratio decreases to hh0

i/hhi . 0.12 when
Q/mt � 11, which is the range of interest for our analy-
sis. Therefore for our treatment of the ⇤ modes we can
safely assume ✓0d ⌧ ✓d or equivalently h0

⌧ h. This im-
plies that which of the two cases we are in is determined
by a simple comparison of which subjets are at a wider
angle, with angles that are both defined relative to the
top jet axis:

case i) if ✓cs > ✓d , (42)

case ii) if ✓cs < ✓d .

Examples are shown in the panels in Fig. 4a for case i)
and in Fig. 4b for case ii), by considering two di↵erent
values for h, implying two di↵erent values of ✓d.

Figure 4 implies that the factorization theorems for a
jet initiated by an unstable massive quark will have sig-
nificant di↵erences from the massless quark jet case. In
particular, if in the power counting ✓cs ⇠ ✓d then the
comparison in Eq. (42) will also be made inside the op-

erator defining the collinear-soft function, denoted S(d)
C .

It will therefore depend on information about the decay
products, and in general di↵er from the Sq

C function ap-
pearing in Eq. (18). In general, resolving the comparison
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products. However, after integrating out mt these modes
are only sensitive to the overall color charge and direc-
tion of the top quark, since this direction is equivalent to
that of the decay products at leading order in mt/Q [9].
Therefore the top decay does not change e↵ects related
to this UC QCD radiation at leading power. Hence, the
unstable JB(ŝt, �t, �m, µ) in Eq. (41) can be defined in
terms of the stable jet function JB(ŝt, �m, µ) convolved
with the top Breit-Wigner [11]:

JB(ŝt, �t, �m, µ) (43)

=

Z ŝt

�1
dŝ

0
JB(ŝt � ŝ

0
, �m, µ)

�t

⇡
�
ŝ0 2 + �2

t

� .

In general to obtain results for the case where soft drop
acts on a boosted top quark jet, we need a collinear-soft

function S
(d)
C that in addition to the soft drop condition,

as in the case of usual S
(q)
C in Eq. (15), now also includes

angular information from the decay products. Thus S
(d)
C

is now aware of the vertical dashed line in Fig. 5b at
✓ = ✓d which contributes to the boundary of the soft drop
region, and hence a↵ects the location of the CS mode. At
one loop one finds that including the additional dashed
vertical line in Fig. 5b in the collinear-soft function yields
an additional logarithic term

S
(d)
C (`, �, ✓d, µ) = S

q
C(`, �, µ)

�
↵s(µ)CF

(�+2)⇡

2�+3

Qcut✓
�+2
d

L1

✓
`

Qcut

2�+2

✓
�+2
d

◆
⇥


Qcut✓

�+2
d

2�+2
� `

�

+ O(↵2
s) , (44)

where L1(x) = [(ln x)/x]+ is the standard logarithmic
plus function, defined as in Ref. [23]. Since at one loop in
fixed order perturbation theory we have a single emission,
the relevance of high-pT or decay scenario boils down to
a simple comparison between the emission angle ✓cs and
✓d, leading to the expression in Eq. (44). Note that at
O(↵s) that the extra term with ✓d dependence does not
have explicit dependence on µ, and only contributes for
case ii). To see this we first note that Eq. (9) implies
that `

+
⇠ m

2
J/Q, and thus using Eqs. (12) and (14) the

case ii) constraint ✓cs < ✓d at this order becomes

`
+
 Qcut

⇣
✓d

2

⌘�+2
= Qcut

⇣
mth

Q

⌘�+2
. (45)

The second line of Eq. (44) also only involves a logarithm
that is not large when ✓d ⇠ ✓cs, which is the relevant scal-
ing if the case i) and case ii) comparisons are necessary.
Demanding that this extra logarithm does not become
large precisely leads to the constraint in Eq. (7a), which
is necessary to ensure that the UC modes are not a↵ected
by soft drop. Thus this extra ✓d term only enters beyond
NLL order. In other words, light grooming constraints in
Eq. (7a) ensure that soft drop does not a↵ect the decay
products significantly and one can continue to use the
inclusive description of decay products. For all the terms

t t t t t t t t
b
q
q ‘

FIG. 6. Bubble chain for an unstable top quark leading to

a Breit-Wigner together with a di↵erential distribution for

the top decay products. From the closed two-loop bubble

calculation involving bqq̄0 only the imaginary top width term

is kept.

that appear at NLL, which can be determined by renor-
malization group evolution, the perturative CS function
is the same as the one that appeared at this order for
massless quark initiated jets in Eq. (9),

S
(d)
C (`, �, ✓d, µ)

���
NLL

= S
q
C(`, �, µ)

���
NLL

. (46)

Note that there is another relation which works with-
out limiting the order in resummed perturbation theory,
namely

lim
✓d⌧✓cs

S
(d)
C (`, �, ✓d, µ) = S

q
C(`, �, µ) . (47)

Here taking the limit ✓cs ⌧ ✓d ensures that it is always
the CS mode which stops soft drop.

Next we describe how to account for the distribution
of ✓d itself by incorporating the dependence on decay-
product phase space �d. Since this dependence is de-
termined at the scale mt it should be thought of as a
di↵erential hard matching coe�cient from the perspec-
tive of the low energy CS, UC, and S modes. Hence, in
the light grooming region the dynamics of the UC modes
is described by the same inclusive stable heavy quark jet
function JB(ŝ, �m, µ) in Eq. (43).

We refer to the function that encodes the distri-
bution of the top decay products as Dt(ŝ0, �d, mt/Q)
where ŝ

0 is the o↵shellness of the top-quark, such that
Dt(ŝ0, �d, mt/Q) and the stable jet function JB(ŝ, �m, µ)
together through convolution account for the e↵ects of
top decay and UC modes. Calculation of Dt requires
a geometric sum of decay product bubbles, where one
hadronically decaying bubble is cut, as shown in Fig. 6.

In the non-cut bubbles we just keep the total top width
�t, allowing us to write the result in terms of the purely
resonant contribution

Dt

⇣
ŝ
0
, �d,

mt

Q

⌘
=

�t

⇡(ŝ0 2+�2
t )

dt

⇣
�d,

mt

Q

⌘h
1+O

⇣
ŝ
0

mt

⌘i
.

(48)

The expansion here indicates that for the angular depen-
dence from the decay products we can work with an on-
shell quark function with ŝ

0 = 0. The full 5-body phase
space dependence of the top-decay t ! bW ! bqq̄

0 is
then contained in the dimensionless function

dt

⇣
�d,

mt

Q

⌘
=

1

�t!bqq̄0

d�t!bqq̄0

d�d
. (49)
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products. However, after integrating out mt these modes
are only sensitive to the overall color charge and direc-
tion of the top quark, since this direction is equivalent to
that of the decay products at leading order in mt/Q [9].
Therefore the top decay does not change e↵ects related
to this UC QCD radiation at leading power. Hence, the
unstable JB(ŝt, �t, �m, µ) in Eq. (41) can be defined in
terms of the stable jet function JB(ŝt, �m, µ) convolved
with the top Breit-Wigner [11]:

JB(ŝt, �t, �m, µ) (43)

=

Z ŝt

�1
dŝ

0
JB(ŝt � ŝ

0
, �m, µ)

�t

⇡
�
ŝ0 2 + �2

t

� .

In general to obtain results for the case where soft drop
acts on a boosted top quark jet, we need a collinear-soft

function S
(d)
C that in addition to the soft drop condition,

as in the case of usual S
(q)
C in Eq. (15), now also includes

angular information from the decay products. Thus S
(d)
C

is now aware of the vertical dashed line in Fig. 5b at
✓ = ✓d which contributes to the boundary of the soft drop
region, and hence a↵ects the location of the CS mode. At
one loop one finds that including the additional dashed
vertical line in Fig. 5b in the collinear-soft function yields
an additional logarithic term

S
(d)
C (`, �, ✓d, µ) = S

q
C(`, �, µ)

�
↵s(µ)CF

(�+2)⇡

2�+3

Qcut✓
�+2
d

L1

✓
`

Qcut

2�+2

✓
�+2
d

◆
⇥


Qcut✓

�+2
d

2�+2
� `

�

+ O(↵2
s) , (44)

where L1(x) = [(ln x)/x]+ is the standard logarithmic
plus function, defined as in Ref. [23]. Since at one loop in
fixed order perturbation theory we have a single emission,
the relevance of high-pT or decay scenario boils down to
a simple comparison between the emission angle ✓cs and
✓d, leading to the expression in Eq. (44). Note that at
O(↵s) that the extra term with ✓d dependence does not
have explicit dependence on µ, and only contributes for
case ii). To see this we first note that Eq. (9) implies
that `

+
⇠ m

2
J/Q, and thus using Eqs. (12) and (14) the

case ii) constraint ✓cs < ✓d at this order becomes

`
+
 Qcut

⇣
✓d

2

⌘�+2
= Qcut

⇣
mth

Q

⌘�+2
. (45)

The second line of Eq. (44) also only involves a logarithm
that is not large when ✓d ⇠ ✓cs, which is the relevant scal-
ing if the case i) and case ii) comparisons are necessary.
Demanding that this extra logarithm does not become
large precisely leads to the constraint in Eq. (7a), which
is necessary to ensure that the UC modes are not a↵ected
by soft drop. Thus this extra ✓d term only enters beyond
NLL order. In other words, light grooming constraints in
Eq. (7a) ensure that soft drop does not a↵ect the decay
products significantly and one can continue to use the
inclusive description of decay products. For all the terms

t t t t t t t t
b
q
q ‘

FIG. 6. Bubble chain for an unstable top quark leading to

a Breit-Wigner together with a di↵erential distribution for

the top decay products. From the closed two-loop bubble

calculation involving bqq̄0 only the imaginary top width term

is kept.

that appear at NLL, which can be determined by renor-
malization group evolution, the perturative CS function
is the same as the one that appeared at this order for
massless quark initiated jets in Eq. (9),

S
(d)
C (`, �, ✓d, µ)

���
NLL

= S
q
C(`, �, µ)

���
NLL

. (46)

Note that there is another relation which works with-
out limiting the order in resummed perturbation theory,
namely

lim
✓d⌧✓cs

S
(d)
C (`, �, ✓d, µ) = S

q
C(`, �, µ) . (47)

Here taking the limit ✓cs ⌧ ✓d ensures that it is always
the CS mode which stops soft drop.

Next we describe how to account for the distribution
of ✓d itself by incorporating the dependence on decay-
product phase space �d. Since this dependence is de-
termined at the scale mt it should be thought of as a
di↵erential hard matching coe�cient from the perspec-
tive of the low energy CS, UC, and S modes. Hence, in
the light grooming region the dynamics of the UC modes
is described by the same inclusive stable heavy quark jet
function JB(ŝ, �m, µ) in Eq. (43).

We refer to the function that encodes the distri-
bution of the top decay products as Dt(ŝ0, �d, mt/Q)
where ŝ

0 is the o↵shellness of the top-quark, such that
Dt(ŝ0, �d, mt/Q) and the stable jet function JB(ŝ, �m, µ)
together through convolution account for the e↵ects of
top decay and UC modes. Calculation of Dt requires
a geometric sum of decay product bubbles, where one
hadronically decaying bubble is cut, as shown in Fig. 6.

In the non-cut bubbles we just keep the total top width
�t, allowing us to write the result in terms of the purely
resonant contribution

Dt

⇣
ŝ
0
, �d,

mt

Q

⌘
=

�t

⇡(ŝ0 2+�2
t )

dt

⇣
�d,

mt

Q

⌘h
1+O

⇣
ŝ
0

mt

⌘i
.

(48)

The expansion here indicates that for the angular depen-
dence from the decay products we can work with an on-
shell quark function with ŝ

0 = 0. The full 5-body phase
space dependence of the top-decay t ! bW ! bqq̄

0 is
then contained in the dimensionless function

dt

⇣
�d,

mt

Q

⌘
=

1

�t!bqq̄0

d�t!bqq̄0

d�d
. (49)

Extra term from           
              comparisonθcs θdvs

No large logs in the light 
grooming region

• Collinear-Soft function must compare the angles of the CS and decay subjets:
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a)

b)

FIG. 4. Relevant SCET modes for soft drop jet mass for a top
jet. The dashed vertical line corresponds to the angle of the
furthest top-decay product from the jet axis which determines
h, shown with two di↵erent values in (a) and (b). This leads
to a dependence on h in the factorization formula. The other
parameters (pt, ⌘J , zcut, �) are held fixed.

the pair xy = qq̄0, qb, or q̄0b that is closest in angle, which
are grouped together in a subjet, while the third particle
we call z is in a di↵erent subjet. For case ii) soft drop
stops due to the comparison of these two subjets. In
the definition of ✓d the angle ✓̃(xy)t is measured between
the top decay axis and the parent subjet obtained by
adding the four momenta pµ

x + pµ
y , with the analogous

definition for ✓̃zt. The angle ✓d is also directly related to
the parameter h used above in Eq. (7a).

We now turn to the calculation of ✓d and h. Since these
subjets are dominated by the energetic decay products,
✓d can be directly calculated in terms of the t ! bqq̄0

phase space variables

✓d = ✓d(�d, mt/Q) . (38)

We define �d as the 5 independent dimensionless kine-
matic variables of the top-decay t ! bqq̄0 in its rest frame
(4 angles and one energy fraction). The dependence on
mt/Q arises from boosting to the frame with the high pT

top-quark, where the angles used by soft drop are com-
puted. The h function which appeared already in Eq. (7),
and will be needed below for the decay component of the
factorization theorem, is then defined by

tan
⇣✓d

2

⌘
=

mt

Q
h
⇣
�d,

mt

Q

⌘
. (39)

The mt/Q prefactor here pulls out the dominant depen-
dence that ✓d has on the boost of the top quark, indicat-

ing that ✓d ! 0 as Q/mt ! 1. The use of tangent in
Eq. (39) makes the p+ component of the ⇤ modes scale
in a manner proportional to h without further approxi-
mations: p+⇤ ⇠ (mt/Q)h⇤QCD. For the full scaling of the
(p+, p�, p?) components of ⇤ mode momenta in case ii)
we therefore have

pµ
⇤ ⇠ ⇤QCD

⇣
⇣d,

1

⇣d
, 1
⌘

, ⇣d ⌘
mt

Q
h . (40)

[Do we want to mention case i) scaling already here?]
We also define ✓0d for the other angle from the compar-

ison of decay product subjets in Eq. (37), and a corre-
sponding variable h0, via

✓0d ⌘ min
⇣
✓̃(xy)t, ✓̃zt

⌘
, tan

⇣✓0d
2

⌘
=

mt

Q
h0
⇣
�d,

mt

Q

⌘
.

(41)

(TODO) If the decay products in the top rest frame TODO:

Andre
should
improve
this
descrip-
tion.

are in the most symmetric configuration then the boost
results in h ' h0

' 1. For any other configuration we
have h > 1 and h0 < 1.

Since mt/Q ⌧ 1, at the stage of clustering where the
comparisons in Eq. (37) are made the xy and z sub-
jets containing top decay products carry almost all of
the jet-momentum. Hence at leading order in the power
counting they are in the same plane as the total jet 3-
momentum vector, and the angle between the top decay
product subjets is ✓d + ✓0d. Then this sum has to be
compared with the angle ✓sc of the first CS subjet en-
countered in traversing the CA tree backwards that has
large enough pT and Rij to stop the soft drop grooming
via Eq. (3). From an exact calculation which is weighted
by the full top-decay di↵erential cross section, we find
that on averaging over �d we have hh0

i/hhi ' 0.22 for
Q/mt = 5. This ratio decreases to hh0

i/hhi . 0.12 when
Q/mt � 11, which is the range of interest for our analy-
sis. Therefore for our treatment of the ⇤ modes we can
safely assume ✓0d ⌧ ✓d or equivalently h0

⌧ h. This im-
plies that which of the two cases we are in is determined
by a simple comparison of which subjets are at a wider
angle, with angles that are both defined relative to the
top jet axis:

case i) if ✓cs > ✓d , (42)

case ii) if ✓cs < ✓d .

Examples are shown in the panels in Fig. 4a for case i)
and in Fig. 4b for case ii), by considering two di↵erent
values for h, implying two di↵erent values of ✓d.

Figure 4 implies that the factorization theorems for a
jet initiated by an unstable massive quark will have sig-
nificant di↵erences from the massless quark jet case. In
particular, if in the power counting ✓cs ⇠ ✓d then the
comparison in Eq. (42) will also be made inside the op-

erator defining the collinear-soft function, denoted S(d)
C .

It will therefore depend on information about the decay
products, and in general di↵er from the Sq

C function ap-
pearing in Eq. (18). In general, resolving the comparison
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a)

b)

FIG. 4. Relevant SCET modes for soft drop jet mass for a top
jet. The dashed vertical line corresponds to the angle of the
furthest top-decay product from the jet axis which determines
h, shown with two di↵erent values in (a) and (b). This leads
to a dependence on h in the factorization formula. The other
parameters (pt, ⌘J , zcut, �) are held fixed.

the pair xy = qq̄0, qb, or q̄0b that is closest in angle, which
are grouped together in a subjet, while the third particle
we call z is in a di↵erent subjet. For case ii) soft drop
stops due to the comparison of these two subjets. In
the definition of ✓d the angle ✓̃(xy)t is measured between
the top decay axis and the parent subjet obtained by
adding the four momenta pµ

x + pµ
y , with the analogous

definition for ✓̃zt. The angle ✓d is also directly related to
the parameter h used above in Eq. (7a).

We now turn to the calculation of ✓d and h. Since these
subjets are dominated by the energetic decay products,
✓d can be directly calculated in terms of the t ! bqq̄0

phase space variables

✓d = ✓d(�d, mt/Q) . (38)

We define �d as the 5 independent dimensionless kine-
matic variables of the top-decay t ! bqq̄0 in its rest frame
(4 angles and one energy fraction). The dependence on
mt/Q arises from boosting to the frame with the high pT

top-quark, where the angles used by soft drop are com-
puted. The h function which appeared already in Eq. (7),
and will be needed below for the decay component of the
factorization theorem, is then defined by

tan
⇣✓d

2

⌘
=

mt

Q
h
⇣
�d,

mt

Q

⌘
. (39)

The mt/Q prefactor here pulls out the dominant depen-
dence that ✓d has on the boost of the top quark, indicat-

ing that ✓d ! 0 as Q/mt ! 1. The use of tangent in
Eq. (39) makes the p+ component of the ⇤ modes scale
in a manner proportional to h without further approxi-
mations: p+⇤ ⇠ (mt/Q)h⇤QCD. For the full scaling of the
(p+, p�, p?) components of ⇤ mode momenta in case ii)
we therefore have

pµ
⇤ ⇠ ⇤QCD

⇣
⇣d,

1

⇣d
, 1
⌘

, ⇣d ⌘
mt

Q
h . (40)

[Do we want to mention case i) scaling already here?]
We also define ✓0d for the other angle from the compar-

ison of decay product subjets in Eq. (37), and a corre-
sponding variable h0, via

✓0d ⌘ min
⇣
✓̃(xy)t, ✓̃zt

⌘
, tan

⇣✓0d
2

⌘
=

mt

Q
h0
⇣
�d,

mt

Q

⌘
.

(41)

(TODO) If the decay products in the top rest frame TODO:

Andre
should
improve
this
descrip-
tion.

are in the most symmetric configuration then the boost
results in h ' h0

' 1. For any other configuration we
have h > 1 and h0 < 1.

Since mt/Q ⌧ 1, at the stage of clustering where the
comparisons in Eq. (37) are made the xy and z sub-
jets containing top decay products carry almost all of
the jet-momentum. Hence at leading order in the power
counting they are in the same plane as the total jet 3-
momentum vector, and the angle between the top decay
product subjets is ✓d + ✓0d. Then this sum has to be
compared with the angle ✓sc of the first CS subjet en-
countered in traversing the CA tree backwards that has
large enough pT and Rij to stop the soft drop grooming
via Eq. (3). From an exact calculation which is weighted
by the full top-decay di↵erential cross section, we find
that on averaging over �d we have hh0

i/hhi ' 0.22 for
Q/mt = 5. This ratio decreases to hh0

i/hhi . 0.12 when
Q/mt � 11, which is the range of interest for our analy-
sis. Therefore for our treatment of the ⇤ modes we can
safely assume ✓0d ⌧ ✓d or equivalently h0

⌧ h. This im-
plies that which of the two cases we are in is determined
by a simple comparison of which subjets are at a wider
angle, with angles that are both defined relative to the
top jet axis:

case i) if ✓cs > ✓d , (42)

case ii) if ✓cs < ✓d .

Examples are shown in the panels in Fig. 4a for case i)
and in Fig. 4b for case ii), by considering two di↵erent
values for h, implying two di↵erent values of ✓d.

Figure 4 implies that the factorization theorems for a
jet initiated by an unstable massive quark will have sig-
nificant di↵erences from the massless quark jet case. In
particular, if in the power counting ✓cs ⇠ ✓d then the
comparison in Eq. (42) will also be made inside the op-

erator defining the collinear-soft function, denoted S(d)
C .

It will therefore depend on information about the decay
products, and in general di↵er from the Sq

C function ap-
pearing in Eq. (18). In general, resolving the comparison

• At NLL, the same perturbative collinear-soft function can be used as in the 
mass groomed jet case:
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products. However, after integrating out mt these modes
are only sensitive to the overall color charge and direc-
tion of the top quark, since this direction is equivalent to
that of the decay products at leading order in mt/Q [9].
Therefore the top decay does not change e↵ects related
to this UC QCD radiation at leading power. Hence, the
unstable JB(ŝt, �t, �m, µ) in Eq. (41) can be defined in
terms of the stable jet function JB(ŝt, �m, µ) convolved
with the top Breit-Wigner [11]:

JB(ŝt, �t, �m, µ) (43)

=

Z ŝt

�1
dŝ

0
JB(ŝt � ŝ

0
, �m, µ)

�t

⇡
�
ŝ0 2 + �2

t

� .

In general to obtain results for the case where soft drop
acts on a boosted top quark jet, we need a collinear-soft

function S
(d)
C that in addition to the soft drop condition,

as in the case of usual S
(q)
C in Eq. (15), now also includes

angular information from the decay products. Thus S
(d)
C

is now aware of the vertical dashed line in Fig. 5b at
✓ = ✓d which contributes to the boundary of the soft drop
region, and hence a↵ects the location of the CS mode. At
one loop one finds that including the additional dashed
vertical line in Fig. 5b in the collinear-soft function yields
an additional logarithic term

S
(d)
C (`, �, ✓d, µ) = S

q
C(`, �, µ)

�
↵s(µ)CF

(�+2)⇡

2�+3

Qcut✓
�+2
d

L1

✓
`

Qcut

2�+2

✓
�+2
d

◆
⇥


Qcut✓

�+2
d

2�+2
� `

�

+ O(↵2
s) , (44)

where L1(x) = [(ln x)/x]+ is the standard logarithmic
plus function, defined as in Ref. [23]. Since at one loop in
fixed order perturbation theory we have a single emission,
the relevance of high-pT or decay scenario boils down to
a simple comparison between the emission angle ✓cs and
✓d, leading to the expression in Eq. (44). Note that at
O(↵s) that the extra term with ✓d dependence does not
have explicit dependence on µ, and only contributes for
case ii). To see this we first note that Eq. (9) implies
that `

+
⇠ m

2
J/Q, and thus using Eqs. (12) and (14) the

case ii) constraint ✓cs < ✓d at this order becomes

`
+
 Qcut

⇣
✓d

2

⌘�+2
= Qcut

⇣
mth

Q

⌘�+2
. (45)

The second line of Eq. (44) also only involves a logarithm
that is not large when ✓d ⇠ ✓cs, which is the relevant scal-
ing if the case i) and case ii) comparisons are necessary.
Demanding that this extra logarithm does not become
large precisely leads to the constraint in Eq. (7a), which
is necessary to ensure that the UC modes are not a↵ected
by soft drop. Thus this extra ✓d term only enters beyond
NLL order. In other words, light grooming constraints in
Eq. (7a) ensure that soft drop does not a↵ect the decay
products significantly and one can continue to use the
inclusive description of decay products. For all the terms

t t t t t t t t
b
q
q ‘

FIG. 6. Bubble chain for an unstable top quark leading to

a Breit-Wigner together with a di↵erential distribution for

the top decay products. From the closed two-loop bubble

calculation involving bqq̄0 only the imaginary top width term

is kept.

that appear at NLL, which can be determined by renor-
malization group evolution, the perturative CS function
is the same as the one that appeared at this order for
massless quark initiated jets in Eq. (9),

S
(d)
C (`, �, ✓d, µ)

���
NLL

= S
q
C(`, �, µ)

���
NLL

. (46)

Note that there is another relation which works with-
out limiting the order in resummed perturbation theory,
namely

lim
✓d⌧✓cs

S
(d)
C (`, �, ✓d, µ) = S

q
C(`, �, µ) . (47)

Here taking the limit ✓cs ⌧ ✓d ensures that it is always
the CS mode which stops soft drop.

Next we describe how to account for the distribution
of ✓d itself by incorporating the dependence on decay-
product phase space �d. Since this dependence is de-
termined at the scale mt it should be thought of as a
di↵erential hard matching coe�cient from the perspec-
tive of the low energy CS, UC, and S modes. Hence, in
the light grooming region the dynamics of the UC modes
is described by the same inclusive stable heavy quark jet
function JB(ŝ, �m, µ) in Eq. (43).

We refer to the function that encodes the distri-
bution of the top decay products as Dt(ŝ0, �d, mt/Q)
where ŝ

0 is the o↵shellness of the top-quark, such that
Dt(ŝ0, �d, mt/Q) and the stable jet function JB(ŝ, �m, µ)
together through convolution account for the e↵ects of
top decay and UC modes. Calculation of Dt requires
a geometric sum of decay product bubbles, where one
hadronically decaying bubble is cut, as shown in Fig. 6.

In the non-cut bubbles we just keep the total top width
�t, allowing us to write the result in terms of the purely
resonant contribution

Dt

⇣
ŝ
0
, �d,

mt

Q

⌘
=

�t

⇡(ŝ0 2+�2
t )

dt

⇣
�d,

mt

Q

⌘h
1+O

⇣
ŝ
0

mt

⌘i
.

(48)

The expansion here indicates that for the angular depen-
dence from the decay products we can work with an on-
shell quark function with ŝ

0 = 0. The full 5-body phase
space dependence of the top-decay t ! bW ! bqq̄

0 is
then contained in the dimensionless function

dt

⇣
�d,

mt

Q

⌘
=

1

�t!bqq̄0

d�t!bqq̄0

d�d
. (49)

• However, we will see that the NP part of the collinear-soft function must still 
know information about the decay products. 
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FIG. 4. Relevant SCET modes for soft drop jet mass for a top
jet. The dashed vertical line corresponds to the angle of the
furthest top-decay product from the jet axis which determines
h, shown with two di↵erent values in (a) and (b). This leads
to a dependence on h in the factorization formula. The other
parameters (pt, ⌘J , zcut, �) are held fixed.

the pair xy = qq̄0, qb, or q̄0b that is closest in angle, which
are grouped together in a subjet, while the third particle
we call z is in a di↵erent subjet. For case ii) soft drop
stops due to the comparison of these two subjets. In
the definition of ✓d the angle ✓̃(xy)t is measured between
the top decay axis and the parent subjet obtained by
adding the four momenta pµ

x + pµ
y , with the analogous

definition for ✓̃zt. The angle ✓d is also directly related to
the parameter h used above in Eq. (7a).

We now turn to the calculation of ✓d and h. Since these
subjets are dominated by the energetic decay products,
✓d can be directly calculated in terms of the t ! bqq̄0

phase space variables

✓d = ✓d(�d, mt/Q) . (38)

We define �d as the 5 independent dimensionless kine-
matic variables of the top-decay t ! bqq̄0 in its rest frame
(4 angles and one energy fraction). The dependence on
mt/Q arises from boosting to the frame with the high pT

top-quark, where the angles used by soft drop are com-
puted. The h function which appeared already in Eq. (7),
and will be needed below for the decay component of the
factorization theorem, is then defined by

tan
⇣✓d

2

⌘
=

mt

Q
h
⇣
�d,

mt

Q

⌘
. (39)

The mt/Q prefactor here pulls out the dominant depen-
dence that ✓d has on the boost of the top quark, indicat-

ing that ✓d ! 0 as Q/mt ! 1. The use of tangent in
Eq. (39) makes the p+ component of the ⇤ modes scale
in a manner proportional to h without further approxi-
mations: p+⇤ ⇠ (mt/Q)h⇤QCD. For the full scaling of the
(p+, p�, p?) components of ⇤ mode momenta in case ii)
we therefore have

pµ
⇤ ⇠ ⇤QCD

⇣
⇣d,

1

⇣d
, 1
⌘

, ⇣d ⌘
mt

Q
h . (40)

[Do we want to mention case i) scaling already here?]
We also define ✓0d for the other angle from the compar-

ison of decay product subjets in Eq. (37), and a corre-
sponding variable h0, via

✓0d ⌘ min
⇣
✓̃(xy)t, ✓̃zt

⌘
, tan

⇣✓0d
2

⌘
=

mt

Q
h0
⇣
�d,

mt

Q

⌘
.

(41)

(TODO) If the decay products in the top rest frame TODO:

Andre
should
improve
this
descrip-
tion.

are in the most symmetric configuration then the boost
results in h ' h0

' 1. For any other configuration we
have h > 1 and h0 < 1.

Since mt/Q ⌧ 1, at the stage of clustering where the
comparisons in Eq. (37) are made the xy and z sub-
jets containing top decay products carry almost all of
the jet-momentum. Hence at leading order in the power
counting they are in the same plane as the total jet 3-
momentum vector, and the angle between the top decay
product subjets is ✓d + ✓0d. Then this sum has to be
compared with the angle ✓sc of the first CS subjet en-
countered in traversing the CA tree backwards that has
large enough pT and Rij to stop the soft drop grooming
via Eq. (3). From an exact calculation which is weighted
by the full top-decay di↵erential cross section, we find
that on averaging over �d we have hh0

i/hhi ' 0.22 for
Q/mt = 5. This ratio decreases to hh0

i/hhi . 0.12 when
Q/mt � 11, which is the range of interest for our analy-
sis. Therefore for our treatment of the ⇤ modes we can
safely assume ✓0d ⌧ ✓d or equivalently h0

⌧ h. This im-
plies that which of the two cases we are in is determined
by a simple comparison of which subjets are at a wider
angle, with angles that are both defined relative to the
top jet axis:

case i) if ✓cs > ✓d , (42)

case ii) if ✓cs < ✓d .

Examples are shown in the panels in Fig. 4a for case i)
and in Fig. 4b for case ii), by considering two di↵erent
values for h, implying two di↵erent values of ✓d.

Figure 4 implies that the factorization theorems for a
jet initiated by an unstable massive quark will have sig-
nificant di↵erences from the massless quark jet case. In
particular, if in the power counting ✓cs ⇠ ✓d then the
comparison in Eq. (42) will also be made inside the op-

erator defining the collinear-soft function, denoted S(d)
C .

It will therefore depend on information about the decay
products, and in general di↵er from the Sq

C function ap-
pearing in Eq. (18). In general, resolving the comparison
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a)

b)

FIG. 4. Relevant SCET modes for soft drop jet mass for a top
jet. The dashed vertical line corresponds to the angle of the
furthest top-decay product from the jet axis which determines
h, shown with two di↵erent values in (a) and (b). This leads
to a dependence on h in the factorization formula. The other
parameters (pt, ⌘J , zcut, �) are held fixed.

the pair xy = qq̄0, qb, or q̄0b that is closest in angle, which
are grouped together in a subjet, while the third particle
we call z is in a di↵erent subjet. For case ii) soft drop
stops due to the comparison of these two subjets. In
the definition of ✓d the angle ✓̃(xy)t is measured between
the top decay axis and the parent subjet obtained by
adding the four momenta pµ

x + pµ
y , with the analogous

definition for ✓̃zt. The angle ✓d is also directly related to
the parameter h used above in Eq. (7a).

We now turn to the calculation of ✓d and h. Since these
subjets are dominated by the energetic decay products,
✓d can be directly calculated in terms of the t ! bqq̄0

phase space variables

✓d = ✓d(�d, mt/Q) . (38)

We define �d as the 5 independent dimensionless kine-
matic variables of the top-decay t ! bqq̄0 in its rest frame
(4 angles and one energy fraction). The dependence on
mt/Q arises from boosting to the frame with the high pT

top-quark, where the angles used by soft drop are com-
puted. The h function which appeared already in Eq. (7),
and will be needed below for the decay component of the
factorization theorem, is then defined by

tan
⇣✓d

2

⌘
=

mt

Q
h
⇣
�d,

mt

Q

⌘
. (39)

The mt/Q prefactor here pulls out the dominant depen-
dence that ✓d has on the boost of the top quark, indicat-

ing that ✓d ! 0 as Q/mt ! 1. The use of tangent in
Eq. (39) makes the p+ component of the ⇤ modes scale
in a manner proportional to h without further approxi-
mations: p+⇤ ⇠ (mt/Q)h⇤QCD. For the full scaling of the
(p+, p�, p?) components of ⇤ mode momenta in case ii)
we therefore have

pµ
⇤ ⇠ ⇤QCD

⇣
⇣d,

1

⇣d
, 1
⌘

, ⇣d ⌘
mt

Q
h . (40)

[Do we want to mention case i) scaling already here?]
We also define ✓0d for the other angle from the compar-

ison of decay product subjets in Eq. (37), and a corre-
sponding variable h0, via

✓0d ⌘ min
⇣
✓̃(xy)t, ✓̃zt

⌘
, tan

⇣✓0d
2

⌘
=

mt

Q
h0
⇣
�d,

mt

Q

⌘
.

(41)

(TODO) If the decay products in the top rest frame TODO:

Andre
should
improve
this
descrip-
tion.

are in the most symmetric configuration then the boost
results in h ' h0

' 1. For any other configuration we
have h > 1 and h0 < 1.

Since mt/Q ⌧ 1, at the stage of clustering where the
comparisons in Eq. (37) are made the xy and z sub-
jets containing top decay products carry almost all of
the jet-momentum. Hence at leading order in the power
counting they are in the same plane as the total jet 3-
momentum vector, and the angle between the top decay
product subjets is ✓d + ✓0d. Then this sum has to be
compared with the angle ✓sc of the first CS subjet en-
countered in traversing the CA tree backwards that has
large enough pT and Rij to stop the soft drop grooming
via Eq. (3). From an exact calculation which is weighted
by the full top-decay di↵erential cross section, we find
that on averaging over �d we have hh0

i/hhi ' 0.22 for
Q/mt = 5. This ratio decreases to hh0

i/hhi . 0.12 when
Q/mt � 11, which is the range of interest for our analy-
sis. Therefore for our treatment of the ⇤ modes we can
safely assume ✓0d ⌧ ✓d or equivalently h0

⌧ h. This im-
plies that which of the two cases we are in is determined
by a simple comparison of which subjets are at a wider
angle, with angles that are both defined relative to the
top jet axis:

case i) if ✓cs > ✓d , (42)

case ii) if ✓cs < ✓d .

Examples are shown in the panels in Fig. 4a for case i)
and in Fig. 4b for case ii), by considering two di↵erent
values for h, implying two di↵erent values of ✓d.

Figure 4 implies that the factorization theorems for a
jet initiated by an unstable massive quark will have sig-
nificant di↵erences from the massless quark jet case. In
particular, if in the power counting ✓cs ⇠ ✓d then the
comparison in Eq. (42) will also be made inside the op-

erator defining the collinear-soft function, denoted S(d)
C .

It will therefore depend on information about the decay
products, and in general di↵er from the Sq

C function ap-
pearing in Eq. (18). In general, resolving the comparison

Combining “High-pT” & “Decay” Factorization

Collinear Soft Function must 
know about decay products
to compare: 

θcs θdvs
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FIG. 4. Relevant SCET modes for soft drop jet mass for a top
jet. The dashed vertical line corresponds to the angle of the
furthest top-decay product from the jet axis which determines
h, shown with two di↵erent values in (a) and (b). This leads
to a dependence on h in the factorization formula. The other
parameters (pt, ⌘J , zcut, �) are held fixed.

the pair xy = qq̄0, qb, or q̄0b that is closest in angle, which
are grouped together in a subjet, while the third particle
we call z is in a di↵erent subjet. For case ii) soft drop
stops due to the comparison of these two subjets. In
the definition of ✓d the angle ✓̃(xy)t is measured between
the top decay axis and the parent subjet obtained by
adding the four momenta pµ

x + pµ
y , with the analogous

definition for ✓̃zt. The angle ✓d is also directly related to
the parameter h used above in Eq. (7a).

We now turn to the calculation of ✓d and h. Since these
subjets are dominated by the energetic decay products,
✓d can be directly calculated in terms of the t ! bqq̄0

phase space variables

✓d = ✓d(�d, mt/Q) . (38)

We define �d as the 5 independent dimensionless kine-
matic variables of the top-decay t ! bqq̄0 in its rest frame
(4 angles and one energy fraction). The dependence on
mt/Q arises from boosting to the frame with the high pT

top-quark, where the angles used by soft drop are com-
puted. The h function which appeared already in Eq. (7),
and will be needed below for the decay component of the
factorization theorem, is then defined by

tan
⇣✓d

2

⌘
=

mt

Q
h
⇣
�d,

mt

Q

⌘
. (39)

The mt/Q prefactor here pulls out the dominant depen-
dence that ✓d has on the boost of the top quark, indicat-

ing that ✓d ! 0 as Q/mt ! 1. The use of tangent in
Eq. (39) makes the p+ component of the ⇤ modes scale
in a manner proportional to h without further approxi-
mations: p+⇤ ⇠ (mt/Q)h⇤QCD. For the full scaling of the
(p+, p�, p?) components of ⇤ mode momenta in case ii)
we therefore have

pµ
⇤ ⇠ ⇤QCD

⇣
⇣d,

1

⇣d
, 1
⌘

, ⇣d ⌘
mt

Q
h . (40)

[Do we want to mention case i) scaling already here?]
We also define ✓0d for the other angle from the compar-

ison of decay product subjets in Eq. (37), and a corre-
sponding variable h0, via

✓0d ⌘ min
⇣
✓̃(xy)t, ✓̃zt

⌘
, tan

⇣✓0d
2

⌘
=

mt

Q
h0
⇣
�d,

mt

Q

⌘
.

(41)

(TODO) If the decay products in the top rest frame TODO:

Andre
should
improve
this
descrip-
tion.

are in the most symmetric configuration then the boost
results in h ' h0

' 1. For any other configuration we
have h > 1 and h0 < 1.

Since mt/Q ⌧ 1, at the stage of clustering where the
comparisons in Eq. (37) are made the xy and z sub-
jets containing top decay products carry almost all of
the jet-momentum. Hence at leading order in the power
counting they are in the same plane as the total jet 3-
momentum vector, and the angle between the top decay
product subjets is ✓d + ✓0d. Then this sum has to be
compared with the angle ✓sc of the first CS subjet en-
countered in traversing the CA tree backwards that has
large enough pT and Rij to stop the soft drop grooming
via Eq. (3). From an exact calculation which is weighted
by the full top-decay di↵erential cross section, we find
that on averaging over �d we have hh0

i/hhi ' 0.22 for
Q/mt = 5. This ratio decreases to hh0

i/hhi . 0.12 when
Q/mt � 11, which is the range of interest for our analy-
sis. Therefore for our treatment of the ⇤ modes we can
safely assume ✓0d ⌧ ✓d or equivalently h0

⌧ h. This im-
plies that which of the two cases we are in is determined
by a simple comparison of which subjets are at a wider
angle, with angles that are both defined relative to the
top jet axis:

case i) if ✓cs > ✓d , (42)

case ii) if ✓cs < ✓d .

Examples are shown in the panels in Fig. 4a for case i)
and in Fig. 4b for case ii), by considering two di↵erent
values for h, implying two di↵erent values of ✓d.

Figure 4 implies that the factorization theorems for a
jet initiated by an unstable massive quark will have sig-
nificant di↵erences from the massless quark jet case. In
particular, if in the power counting ✓cs ⇠ ✓d then the
comparison in Eq. (42) will also be made inside the op-

erator defining the collinear-soft function, denoted S(d)
C .

It will therefore depend on information about the decay
products, and in general di↵er from the Sq

C function ap-
pearing in Eq. (18). In general, resolving the comparison
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FIG. 4. Relevant SCET modes for soft drop jet mass for a top
jet. The dashed vertical line corresponds to the angle of the
furthest top-decay product from the jet axis which determines
h, shown with two di↵erent values in (a) and (b). This leads
to a dependence on h in the factorization formula. The other
parameters (pt, ⌘J , zcut, �) are held fixed.

the pair xy = qq̄0, qb, or q̄0b that is closest in angle, which
are grouped together in a subjet, while the third particle
we call z is in a di↵erent subjet. For case ii) soft drop
stops due to the comparison of these two subjets. In
the definition of ✓d the angle ✓̃(xy)t is measured between
the top decay axis and the parent subjet obtained by
adding the four momenta pµ

x + pµ
y , with the analogous

definition for ✓̃zt. The angle ✓d is also directly related to
the parameter h used above in Eq. (7a).

We now turn to the calculation of ✓d and h. Since these
subjets are dominated by the energetic decay products,
✓d can be directly calculated in terms of the t ! bqq̄0

phase space variables

✓d = ✓d(�d, mt/Q) . (38)

We define �d as the 5 independent dimensionless kine-
matic variables of the top-decay t ! bqq̄0 in its rest frame
(4 angles and one energy fraction). The dependence on
mt/Q arises from boosting to the frame with the high pT

top-quark, where the angles used by soft drop are com-
puted. The h function which appeared already in Eq. (7),
and will be needed below for the decay component of the
factorization theorem, is then defined by

tan
⇣✓d

2

⌘
=

mt

Q
h
⇣
�d,

mt

Q

⌘
. (39)

The mt/Q prefactor here pulls out the dominant depen-
dence that ✓d has on the boost of the top quark, indicat-

ing that ✓d ! 0 as Q/mt ! 1. The use of tangent in
Eq. (39) makes the p+ component of the ⇤ modes scale
in a manner proportional to h without further approxi-
mations: p+⇤ ⇠ (mt/Q)h⇤QCD. For the full scaling of the
(p+, p�, p?) components of ⇤ mode momenta in case ii)
we therefore have

pµ
⇤ ⇠ ⇤QCD

⇣
⇣d,

1

⇣d
, 1
⌘

, ⇣d ⌘
mt

Q
h . (40)

[Do we want to mention case i) scaling already here?]
We also define ✓0d for the other angle from the compar-

ison of decay product subjets in Eq. (37), and a corre-
sponding variable h0, via

✓0d ⌘ min
⇣
✓̃(xy)t, ✓̃zt

⌘
, tan

⇣✓0d
2

⌘
=

mt

Q
h0
⇣
�d,

mt

Q

⌘
.

(41)

(TODO) If the decay products in the top rest frame TODO:

Andre
should
improve
this
descrip-
tion.

are in the most symmetric configuration then the boost
results in h ' h0

' 1. For any other configuration we
have h > 1 and h0 < 1.

Since mt/Q ⌧ 1, at the stage of clustering where the
comparisons in Eq. (37) are made the xy and z sub-
jets containing top decay products carry almost all of
the jet-momentum. Hence at leading order in the power
counting they are in the same plane as the total jet 3-
momentum vector, and the angle between the top decay
product subjets is ✓d + ✓0d. Then this sum has to be
compared with the angle ✓sc of the first CS subjet en-
countered in traversing the CA tree backwards that has
large enough pT and Rij to stop the soft drop grooming
via Eq. (3). From an exact calculation which is weighted
by the full top-decay di↵erential cross section, we find
that on averaging over �d we have hh0

i/hhi ' 0.22 for
Q/mt = 5. This ratio decreases to hh0

i/hhi . 0.12 when
Q/mt � 11, which is the range of interest for our analy-
sis. Therefore for our treatment of the ⇤ modes we can
safely assume ✓0d ⌧ ✓d or equivalently h0

⌧ h. This im-
plies that which of the two cases we are in is determined
by a simple comparison of which subjets are at a wider
angle, with angles that are both defined relative to the
top jet axis:

case i) if ✓cs > ✓d , (42)

case ii) if ✓cs < ✓d .

Examples are shown in the panels in Fig. 4a for case i)
and in Fig. 4b for case ii), by considering two di↵erent
values for h, implying two di↵erent values of ✓d.

Figure 4 implies that the factorization theorems for a
jet initiated by an unstable massive quark will have sig-
nificant di↵erences from the massless quark jet case. In
particular, if in the power counting ✓cs ⇠ ✓d then the
comparison in Eq. (42) will also be made inside the op-

erator defining the collinear-soft function, denoted S(d)
C .

It will therefore depend on information about the decay
products, and in general di↵er from the Sq

C function ap-
pearing in Eq. (18). In general, resolving the comparison

Combining “High-pT” & “Decay” Factorization

Collinear Soft Function must 
know about decay products
to compare: 

Jet function must communicate 
information on      to the 
collinear-soft function 

θcs θdvs

θd
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products. However, after integrating out mt these modes
are only sensitive to the overall color charge and direc-
tion of the top quark, since this direction is equivalent to
that of the decay products at leading order in mt/Q [9].
Therefore the top decay does not change e↵ects related
to this UC QCD radiation at leading power. Hence, the
unstable JB(ŝt, �t, �m, µ) in Eq. (41) can be defined in
terms of the stable jet function JB(ŝt, �m, µ) convolved
with the top Breit-Wigner [11]:

JB(ŝt, �t, �m, µ) (43)

=

Z ŝt

�1
dŝ

0
JB(ŝt � ŝ

0
, �m, µ)

�t

⇡
�
ŝ0 2 + �2

t

� .

In general to obtain results for the case where soft drop
acts on a boosted top quark jet, we need a collinear-soft

function S
(d)
C that in addition to the soft drop condition,

as in the case of usual S
(q)
C in Eq. (15), now also includes

angular information from the decay products. Thus S
(d)
C

is now aware of the vertical dashed line in Fig. 5b at
✓ = ✓d which contributes to the boundary of the soft drop
region, and hence a↵ects the location of the CS mode. At
one loop one finds that including the additional dashed
vertical line in Fig. 5b in the collinear-soft function yields
an additional logarithic term

S
(d)
C (`, �, ✓d, µ) = S

q
C(`, �, µ)

�
↵s(µ)CF

(�+2)⇡

2�+3

Qcut✓
�+2
d

L1

✓
`

Qcut

2�+2

✓
�+2
d

◆
⇥


Qcut✓

�+2
d

2�+2
� `

�

+ O(↵2
s) , (44)

where L1(x) = [(ln x)/x]+ is the standard logarithmic
plus function, defined as in Ref. [23]. Since at one loop in
fixed order perturbation theory we have a single emission,
the relevance of high-pT or decay scenario boils down to
a simple comparison between the emission angle ✓cs and
✓d, leading to the expression in Eq. (44). Note that at
O(↵s) that the extra term with ✓d dependence does not
have explicit dependence on µ, and only contributes for
case ii). To see this we first note that Eq. (9) implies
that `

+
⇠ m

2
J/Q, and thus using Eqs. (12) and (14) the

case ii) constraint ✓cs < ✓d at this order becomes

`
+
 Qcut

⇣
✓d

2

⌘�+2
= Qcut

⇣
mth

Q

⌘�+2
. (45)

The second line of Eq. (44) also only involves a logarithm
that is not large when ✓d ⇠ ✓cs, which is the relevant scal-
ing if the case i) and case ii) comparisons are necessary.
Demanding that this extra logarithm does not become
large precisely leads to the constraint in Eq. (7a), which
is necessary to ensure that the UC modes are not a↵ected
by soft drop. Thus this extra ✓d term only enters beyond
NLL order. In other words, light grooming constraints in
Eq. (7a) ensure that soft drop does not a↵ect the decay
products significantly and one can continue to use the
inclusive description of decay products. For all the terms
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FIG. 6. Bubble chain for an unstable top quark leading to

a Breit-Wigner together with a di↵erential distribution for

the top decay products. From the closed two-loop bubble

calculation involving bqq̄0 only the imaginary top width term

is kept.

that appear at NLL, which can be determined by renor-
malization group evolution, the perturative CS function
is the same as the one that appeared at this order for
massless quark initiated jets in Eq. (9),

S
(d)
C (`, �, ✓d, µ)

���
NLL

= S
q
C(`, �, µ)

���
NLL

. (46)

Note that there is another relation which works with-
out limiting the order in resummed perturbation theory,
namely

lim
✓d⌧✓cs

S
(d)
C (`, �, ✓d, µ) = S

q
C(`, �, µ) . (47)

Here taking the limit ✓cs ⌧ ✓d ensures that it is always
the CS mode which stops soft drop.

Next we describe how to account for the distribution
of ✓d itself by incorporating the dependence on decay-
product phase space �d. Since this dependence is de-
termined at the scale mt it should be thought of as a
di↵erential hard matching coe�cient from the perspec-
tive of the low energy CS, UC, and S modes. Hence, in
the light grooming region the dynamics of the UC modes
is described by the same inclusive stable heavy quark jet
function JB(ŝ, �m, µ) in Eq. (43).

We refer to the function that encodes the distri-
bution of the top decay products as Dt(ŝ0, �d, mt/Q)
where ŝ

0 is the o↵shellness of the top-quark, such that
Dt(ŝ0, �d, mt/Q) and the stable jet function JB(ŝ, �m, µ)
together through convolution account for the e↵ects of
top decay and UC modes. Calculation of Dt requires
a geometric sum of decay product bubbles, where one
hadronically decaying bubble is cut, as shown in Fig. 6.

In the non-cut bubbles we just keep the total top width
�t, allowing us to write the result in terms of the purely
resonant contribution

Dt

⇣
ŝ
0
, �d,

mt

Q

⌘
=

�t

⇡(ŝ0 2+�2
t )

dt

⇣
�d,

mt

Q

⌘h
1+O

⇣
ŝ
0

mt

⌘i
.

(48)

The expansion here indicates that for the angular depen-
dence from the decay products we can work with an on-
shell quark function with ŝ

0 = 0. The full 5-body phase
space dependence of the top-decay t ! bW ! bqq̄

0 is
then contained in the dimensionless function

dt

⇣
�d,

mt

Q

⌘
=

1

�t!bqq̄0

d�t!bqq̄0

d�d
. (49)
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products. However, after integrating out mt these modes
are only sensitive to the overall color charge and direc-
tion of the top quark, since this direction is equivalent to
that of the decay products at leading order in mt/Q [9].
Therefore the top decay does not change e↵ects related
to this UC QCD radiation at leading power. Hence, the
unstable JB(ŝt, �t, �m, µ) in Eq. (41) can be defined in
terms of the stable jet function JB(ŝt, �m, µ) convolved
with the top Breit-Wigner [11]:

JB(ŝt, �t, �m, µ) (43)

=

Z ŝt

�1
dŝ

0
JB(ŝt � ŝ

0
, �m, µ)

�t

⇡
�
ŝ0 2 + �2

t

� .

In general to obtain results for the case where soft drop
acts on a boosted top quark jet, we need a collinear-soft

function S
(d)
C that in addition to the soft drop condition,

as in the case of usual S
(q)
C in Eq. (15), now also includes

angular information from the decay products. Thus S
(d)
C

is now aware of the vertical dashed line in Fig. 5b at
✓ = ✓d which contributes to the boundary of the soft drop
region, and hence a↵ects the location of the CS mode. At
one loop one finds that including the additional dashed
vertical line in Fig. 5b in the collinear-soft function yields
an additional logarithic term

S
(d)
C (`, �, ✓d, µ) = S

q
C(`, �, µ)

�
↵s(µ)CF

(�+2)⇡

2�+3

Qcut✓
�+2
d

L1

✓
`

Qcut

2�+2

✓
�+2
d

◆
⇥


Qcut✓

�+2
d

2�+2
� `

�

+ O(↵2
s) , (44)

where L1(x) = [(ln x)/x]+ is the standard logarithmic
plus function, defined as in Ref. [23]. Since at one loop in
fixed order perturbation theory we have a single emission,
the relevance of high-pT or decay scenario boils down to
a simple comparison between the emission angle ✓cs and
✓d, leading to the expression in Eq. (44). Note that at
O(↵s) that the extra term with ✓d dependence does not
have explicit dependence on µ, and only contributes for
case ii). To see this we first note that Eq. (9) implies
that `

+
⇠ m

2
J/Q, and thus using Eqs. (12) and (14) the

case ii) constraint ✓cs < ✓d at this order becomes

`
+
 Qcut

⇣
✓d

2

⌘�+2
= Qcut

⇣
mth

Q

⌘�+2
. (45)

The second line of Eq. (44) also only involves a logarithm
that is not large when ✓d ⇠ ✓cs, which is the relevant scal-
ing if the case i) and case ii) comparisons are necessary.
Demanding that this extra logarithm does not become
large precisely leads to the constraint in Eq. (7a), which
is necessary to ensure that the UC modes are not a↵ected
by soft drop. Thus this extra ✓d term only enters beyond
NLL order. In other words, light grooming constraints in
Eq. (7a) ensure that soft drop does not a↵ect the decay
products significantly and one can continue to use the
inclusive description of decay products. For all the terms
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a Breit-Wigner together with a di↵erential distribution for

the top decay products. From the closed two-loop bubble

calculation involving bqq̄0 only the imaginary top width term

is kept.

that appear at NLL, which can be determined by renor-
malization group evolution, the perturative CS function
is the same as the one that appeared at this order for
massless quark initiated jets in Eq. (9),

S
(d)
C (`, �, ✓d, µ)

���
NLL

= S
q
C(`, �, µ)

���
NLL

. (46)

Note that there is another relation which works with-
out limiting the order in resummed perturbation theory,
namely

lim
✓d⌧✓cs

S
(d)
C (`, �, ✓d, µ) = S

q
C(`, �, µ) . (47)

Here taking the limit ✓cs ⌧ ✓d ensures that it is always
the CS mode which stops soft drop.

Next we describe how to account for the distribution
of ✓d itself by incorporating the dependence on decay-
product phase space �d. Since this dependence is de-
termined at the scale mt it should be thought of as a
di↵erential hard matching coe�cient from the perspec-
tive of the low energy CS, UC, and S modes. Hence, in
the light grooming region the dynamics of the UC modes
is described by the same inclusive stable heavy quark jet
function JB(ŝ, �m, µ) in Eq. (43).

We refer to the function that encodes the distri-
bution of the top decay products as Dt(ŝ0, �d, mt/Q)
where ŝ

0 is the o↵shellness of the top-quark, such that
Dt(ŝ0, �d, mt/Q) and the stable jet function JB(ŝ, �m, µ)
together through convolution account for the e↵ects of
top decay and UC modes. Calculation of Dt requires
a geometric sum of decay product bubbles, where one
hadronically decaying bubble is cut, as shown in Fig. 6.

In the non-cut bubbles we just keep the total top width
�t, allowing us to write the result in terms of the purely
resonant contribution

Dt

⇣
ŝ
0
, �d,

mt

Q

⌘
=

�t

⇡(ŝ0 2+�2
t )

dt

⇣
�d,
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Q

⌘h
1+O

⇣
ŝ
0

mt

⌘i
.

(48)

The expansion here indicates that for the angular depen-
dence from the decay products we can work with an on-
shell quark function with ŝ

0 = 0. The full 5-body phase
space dependence of the top-decay t ! bW ! bqq̄

0 is
then contained in the dimensionless function

dt

⇣
�d,

mt

Q

⌘
=

1

�t!bqq̄0

d�t!bqq̄0

d�d
. (49)
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products. However, after integrating out mt these modes
are only sensitive to the overall color charge and direc-
tion of the top quark, since this direction is equivalent to
that of the decay products at leading order in mt/Q [9].
Therefore the top decay does not change e↵ects related
to this UC QCD radiation at leading power. Hence, the
unstable JB(ŝt, �t, �m, µ) in Eq. (41) can be defined in
terms of the stable jet function JB(ŝt, �m, µ) convolved
with the top Breit-Wigner [11]:

JB(ŝt, �t, �m, µ) (43)

=

Z ŝt

�1
dŝ

0
JB(ŝt � ŝ

0
, �m, µ)

�t

⇡
�
ŝ0 2 + �2

t

� .

In general to obtain results for the case where soft drop
acts on a boosted top quark jet, we need a collinear-soft

function S
(d)
C that in addition to the soft drop condition,

as in the case of usual S
(q)
C in Eq. (15), now also includes

angular information from the decay products. Thus S
(d)
C

is now aware of the vertical dashed line in Fig. 5b at
✓ = ✓d which contributes to the boundary of the soft drop
region, and hence a↵ects the location of the CS mode. At
one loop one finds that including the additional dashed
vertical line in Fig. 5b in the collinear-soft function yields
an additional logarithic term

S
(d)
C (`, �, ✓d, µ) = S

q
C(`, �, µ)

�
↵s(µ)CF

(�+2)⇡

2�+3

Qcut✓
�+2
d

L1

✓
`

Qcut

2�+2

✓
�+2
d

◆
⇥


Qcut✓

�+2
d

2�+2
� `

�

+ O(↵2
s) , (44)

where L1(x) = [(ln x)/x]+ is the standard logarithmic
plus function, defined as in Ref. [23]. Since at one loop in
fixed order perturbation theory we have a single emission,
the relevance of high-pT or decay scenario boils down to
a simple comparison between the emission angle ✓cs and
✓d, leading to the expression in Eq. (44). Note that at
O(↵s) that the extra term with ✓d dependence does not
have explicit dependence on µ, and only contributes for
case ii). To see this we first note that Eq. (9) implies
that `

+
⇠ m

2
J/Q, and thus using Eqs. (12) and (14) the

case ii) constraint ✓cs < ✓d at this order becomes

`
+
 Qcut

⇣
✓d

2

⌘�+2
= Qcut

⇣
mth

Q

⌘�+2
. (45)

The second line of Eq. (44) also only involves a logarithm
that is not large when ✓d ⇠ ✓cs, which is the relevant scal-
ing if the case i) and case ii) comparisons are necessary.
Demanding that this extra logarithm does not become
large precisely leads to the constraint in Eq. (7a), which
is necessary to ensure that the UC modes are not a↵ected
by soft drop. Thus this extra ✓d term only enters beyond
NLL order. In other words, light grooming constraints in
Eq. (7a) ensure that soft drop does not a↵ect the decay
products significantly and one can continue to use the
inclusive description of decay products. For all the terms
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FIG. 6. Bubble chain for an unstable top quark leading to

a Breit-Wigner together with a di↵erential distribution for

the top decay products. From the closed two-loop bubble

calculation involving bqq̄0 only the imaginary top width term

is kept.

that appear at NLL, which can be determined by renor-
malization group evolution, the perturative CS function
is the same as the one that appeared at this order for
massless quark initiated jets in Eq. (9),

S
(d)
C (`, �, ✓d, µ)

���
NLL

= S
q
C(`, �, µ)

���
NLL

. (46)

Note that there is another relation which works with-
out limiting the order in resummed perturbation theory,
namely

lim
✓d⌧✓cs

S
(d)
C (`, �, ✓d, µ) = S

q
C(`, �, µ) . (47)

Here taking the limit ✓cs ⌧ ✓d ensures that it is always
the CS mode which stops soft drop.

Next we describe how to account for the distribution
of ✓d itself by incorporating the dependence on decay-
product phase space �d. Since this dependence is de-
termined at the scale mt it should be thought of as a
di↵erential hard matching coe�cient from the perspec-
tive of the low energy CS, UC, and S modes. Hence, in
the light grooming region the dynamics of the UC modes
is described by the same inclusive stable heavy quark jet
function JB(ŝ, �m, µ) in Eq. (43).

We refer to the function that encodes the distri-
bution of the top decay products as Dt(ŝ0, �d, mt/Q)
where ŝ

0 is the o↵shellness of the top-quark, such that
Dt(ŝ0, �d, mt/Q) and the stable jet function JB(ŝ, �m, µ)
together through convolution account for the e↵ects of
top decay and UC modes. Calculation of Dt requires
a geometric sum of decay product bubbles, where one
hadronically decaying bubble is cut, as shown in Fig. 6.

In the non-cut bubbles we just keep the total top width
�t, allowing us to write the result in terms of the purely
resonant contribution

Dt

⇣
ŝ
0
, �d,

mt

Q

⌘
=

�t

⇡(ŝ0 2+�2
t )

dt

⇣
�d,
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Q

⌘h
1+O

⇣
ŝ
0

mt

⌘i
.

(48)

The expansion here indicates that for the angular depen-
dence from the decay products we can work with an on-
shell quark function with ŝ

0 = 0. The full 5-body phase
space dependence of the top-decay t ! bW ! bqq̄

0 is
then contained in the dimensionless function

dt

⇣
�d,

mt

Q

⌘
=

1

�t!bqq̄0

d�t!bqq̄0

d�d
. (49)
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products. However, after integrating out mt these modes
are only sensitive to the overall color charge and direc-
tion of the top quark, since this direction is equivalent to
that of the decay products at leading order in mt/Q [9].
Therefore the top decay does not change e↵ects related
to this UC QCD radiation at leading power. Hence, the
unstable JB(ŝt, �t, �m, µ) in Eq. (41) can be defined in
terms of the stable jet function JB(ŝt, �m, µ) convolved
with the top Breit-Wigner [11]:

JB(ŝt, �t, �m, µ) (43)

=

Z ŝt

�1
dŝ

0
JB(ŝt � ŝ

0
, �m, µ)

�t

⇡
�
ŝ0 2 + �2

t

� .

In general to obtain results for the case where soft drop
acts on a boosted top quark jet, we need a collinear-soft

function S
(d)
C that in addition to the soft drop condition,

as in the case of usual S
(q)
C in Eq. (15), now also includes

angular information from the decay products. Thus S
(d)
C

is now aware of the vertical dashed line in Fig. 5b at
✓ = ✓d which contributes to the boundary of the soft drop
region, and hence a↵ects the location of the CS mode. At
one loop one finds that including the additional dashed
vertical line in Fig. 5b in the collinear-soft function yields
an additional logarithic term

S
(d)
C (`, �, ✓d, µ) = S

q
C(`, �, µ)

�
↵s(µ)CF

(�+2)⇡
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Qcut✓
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+ O(↵2
s) , (44)

where L1(x) = [(ln x)/x]+ is the standard logarithmic
plus function, defined as in Ref. [23]. Since at one loop in
fixed order perturbation theory we have a single emission,
the relevance of high-pT or decay scenario boils down to
a simple comparison between the emission angle ✓cs and
✓d, leading to the expression in Eq. (44). Note that at
O(↵s) that the extra term with ✓d dependence does not
have explicit dependence on µ, and only contributes for
case ii). To see this we first note that Eq. (9) implies
that `

+
⇠ m

2
J/Q, and thus using Eqs. (12) and (14) the

case ii) constraint ✓cs < ✓d at this order becomes

`
+
 Qcut

⇣
✓d

2

⌘�+2
= Qcut

⇣
mth

Q

⌘�+2
. (45)

The second line of Eq. (44) also only involves a logarithm
that is not large when ✓d ⇠ ✓cs, which is the relevant scal-
ing if the case i) and case ii) comparisons are necessary.
Demanding that this extra logarithm does not become
large precisely leads to the constraint in Eq. (7a), which
is necessary to ensure that the UC modes are not a↵ected
by soft drop. Thus this extra ✓d term only enters beyond
NLL order. In other words, light grooming constraints in
Eq. (7a) ensure that soft drop does not a↵ect the decay
products significantly and one can continue to use the
inclusive description of decay products. For all the terms
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a Breit-Wigner together with a di↵erential distribution for
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calculation involving bqq̄0 only the imaginary top width term

is kept.

that appear at NLL, which can be determined by renor-
malization group evolution, the perturative CS function
is the same as the one that appeared at this order for
massless quark initiated jets in Eq. (9),

S
(d)
C (`, �, ✓d, µ)

���
NLL

= S
q
C(`, �, µ)

���
NLL

. (46)

Note that there is another relation which works with-
out limiting the order in resummed perturbation theory,
namely

lim
✓d⌧✓cs

S
(d)
C (`, �, ✓d, µ) = S

q
C(`, �, µ) . (47)

Here taking the limit ✓cs ⌧ ✓d ensures that it is always
the CS mode which stops soft drop.

Next we describe how to account for the distribution
of ✓d itself by incorporating the dependence on decay-
product phase space �d. Since this dependence is de-
termined at the scale mt it should be thought of as a
di↵erential hard matching coe�cient from the perspec-
tive of the low energy CS, UC, and S modes. Hence, in
the light grooming region the dynamics of the UC modes
is described by the same inclusive stable heavy quark jet
function JB(ŝ, �m, µ) in Eq. (43).

We refer to the function that encodes the distri-
bution of the top decay products as Dt(ŝ0, �d, mt/Q)
where ŝ

0 is the o↵shellness of the top-quark, such that
Dt(ŝ0, �d, mt/Q) and the stable jet function JB(ŝ, �m, µ)
together through convolution account for the e↵ects of
top decay and UC modes. Calculation of Dt requires
a geometric sum of decay product bubbles, where one
hadronically decaying bubble is cut, as shown in Fig. 6.

In the non-cut bubbles we just keep the total top width
�t, allowing us to write the result in terms of the purely
resonant contribution

Dt
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The expansion here indicates that for the angular depen-
dence from the decay products we can work with an on-
shell quark function with ŝ

0 = 0. The full 5-body phase
space dependence of the top-decay t ! bW ! bqq̄

0 is
then contained in the dimensionless function

dt

⇣
�d,

mt

Q

⌘
=

1

�t!bqq̄0

d�t!bqq̄0

d�d
. (49)

Here the model function for the “decay” case is independent of � and same as that of “high-pT ”

for � = 1. In the “decay” case, the groomer stops at the angle ✓d defined in Eq. (3.21), as a

result of which all the particles with angles less than ✓d are kept. Hence ⇥SD is simply given

by

⇥⇤ decay
SD = ⇥

�
✓i � ✓d

�
= ⇥

 
2 pi?
p�
i

� 2mh

Q

!
. (3.78)

Here we use Eq. (3.30) to rescale the components as follows

p+
i
=

Q

mh
k+ , p�

i
=

mh

Q
k� , pi? = k? , (3.79)

which gives

⇥⇤ decay
SD = ⇥

 
2mh

Q

k?
k�

� 2mh

Q

!
= ⇥

 
k?
k�

� 1

!
= ⇥⇤ high pT

SD (� = 1) . (3.80)

This shows that the action of the soft drop groomer on non-perturbative modes for the decay

case is the same as that of high-pT case with � = 1, hence they keep the same set of particles

and are described by the same non-perturbative function. We also see that in the decay case

there is no � dependence in the non-perturbative function, so the � dependence of the cross

section is perturbatively calculable.

Since our jet mass measurement is inclusive over the decay products we must now explicitly

integrate over �d. This means that we need to resolve the Breit Wigner inside the ultra-

collinear function to include the angluar cross section of the top decay products. This subtlety

was ignored when we originally arrived at Eq. (3.59). We start by considering the fact that the

unstable top jet function JB(ŝt,�t, �m,µ) and stable top jet function J�t=0
B

(ŝt, �m,µ) by [52]

JB(ŝt,�t, �m,µ) =

Z
ŝt

�1
dŝ0t J

�t=0
B

(ŝt, �m,µ)
�t

⇡
�
ŝ0 2
t
+ �2

t

� . (3.81)

To include the angluar distribution of the top decay products we define a top-decay resolved

jet function:

JDt

✓
ŝt,�d,

m

Q
, �m,µ

◆
=

Z
ŝt

�1
dŝ0t J

�t=0
B

(ŝt � ŝ0t, �m,µ)Dt

✓
ŝ0t,�d,

m

Q

◆
. (3.82)

Here Dt(ŝ0,�d,mt/Q) encodes the angular cross section of the top-decay products, which can

be considered to be a perturbative calculation carried out at a scale ⇠ m, and thus in the hard

region. The presence of these boosted colored decay products does not change the nature of

the decoupling of the collinear-soft or global soft modes from this jet function, they are still

eikonal Wilson lines in the same directions since they only see the total color channel of the

decay products, and are independent of the normalization of the light-like vectors on which

they depend. By consistency the µ dependence of JDt
is the same as that for JB and hence is

described by the stable top quark jet function.

The calculation of Dt at lowest order requires a geometric sum of decay product bubbles,

where one hadronically decaying bubble is cut, shown in Fig. 11. In the non-cut bubbles we
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products. However, after integrating out mt these modes
are only sensitive to the overall color charge and direc-
tion of the top quark, since this direction is equivalent to
that of the decay products at leading order in mt/Q [9].
Therefore the top decay does not change e↵ects related
to this UC QCD radiation at leading power. Hence, the
unstable JB(ŝt, �t, �m, µ) in Eq. (41) can be defined in
terms of the stable jet function JB(ŝt, �m, µ) convolved
with the top Breit-Wigner [11]:

JB(ŝt, �t, �m, µ) (43)

=

Z ŝt

�1
dŝ

0
JB(ŝt � ŝ

0
, �m, µ)
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⇡
�
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In general to obtain results for the case where soft drop
acts on a boosted top quark jet, we need a collinear-soft

function S
(d)
C that in addition to the soft drop condition,

as in the case of usual S
(q)
C in Eq. (15), now also includes

angular information from the decay products. Thus S
(d)
C

is now aware of the vertical dashed line in Fig. 5b at
✓ = ✓d which contributes to the boundary of the soft drop
region, and hence a↵ects the location of the CS mode. At
one loop one finds that including the additional dashed
vertical line in Fig. 5b in the collinear-soft function yields
an additional logarithic term

S
(d)
C (`, �, ✓d, µ) = S

q
C(`, �, µ)

�
↵s(µ)CF

(�+2)⇡

2�+3

Qcut✓
�+2
d

L1

✓
`

Qcut

2�+2

✓
�+2
d

◆
⇥


Qcut✓

�+2
d

2�+2
� `

�

+ O(↵2
s) , (44)

where L1(x) = [(ln x)/x]+ is the standard logarithmic
plus function, defined as in Ref. [23]. Since at one loop in
fixed order perturbation theory we have a single emission,
the relevance of high-pT or decay scenario boils down to
a simple comparison between the emission angle ✓cs and
✓d, leading to the expression in Eq. (44). Note that at
O(↵s) that the extra term with ✓d dependence does not
have explicit dependence on µ, and only contributes for
case ii). To see this we first note that Eq. (9) implies
that `

+
⇠ m

2
J/Q, and thus using Eqs. (12) and (14) the

case ii) constraint ✓cs < ✓d at this order becomes

`
+
 Qcut

⇣
✓d

2

⌘�+2
= Qcut

⇣
mth

Q

⌘�+2
. (45)

The second line of Eq. (44) also only involves a logarithm
that is not large when ✓d ⇠ ✓cs, which is the relevant scal-
ing if the case i) and case ii) comparisons are necessary.
Demanding that this extra logarithm does not become
large precisely leads to the constraint in Eq. (7a), which
is necessary to ensure that the UC modes are not a↵ected
by soft drop. Thus this extra ✓d term only enters beyond
NLL order. In other words, light grooming constraints in
Eq. (7a) ensure that soft drop does not a↵ect the decay
products significantly and one can continue to use the
inclusive description of decay products. For all the terms

t t t t t t t t
b
q
q ‘

FIG. 6. Bubble chain for an unstable top quark leading to

a Breit-Wigner together with a di↵erential distribution for

the top decay products. From the closed two-loop bubble

calculation involving bqq̄0 only the imaginary top width term

is kept.

that appear at NLL, which can be determined by renor-
malization group evolution, the perturative CS function
is the same as the one that appeared at this order for
massless quark initiated jets in Eq. (9),

S
(d)
C (`, �, ✓d, µ)

���
NLL

= S
q
C(`, �, µ)

���
NLL

. (46)

Note that there is another relation which works with-
out limiting the order in resummed perturbation theory,
namely

lim
✓d⌧✓cs

S
(d)
C (`, �, ✓d, µ) = S

q
C(`, �, µ) . (47)

Here taking the limit ✓cs ⌧ ✓d ensures that it is always
the CS mode which stops soft drop.

Next we describe how to account for the distribution
of ✓d itself by incorporating the dependence on decay-
product phase space �d. Since this dependence is de-
termined at the scale mt it should be thought of as a
di↵erential hard matching coe�cient from the perspec-
tive of the low energy CS, UC, and S modes. Hence, in
the light grooming region the dynamics of the UC modes
is described by the same inclusive stable heavy quark jet
function JB(ŝ, �m, µ) in Eq. (43).

We refer to the function that encodes the distri-
bution of the top decay products as Dt(ŝ0, �d, mt/Q)
where ŝ

0 is the o↵shellness of the top-quark, such that
Dt(ŝ0, �d, mt/Q) and the stable jet function JB(ŝ, �m, µ)
together through convolution account for the e↵ects of
top decay and UC modes. Calculation of Dt requires
a geometric sum of decay product bubbles, where one
hadronically decaying bubble is cut, as shown in Fig. 6.

In the non-cut bubbles we just keep the total top width
�t, allowing us to write the result in terms of the purely
resonant contribution

Dt

⇣
ŝ
0
, �d,

mt

Q

⌘
=

�t

⇡(ŝ0 2+�2
t )

dt

⇣
�d,

mt

Q

⌘h
1+O

⇣
ŝ
0

mt

⌘i
.

(48)

The expansion here indicates that for the angular depen-
dence from the decay products we can work with an on-
shell quark function with ŝ

0 = 0. The full 5-body phase
space dependence of the top-decay t ! bW ! bqq̄

0 is
then contained in the dimensionless function

dt

⇣
�d,

mt

Q

⌘
=

1

�t!bqq̄0

d�t!bqq̄0

d�d
. (49)
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products. However, after integrating out mt these modes
are only sensitive to the overall color charge and direc-
tion of the top quark, since this direction is equivalent to
that of the decay products at leading order in mt/Q [9].
Therefore the top decay does not change e↵ects related
to this UC QCD radiation at leading power. Hence, the
unstable JB(ŝt, �t, �m, µ) in Eq. (41) can be defined in
terms of the stable jet function JB(ŝt, �m, µ) convolved
with the top Breit-Wigner [11]:

JB(ŝt, �t, �m, µ) (43)

=

Z ŝt

�1
dŝ

0
JB(ŝt � ŝ

0
, �m, µ)

�t

⇡
�
ŝ0 2 + �2

t

� .

In general to obtain results for the case where soft drop
acts on a boosted top quark jet, we need a collinear-soft

function S
(d)
C that in addition to the soft drop condition,

as in the case of usual S
(q)
C in Eq. (15), now also includes

angular information from the decay products. Thus S
(d)
C

is now aware of the vertical dashed line in Fig. 5b at
✓ = ✓d which contributes to the boundary of the soft drop
region, and hence a↵ects the location of the CS mode. At
one loop one finds that including the additional dashed
vertical line in Fig. 5b in the collinear-soft function yields
an additional logarithic term

S
(d)
C (`, �, ✓d, µ) = S

q
C(`, �, µ)

�
↵s(µ)CF

(�+2)⇡

2�+3

Qcut✓
�+2
d

L1

✓
`

Qcut

2�+2

✓
�+2
d

◆
⇥


Qcut✓

�+2
d

2�+2
� `

�

+ O(↵2
s) , (44)

where L1(x) = [(ln x)/x]+ is the standard logarithmic
plus function, defined as in Ref. [23]. Since at one loop in
fixed order perturbation theory we have a single emission,
the relevance of high-pT or decay scenario boils down to
a simple comparison between the emission angle ✓cs and
✓d, leading to the expression in Eq. (44). Note that at
O(↵s) that the extra term with ✓d dependence does not
have explicit dependence on µ, and only contributes for
case ii). To see this we first note that Eq. (9) implies
that `

+
⇠ m

2
J/Q, and thus using Eqs. (12) and (14) the

case ii) constraint ✓cs < ✓d at this order becomes

`
+
 Qcut

⇣
✓d

2

⌘�+2
= Qcut

⇣
mth

Q

⌘�+2
. (45)

The second line of Eq. (44) also only involves a logarithm
that is not large when ✓d ⇠ ✓cs, which is the relevant scal-
ing if the case i) and case ii) comparisons are necessary.
Demanding that this extra logarithm does not become
large precisely leads to the constraint in Eq. (7a), which
is necessary to ensure that the UC modes are not a↵ected
by soft drop. Thus this extra ✓d term only enters beyond
NLL order. In other words, light grooming constraints in
Eq. (7a) ensure that soft drop does not a↵ect the decay
products significantly and one can continue to use the
inclusive description of decay products. For all the terms
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FIG. 6. Bubble chain for an unstable top quark leading to

a Breit-Wigner together with a di↵erential distribution for

the top decay products. From the closed two-loop bubble

calculation involving bqq̄0 only the imaginary top width term

is kept.

that appear at NLL, which can be determined by renor-
malization group evolution, the perturative CS function
is the same as the one that appeared at this order for
massless quark initiated jets in Eq. (9),

S
(d)
C (`, �, ✓d, µ)

���
NLL

= S
q
C(`, �, µ)

���
NLL

. (46)

Note that there is another relation which works with-
out limiting the order in resummed perturbation theory,
namely

lim
✓d⌧✓cs

S
(d)
C (`, �, ✓d, µ) = S

q
C(`, �, µ) . (47)

Here taking the limit ✓cs ⌧ ✓d ensures that it is always
the CS mode which stops soft drop.

Next we describe how to account for the distribution
of ✓d itself by incorporating the dependence on decay-
product phase space �d. Since this dependence is de-
termined at the scale mt it should be thought of as a
di↵erential hard matching coe�cient from the perspec-
tive of the low energy CS, UC, and S modes. Hence, in
the light grooming region the dynamics of the UC modes
is described by the same inclusive stable heavy quark jet
function JB(ŝ, �m, µ) in Eq. (43).

We refer to the function that encodes the distri-
bution of the top decay products as Dt(ŝ0, �d, mt/Q)
where ŝ

0 is the o↵shellness of the top-quark, such that
Dt(ŝ0, �d, mt/Q) and the stable jet function JB(ŝ, �m, µ)
together through convolution account for the e↵ects of
top decay and UC modes. Calculation of Dt requires
a geometric sum of decay product bubbles, where one
hadronically decaying bubble is cut, as shown in Fig. 6.

In the non-cut bubbles we just keep the total top width
�t, allowing us to write the result in terms of the purely
resonant contribution

Dt

⇣
ŝ
0
, �d,

mt

Q

⌘
=

�t

⇡(ŝ0 2+�2
t )

dt

⇣
�d,

mt

Q

⌘h
1+O

⇣
ŝ
0

mt

⌘i
.

(48)

The expansion here indicates that for the angular depen-
dence from the decay products we can work with an on-
shell quark function with ŝ

0 = 0. The full 5-body phase
space dependence of the top-decay t ! bW ! bqq̄

0 is
then contained in the dimensionless function

dt

⇣
�d,

mt

Q

⌘
=

1

�t!bqq̄0

d�t!bqq̄0

d�d
. (49)
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products. However, after integrating out mt these modes
are only sensitive to the overall color charge and direc-
tion of the top quark, since this direction is equivalent to
that of the decay products at leading order in mt/Q [9].
Therefore the top decay does not change e↵ects related
to this UC QCD radiation at leading power. Hence, the
unstable JB(ŝt, �t, �m, µ) in Eq. (41) can be defined in
terms of the stable jet function JB(ŝt, �m, µ) convolved
with the top Breit-Wigner [11]:

JB(ŝt, �t, �m, µ) (43)

=

Z ŝt

�1
dŝ

0
JB(ŝt � ŝ

0
, �m, µ)

�t

⇡
�
ŝ0 2 + �2

t

� .

In general to obtain results for the case where soft drop
acts on a boosted top quark jet, we need a collinear-soft

function S
(d)
C that in addition to the soft drop condition,

as in the case of usual S
(q)
C in Eq. (15), now also includes

angular information from the decay products. Thus S
(d)
C

is now aware of the vertical dashed line in Fig. 5b at
✓ = ✓d which contributes to the boundary of the soft drop
region, and hence a↵ects the location of the CS mode. At
one loop one finds that including the additional dashed
vertical line in Fig. 5b in the collinear-soft function yields
an additional logarithic term

S
(d)
C (`, �, ✓d, µ) = S

q
C(`, �, µ)

�
↵s(µ)CF

(�+2)⇡

2�+3

Qcut✓
�+2
d

L1

✓
`

Qcut

2�+2

✓
�+2
d

◆
⇥


Qcut✓

�+2
d

2�+2
� `

�

+ O(↵2
s) , (44)

where L1(x) = [(ln x)/x]+ is the standard logarithmic
plus function, defined as in Ref. [23]. Since at one loop in
fixed order perturbation theory we have a single emission,
the relevance of high-pT or decay scenario boils down to
a simple comparison between the emission angle ✓cs and
✓d, leading to the expression in Eq. (44). Note that at
O(↵s) that the extra term with ✓d dependence does not
have explicit dependence on µ, and only contributes for
case ii). To see this we first note that Eq. (9) implies
that `

+
⇠ m

2
J/Q, and thus using Eqs. (12) and (14) the

case ii) constraint ✓cs < ✓d at this order becomes

`
+
 Qcut

⇣
✓d

2

⌘�+2
= Qcut

⇣
mth

Q

⌘�+2
. (45)

The second line of Eq. (44) also only involves a logarithm
that is not large when ✓d ⇠ ✓cs, which is the relevant scal-
ing if the case i) and case ii) comparisons are necessary.
Demanding that this extra logarithm does not become
large precisely leads to the constraint in Eq. (7a), which
is necessary to ensure that the UC modes are not a↵ected
by soft drop. Thus this extra ✓d term only enters beyond
NLL order. In other words, light grooming constraints in
Eq. (7a) ensure that soft drop does not a↵ect the decay
products significantly and one can continue to use the
inclusive description of decay products. For all the terms
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FIG. 6. Bubble chain for an unstable top quark leading to

a Breit-Wigner together with a di↵erential distribution for

the top decay products. From the closed two-loop bubble

calculation involving bqq̄0 only the imaginary top width term

is kept.

that appear at NLL, which can be determined by renor-
malization group evolution, the perturative CS function
is the same as the one that appeared at this order for
massless quark initiated jets in Eq. (9),

S
(d)
C (`, �, ✓d, µ)

���
NLL

= S
q
C(`, �, µ)

���
NLL

. (46)

Note that there is another relation which works with-
out limiting the order in resummed perturbation theory,
namely

lim
✓d⌧✓cs

S
(d)
C (`, �, ✓d, µ) = S

q
C(`, �, µ) . (47)

Here taking the limit ✓cs ⌧ ✓d ensures that it is always
the CS mode which stops soft drop.

Next we describe how to account for the distribution
of ✓d itself by incorporating the dependence on decay-
product phase space �d. Since this dependence is de-
termined at the scale mt it should be thought of as a
di↵erential hard matching coe�cient from the perspec-
tive of the low energy CS, UC, and S modes. Hence, in
the light grooming region the dynamics of the UC modes
is described by the same inclusive stable heavy quark jet
function JB(ŝ, �m, µ) in Eq. (43).

We refer to the function that encodes the distri-
bution of the top decay products as Dt(ŝ0, �d, mt/Q)
where ŝ

0 is the o↵shellness of the top-quark, such that
Dt(ŝ0, �d, mt/Q) and the stable jet function JB(ŝ, �m, µ)
together through convolution account for the e↵ects of
top decay and UC modes. Calculation of Dt requires
a geometric sum of decay product bubbles, where one
hadronically decaying bubble is cut, as shown in Fig. 6.

In the non-cut bubbles we just keep the total top width
�t, allowing us to write the result in terms of the purely
resonant contribution

Dt

⇣
ŝ
0
, �d,

mt

Q

⌘
=

�t

⇡(ŝ0 2+�2
t )

dt

⇣
�d,

mt

Q

⌘h
1+O

⇣
ŝ
0

mt

⌘i
.

(48)

The expansion here indicates that for the angular depen-
dence from the decay products we can work with an on-
shell quark function with ŝ

0 = 0. The full 5-body phase
space dependence of the top-decay t ! bW ! bqq̄

0 is
then contained in the dimensionless function

dt

⇣
�d,

mt

Q

⌘
=

1

�t!bqq̄0

d�t!bqq̄0

d�d
. (49)

Here the model function for the “decay” case is independent of � and same as that of “high-pT ”

for � = 1. In the “decay” case, the groomer stops at the angle ✓d defined in Eq. (3.21), as a

result of which all the particles with angles less than ✓d are kept. Hence ⇥SD is simply given

by

⇥⇤ decay
SD = ⇥

�
✓i � ✓d

�
= ⇥

 
2 pi?
p�
i

� 2mh

Q

!
. (3.78)

Here we use Eq. (3.30) to rescale the components as follows

p+
i
=

Q

mh
k+ , p�

i
=

mh

Q
k� , pi? = k? , (3.79)

which gives

⇥⇤ decay
SD = ⇥

 
2mh

Q

k?
k�

� 2mh

Q

!
= ⇥

 
k?
k�

� 1

!
= ⇥⇤ high pT

SD (� = 1) . (3.80)

This shows that the action of the soft drop groomer on non-perturbative modes for the decay

case is the same as that of high-pT case with � = 1, hence they keep the same set of particles

and are described by the same non-perturbative function. We also see that in the decay case

there is no � dependence in the non-perturbative function, so the � dependence of the cross

section is perturbatively calculable.

Since our jet mass measurement is inclusive over the decay products we must now explicitly

integrate over �d. This means that we need to resolve the Breit Wigner inside the ultra-

collinear function to include the angluar cross section of the top decay products. This subtlety

was ignored when we originally arrived at Eq. (3.59). We start by considering the fact that the

unstable top jet function JB(ŝt,�t, �m,µ) and stable top jet function J�t=0
B

(ŝt, �m,µ) by [52]

JB(ŝt,�t, �m,µ) =

Z
ŝt

�1
dŝ0t J

�t=0
B

(ŝt, �m,µ)
�t

⇡
�
ŝ0 2
t
+ �2

t

� . (3.81)

To include the angluar distribution of the top decay products we define a top-decay resolved

jet function:

JDt

✓
ŝt,�d,

m

Q
, �m,µ

◆
=

Z
ŝt

�1
dŝ0t J

�t=0
B

(ŝt � ŝ0t, �m,µ)Dt

✓
ŝ0t,�d,

m

Q

◆
. (3.82)

Here Dt(ŝ0,�d,mt/Q) encodes the angular cross section of the top-decay products, which can

be considered to be a perturbative calculation carried out at a scale ⇠ m, and thus in the hard

region. The presence of these boosted colored decay products does not change the nature of

the decoupling of the collinear-soft or global soft modes from this jet function, they are still

eikonal Wilson lines in the same directions since they only see the total color channel of the

decay products, and are independent of the normalization of the light-like vectors on which

they depend. By consistency the µ dependence of JDt
is the same as that for JB and hence is

described by the stable top quark jet function.

The calculation of Dt at lowest order requires a geometric sum of decay product bubbles,

where one hadronically decaying bubble is cut, shown in Fig. 11. In the non-cut bubbles we

– 42 –
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products. However, after integrating out mt these modes
are only sensitive to the overall color charge and direc-
tion of the top quark, since this direction is equivalent to
that of the decay products at leading order in mt/Q [9].
Therefore the top decay does not change e↵ects related
to this UC QCD radiation at leading power. Hence, the
unstable JB(ŝt, �t, �m, µ) in Eq. (41) can be defined in
terms of the stable jet function JB(ŝt, �m, µ) convolved
with the top Breit-Wigner [11]:

JB(ŝt, �t, �m, µ) (43)

=

Z ŝt

�1
dŝ

0
JB(ŝt � ŝ

0
, �m, µ)

�t

⇡
�
ŝ0 2 + �2

t

� .

In general to obtain results for the case where soft drop
acts on a boosted top quark jet, we need a collinear-soft

function S
(d)
C that in addition to the soft drop condition,

as in the case of usual S
(q)
C in Eq. (15), now also includes

angular information from the decay products. Thus S
(d)
C

is now aware of the vertical dashed line in Fig. 5b at
✓ = ✓d which contributes to the boundary of the soft drop
region, and hence a↵ects the location of the CS mode. At
one loop one finds that including the additional dashed
vertical line in Fig. 5b in the collinear-soft function yields
an additional logarithic term

S
(d)
C (`, �, ✓d, µ) = S

q
C(`, �, µ)

�
↵s(µ)CF

(�+2)⇡

2�+3

Qcut✓
�+2
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✓
`
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✓
�+2
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Qcut✓

�+2
d

2�+2
� `

�

+ O(↵2
s) , (44)

where L1(x) = [(ln x)/x]+ is the standard logarithmic
plus function, defined as in Ref. [23]. Since at one loop in
fixed order perturbation theory we have a single emission,
the relevance of high-pT or decay scenario boils down to
a simple comparison between the emission angle ✓cs and
✓d, leading to the expression in Eq. (44). Note that at
O(↵s) that the extra term with ✓d dependence does not
have explicit dependence on µ, and only contributes for
case ii). To see this we first note that Eq. (9) implies
that `

+
⇠ m

2
J/Q, and thus using Eqs. (12) and (14) the

case ii) constraint ✓cs < ✓d at this order becomes

`
+
 Qcut

⇣
✓d

2

⌘�+2
= Qcut

⇣
mth

Q

⌘�+2
. (45)

The second line of Eq. (44) also only involves a logarithm
that is not large when ✓d ⇠ ✓cs, which is the relevant scal-
ing if the case i) and case ii) comparisons are necessary.
Demanding that this extra logarithm does not become
large precisely leads to the constraint in Eq. (7a), which
is necessary to ensure that the UC modes are not a↵ected
by soft drop. Thus this extra ✓d term only enters beyond
NLL order. In other words, light grooming constraints in
Eq. (7a) ensure that soft drop does not a↵ect the decay
products significantly and one can continue to use the
inclusive description of decay products. For all the terms
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FIG. 6. Bubble chain for an unstable top quark leading to

a Breit-Wigner together with a di↵erential distribution for

the top decay products. From the closed two-loop bubble

calculation involving bqq̄0 only the imaginary top width term

is kept.

that appear at NLL, which can be determined by renor-
malization group evolution, the perturative CS function
is the same as the one that appeared at this order for
massless quark initiated jets in Eq. (9),

S
(d)
C (`, �, ✓d, µ)

���
NLL

= S
q
C(`, �, µ)

���
NLL

. (46)

Note that there is another relation which works with-
out limiting the order in resummed perturbation theory,
namely

lim
✓d⌧✓cs

S
(d)
C (`, �, ✓d, µ) = S

q
C(`, �, µ) . (47)

Here taking the limit ✓cs ⌧ ✓d ensures that it is always
the CS mode which stops soft drop.

Next we describe how to account for the distribution
of ✓d itself by incorporating the dependence on decay-
product phase space �d. Since this dependence is de-
termined at the scale mt it should be thought of as a
di↵erential hard matching coe�cient from the perspec-
tive of the low energy CS, UC, and S modes. Hence, in
the light grooming region the dynamics of the UC modes
is described by the same inclusive stable heavy quark jet
function JB(ŝ, �m, µ) in Eq. (43).

We refer to the function that encodes the distri-
bution of the top decay products as Dt(ŝ0, �d, mt/Q)
where ŝ

0 is the o↵shellness of the top-quark, such that
Dt(ŝ0, �d, mt/Q) and the stable jet function JB(ŝ, �m, µ)
together through convolution account for the e↵ects of
top decay and UC modes. Calculation of Dt requires
a geometric sum of decay product bubbles, where one
hadronically decaying bubble is cut, as shown in Fig. 6.

In the non-cut bubbles we just keep the total top width
�t, allowing us to write the result in terms of the purely
resonant contribution

Dt

⇣
ŝ
0
, �d,

mt

Q

⌘
=

�t

⇡(ŝ0 2+�2
t )

dt

⇣
�d,
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Q
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⌘i
.

(48)

The expansion here indicates that for the angular depen-
dence from the decay products we can work with an on-
shell quark function with ŝ

0 = 0. The full 5-body phase
space dependence of the top-decay t ! bW ! bqq̄

0 is
then contained in the dimensionless function

dt

⇣
�d,

mt

Q

⌘
=

1

�t!bqq̄0

d�t!bqq̄0

d�d
. (49)
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products. However, after integrating out mt these modes
are only sensitive to the overall color charge and direc-
tion of the top quark, since this direction is equivalent to
that of the decay products at leading order in mt/Q [9].
Therefore the top decay does not change e↵ects related
to this UC QCD radiation at leading power. Hence, the
unstable JB(ŝt, �t, �m, µ) in Eq. (41) can be defined in
terms of the stable jet function JB(ŝt, �m, µ) convolved
with the top Breit-Wigner [11]:

JB(ŝt, �t, �m, µ) (43)

=

Z ŝt

�1
dŝ

0
JB(ŝt � ŝ

0
, �m, µ)

�t

⇡
�
ŝ0 2 + �2

t

� .

In general to obtain results for the case where soft drop
acts on a boosted top quark jet, we need a collinear-soft

function S
(d)
C that in addition to the soft drop condition,

as in the case of usual S
(q)
C in Eq. (15), now also includes

angular information from the decay products. Thus S
(d)
C

is now aware of the vertical dashed line in Fig. 5b at
✓ = ✓d which contributes to the boundary of the soft drop
region, and hence a↵ects the location of the CS mode. At
one loop one finds that including the additional dashed
vertical line in Fig. 5b in the collinear-soft function yields
an additional logarithic term

S
(d)
C (`, �, ✓d, µ) = S

q
C(`, �, µ)

�
↵s(µ)CF

(�+2)⇡

2�+3

Qcut✓
�+2
d

L1

✓
`

Qcut

2�+2

✓
�+2
d

◆
⇥


Qcut✓

�+2
d

2�+2
� `

�

+ O(↵2
s) , (44)

where L1(x) = [(ln x)/x]+ is the standard logarithmic
plus function, defined as in Ref. [23]. Since at one loop in
fixed order perturbation theory we have a single emission,
the relevance of high-pT or decay scenario boils down to
a simple comparison between the emission angle ✓cs and
✓d, leading to the expression in Eq. (44). Note that at
O(↵s) that the extra term with ✓d dependence does not
have explicit dependence on µ, and only contributes for
case ii). To see this we first note that Eq. (9) implies
that `

+
⇠ m

2
J/Q, and thus using Eqs. (12) and (14) the

case ii) constraint ✓cs < ✓d at this order becomes

`
+
 Qcut

⇣
✓d

2

⌘�+2
= Qcut

⇣
mth

Q

⌘�+2
. (45)

The second line of Eq. (44) also only involves a logarithm
that is not large when ✓d ⇠ ✓cs, which is the relevant scal-
ing if the case i) and case ii) comparisons are necessary.
Demanding that this extra logarithm does not become
large precisely leads to the constraint in Eq. (7a), which
is necessary to ensure that the UC modes are not a↵ected
by soft drop. Thus this extra ✓d term only enters beyond
NLL order. In other words, light grooming constraints in
Eq. (7a) ensure that soft drop does not a↵ect the decay
products significantly and one can continue to use the
inclusive description of decay products. For all the terms

t t t t t t t t
b
q
q ‘

FIG. 6. Bubble chain for an unstable top quark leading to

a Breit-Wigner together with a di↵erential distribution for

the top decay products. From the closed two-loop bubble

calculation involving bqq̄0 only the imaginary top width term

is kept.

that appear at NLL, which can be determined by renor-
malization group evolution, the perturative CS function
is the same as the one that appeared at this order for
massless quark initiated jets in Eq. (9),

S
(d)
C (`, �, ✓d, µ)

���
NLL

= S
q
C(`, �, µ)

���
NLL

. (46)

Note that there is another relation which works with-
out limiting the order in resummed perturbation theory,
namely

lim
✓d⌧✓cs

S
(d)
C (`, �, ✓d, µ) = S

q
C(`, �, µ) . (47)

Here taking the limit ✓cs ⌧ ✓d ensures that it is always
the CS mode which stops soft drop.

Next we describe how to account for the distribution
of ✓d itself by incorporating the dependence on decay-
product phase space �d. Since this dependence is de-
termined at the scale mt it should be thought of as a
di↵erential hard matching coe�cient from the perspec-
tive of the low energy CS, UC, and S modes. Hence, in
the light grooming region the dynamics of the UC modes
is described by the same inclusive stable heavy quark jet
function JB(ŝ, �m, µ) in Eq. (43).

We refer to the function that encodes the distri-
bution of the top decay products as Dt(ŝ0, �d, mt/Q)
where ŝ

0 is the o↵shellness of the top-quark, such that
Dt(ŝ0, �d, mt/Q) and the stable jet function JB(ŝ, �m, µ)
together through convolution account for the e↵ects of
top decay and UC modes. Calculation of Dt requires
a geometric sum of decay product bubbles, where one
hadronically decaying bubble is cut, as shown in Fig. 6.

In the non-cut bubbles we just keep the total top width
�t, allowing us to write the result in terms of the purely
resonant contribution

Dt

⇣
ŝ
0
, �d,

mt

Q

⌘
=

�t

⇡(ŝ0 2+�2
t )

dt

⇣
�d,

mt

Q

⌘h
1+O

⇣
ŝ
0

mt

⌘i
.

(48)

The expansion here indicates that for the angular depen-
dence from the decay products we can work with an on-
shell quark function with ŝ

0 = 0. The full 5-body phase
space dependence of the top-decay t ! bW ! bqq̄

0 is
then contained in the dimensionless function

dt

⇣
�d,

mt

Q

⌘
=

1

�t!bqq̄0

d�t!bqq̄0

d�d
. (49)
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Here the model function for the “decay” case is independent of � and same as that of “high-pT ”

for � = 1. In the “decay” case, the groomer stops at the angle ✓d defined in Eq. (3.21), as a

result of which all the particles with angles less than ✓d are kept. Hence ⇥SD is simply given

by

⇥⇤ decay
SD = ⇥

�
✓i � ✓d

�
= ⇥

 
2 pi?
p�
i

� 2mh

Q

!
. (3.78)

Here we use Eq. (3.30) to rescale the components as follows

p+
i
=

Q

mh
k+ , p�

i
=

mh

Q
k� , pi? = k? , (3.79)

which gives

⇥⇤ decay
SD = ⇥

 
2mh

Q

k?
k�

� 2mh

Q

!
= ⇥

 
k?
k�

� 1

!
= ⇥⇤ high pT

SD (� = 1) . (3.80)

This shows that the action of the soft drop groomer on non-perturbative modes for the decay

case is the same as that of high-pT case with � = 1, hence they keep the same set of particles

and are described by the same non-perturbative function. We also see that in the decay case

there is no � dependence in the non-perturbative function, so the � dependence of the cross

section is perturbatively calculable.

Since our jet mass measurement is inclusive over the decay products we must now explicitly

integrate over �d. This means that we need to resolve the Breit Wigner inside the ultra-

collinear function to include the angluar cross section of the top decay products. This subtlety

was ignored when we originally arrived at Eq. (3.59). We start by considering the fact that the

unstable top jet function JB(ŝt,�t, �m,µ) and stable top jet function J�t=0
B

(ŝt, �m,µ) by [52]

JB(ŝt,�t, �m,µ) =

Z
ŝt

�1
dŝ0t J

�t=0
B

(ŝt, �m,µ)
�t

⇡
�
ŝ0 2
t
+ �2

t

� . (3.81)

To include the angluar distribution of the top decay products we define a top-decay resolved

jet function:

JDt

✓
ŝt,�d,

m

Q
, �m,µ

◆
=

Z
ŝt

�1
dŝ0t J

�t=0
B

(ŝt � ŝ0t, �m,µ)Dt

✓
ŝ0t,�d,

m

Q

◆
. (3.82)

Here Dt(ŝ0,�d,mt/Q) encodes the angular cross section of the top-decay products, which can

be considered to be a perturbative calculation carried out at a scale ⇠ m, and thus in the hard

region. The presence of these boosted colored decay products does not change the nature of

the decoupling of the collinear-soft or global soft modes from this jet function, they are still

eikonal Wilson lines in the same directions since they only see the total color channel of the

decay products, and are independent of the normalization of the light-like vectors on which

they depend. By consistency the µ dependence of JDt
is the same as that for JB and hence is

described by the stable top quark jet function.

The calculation of Dt at lowest order requires a geometric sum of decay product bubbles,

where one hadronically decaying bubble is cut, shown in Fig. 11. In the non-cut bubbles we
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Figure 11. Bubble chain for an unstable top quark leading to a Breit-Wigner together with a di↵erential
distribution for the top decay products. From the closed two-loop bubble calculation involving bqq̄0 only
the imaginary top width term is kept.

just keep �t yielding the resonant contribution

Dt

⇣
ŝ0t,�d,

mt

Q

⌘
=

�t

⇡(ŝ0 2
t
+�2

t
)
dt
⇣
�d,

mt

Q

⌘ h
1+O

⇣ ŝ0t
mt

⌘i
, (3.83)

where dt(�d,mt/Q) is the angular dependence of the top-decay with
R
�d dt(�d,mt/Q) = 1.

For the calculation of dt we can set ŝ0t = 0, leading to the factorized structure in Eq. (3.83).

We calculate dt exactly below in Sec. 3.3.5. Integrating over the decay products phase space

�d gives back the unstable top jet function:

JB(ŝt,�t, �m,µ) =

Z
d�d JDt

✓
ŝt,�d,

m

Q
, �m,µ

◆
. (3.84)

We do remark that there may be non-trivial finite perturbative O(↵s) corrections from gluons

that are exchanged between the top-quark and its decay products, but these can still be com-

puted with ŝ0t = 0, so Eq. (3.83) remains valid. These corrections are therefore only expected to

modify dt in a calculable way and hence not change the structure of the factorization theorem.

We are now in a position to write down the factorization theorem for “decay” case:

d�decay

dŝt
= N(Q,m, zcut,�J)

Z
d`+

Z
d�d

Z
dŝ0t Dt

⇣
ŝ0t,�d,

m

Q

⌘
J�t=0
B

✓
ŝt � ŝ0t �

Q

m
`+, µ

◆

⇥
Z

dk Spart
C

 
`+ � mk

Q
h
⇣
�d,

m

Q

⌘
, Qcut,�, µ

!
FC(k, 1)

= N(Q,m, zcut,�J)

Z
d`+

Z
d�d dt

⇣
�d,

m

Q

⌘
JB

✓
ŝt �

Q

m
`+, �t, µ

◆

⇥
Z

dk Spart
C

 
`+ � mk

Q
h
⇣
�d,

m

Q

⌘
, Qcut,�, µ

!
FC(k, 1) , (3.85)

where we have used Eqs. (3.81) and (3.83) to recover the stable top jet function. We can further

simplify Eq. (3.85) by rescaling the arguement of the non-perturbative function through

k0 = k h
⇣
�d,

m

Q

⌘
, (3.86)

in order to absorb all the dependence on decay-products variables. After this change of vari-

able the �d integration only acts on the non-perturbative function, convolving it with the
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• Recover the standard inclusive unstable top BHQET function:
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the subjet from this pair that is furthest from the top-jet
axis. Thus

✓d ⌘ max
⇣
✓̃(xy)t, ✓̃zt

⌘
, ✓̃xy = min

⇣
✓̃qq̄0 , ✓̃qb, ✓̃q̄0b

⌘
, (36)

where ✓̃qq̄0 , ✓̃qb, ✓̃q̄0b are the pairwise angles between the
three decay products. The second condition determines
the pair xy = qq̄

0, qb, or q̄
0
b that is closest in angle, which

are grouped together in a subjet, while the third particle
we call z is in a di↵erent subjet. For case ii) soft drop
stops due to the comparison of these two subjets. In
the definition of ✓d the angle ✓̃(xy)t is measured between
the top decay axis and the parent subjet obtained by
adding the four momenta p

µ
x + p

µ
y , with the analogous

definition for ✓̃zt. The angle ✓d is also directly related to
the parameter h used above in Eq. (7a), which we now
describe.

Since these subjets are dominated by the energetic de-
cay products, ✓d can be directly calculated in terms of
the t ! bqq̄

0 phase space variables

✓d = ✓d(�d, mt/Q) . (37)

We define �d as the 5 independent dimensionless kine-
matic variables of the top-decay t ! bqq̄

0 in its rest frame
(4 angles and one energy fraction). The dependence on
mt/Q arises from boosting to the frame with the high pT

top-quark, where the angles used by soft drop are com-
puted. The h function which appeared already in Eq. (7),
and will be needed below for the decay component of the
factorization theorem, is then defined by

tan
⇣

✓d

2

⌘
=

mt

Q
h

⇣
�d,

mt

Q

⌘
. (38)

The mt/Q prefactor here pulls out the dominant depen-
dence that ✓d has on the boost of the top quark, indi-
cating that ✓d ! 0 as Q/mt ! 1. The use of tangent
in Eq. (38) makes the p

+ component of modes at this
angle scale in a manner proportional to h without fur-
ther approximations. Thus the scaling of the (p+

, p
�

, p?)
components of ⇤ mode momenta in the two scenarios in
Fig. 5 is given by:

i) high-pT :

p
µ
⇤ ⇠ ⇤QCD

⇣
✓cs,

1

✓cs
, 1
⌘

, ✓cs ⇠ ⇣ =
⇣

mt ŝt

Q Qcut

⌘ 1
2+�

,

(39)

ii) decay:

p
µ
⇤ ⇠ ⇤QCD

⇣
⇣d,

1

⇣d
, 1
⌘

, ⇣d ⌘
mt

Q
h . (40)

Examples are shown in the panels in Fig. 5a for case
i) and in Fig. 5b for case ii), by considering two di↵erent
values for h, implying two di↵erent values of ✓d. Fig-
ure 5 implies that the factorization theorems for a jet

initiated by an unstable massive quark will have signifi-
cant di↵erences from the massless quark jet case. From
Eqs. (39) and (40) we see that hadronization corrections
from both types of modes will contribute. Whether we
are in the case i) or ii) will depend on the relative sizes
of ✓cs and ✓d. In particular, if in the power counting
✓cs ⇠ ✓d then the comparison in Eq. (54) will also be
made inside the operator defining the collinear-soft func-

tion, denoted S
(d)
C . It will therefore depend on informa-

tion about the decay products, and in general di↵er from
the S

q
C function appearing in Eq. (9). In general, resolv-

ing the comparison in Eq. (54) between the two angles
requires kinematic information about the CS modes, as
well as kinematic information about the decay products
through �d and Q/mt. We next show how appropriate
functions for the factorization formula can be obtained
by generalizing both the collinear-soft function SC and
the bHQET jet function JB for ultra-collinear radiation
to account for dependence on the decay product phase
space.

B. Incorporating Top-Decay Product Kinematics

To set up the discussion we first remind the reader
of the factorization formula for plain ungroomed hemi-
sphere tt̄ jet mass in an e

+
e
� collider derived in Ref. [9,

11]:

d�̂
plain
e+e�!tt̄

dM
2
Jt

dM
2
Jt̄

= �0HQ(Q, mt, µ) Hm

⇣
mt,

Q

mt
, µ

⌘
(41)

⇥

Z 1

0
d`

+

Z 1

0
d`

�
S

hemi(`+, `
�

, µ)

⇥ JB

⇣
ŝt �

Q

m
`
+
, �t, �m, µ

⌘
JB

⇣
ŝt̄ �

Q

m
`
�

, �t, �m, µ

⌘

⇥

h
1 + O

⇣
m

2
t

Q2
,

�t, ŝt, ŝt̄

mt
,

↵smt

Q

⌘i
,

where the last line indicates expansions for validity of
this all order factorization formula, including the boosted
regime of the top jets and the peak region of the jet mass
spectrum. The functions HQ and Hm correspond to the
matching of the cross section at the hard scales Q and
mt. The low energy physics at scale ŝt,t̄ is described by
the soft function S

hemi and the inclusive heavy quark jet
function JB . In the ungroomed jet mass one receives
contributions from soft modes at all angles, the physics
of which is captured by S

hemi.
The dynamics of the ultra-collinear modes and the top

decay is described by JB(ŝt, �t, �m, µ), as indicated by
the arguments ŝt and �t respectively. This function is
known at two-loop order [22] and provides control over
the top mass scheme for mt through the parameter

�m = m
pole
t � mt . (42)

From Fig. 5a we see that the UC massless quark and
gluon modes could also be sensitive to the top decay
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the subjet from this pair that is furthest from the top-jet
axis. Thus

✓d ⌘ max
⇣
✓̃(xy)t, ✓̃zt

⌘
, ✓̃xy = min

⇣
✓̃qq̄0 , ✓̃qb, ✓̃q̄0b

⌘
, (36)

where ✓̃qq̄0 , ✓̃qb, ✓̃q̄0b are the pairwise angles between the
three decay products. The second condition determines
the pair xy = qq̄

0, qb, or q̄
0
b that is closest in angle, which

are grouped together in a subjet, while the third particle
we call z is in a di↵erent subjet. For case ii) soft drop
stops due to the comparison of these two subjets. In
the definition of ✓d the angle ✓̃(xy)t is measured between
the top decay axis and the parent subjet obtained by
adding the four momenta p

µ
x + p

µ
y , with the analogous

definition for ✓̃zt. The angle ✓d is also directly related to
the parameter h used above in Eq. (7a), which we now
describe.

Since these subjets are dominated by the energetic de-
cay products, ✓d can be directly calculated in terms of
the t ! bqq̄

0 phase space variables

✓d = ✓d(�d, mt/Q) . (37)

We define �d as the 5 independent dimensionless kine-
matic variables of the top-decay t ! bqq̄

0 in its rest frame
(4 angles and one energy fraction). The dependence on
mt/Q arises from boosting to the frame with the high pT

top-quark, where the angles used by soft drop are com-
puted. The h function which appeared already in Eq. (7),
and will be needed below for the decay component of the
factorization theorem, is then defined by

tan
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⌘
=
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Q
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Q

⌘
. (38)

The mt/Q prefactor here pulls out the dominant depen-
dence that ✓d has on the boost of the top quark, indi-
cating that ✓d ! 0 as Q/mt ! 1. The use of tangent
in Eq. (38) makes the p

+ component of modes at this
angle scale in a manner proportional to h without fur-
ther approximations. Thus the scaling of the (p+

, p
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, p?)
components of ⇤ mode momenta in the two scenarios in
Fig. 5 is given by:

i) high-pT :
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⌘
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ii) decay:
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⇣d
, 1
⌘
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Examples are shown in the panels in Fig. 5a for case
i) and in Fig. 5b for case ii), by considering two di↵erent
values for h, implying two di↵erent values of ✓d. Fig-
ure 5 implies that the factorization theorems for a jet

initiated by an unstable massive quark will have signifi-
cant di↵erences from the massless quark jet case. From
Eqs. (39) and (40) we see that hadronization corrections
from both types of modes will contribute. Whether we
are in the case i) or ii) will depend on the relative sizes
of ✓cs and ✓d. In particular, if in the power counting
✓cs ⇠ ✓d then the comparison in Eq. (54) will also be
made inside the operator defining the collinear-soft func-

tion, denoted S
(d)
C . It will therefore depend on informa-

tion about the decay products, and in general di↵er from
the S

q
C function appearing in Eq. (9). In general, resolv-

ing the comparison in Eq. (54) between the two angles
requires kinematic information about the CS modes, as
well as kinematic information about the decay products
through �d and Q/mt. We next show how appropriate
functions for the factorization formula can be obtained
by generalizing both the collinear-soft function SC and
the bHQET jet function JB for ultra-collinear radiation
to account for dependence on the decay product phase
space.

B. Incorporating Top-Decay Product Kinematics

To set up the discussion we first remind the reader
of the factorization formula for plain ungroomed hemi-
sphere tt̄ jet mass in an e

+
e
� collider derived in Ref. [9,

11]:
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where the last line indicates expansions for validity of
this all order factorization formula, including the boosted
regime of the top jets and the peak region of the jet mass
spectrum. The functions HQ and Hm correspond to the
matching of the cross section at the hard scales Q and
mt. The low energy physics at scale ŝt,t̄ is described by
the soft function S

hemi and the inclusive heavy quark jet
function JB . In the ungroomed jet mass one receives
contributions from soft modes at all angles, the physics
of which is captured by S

hemi.
The dynamics of the ultra-collinear modes and the top

decay is described by JB(ŝt, �t, �m, µ), as indicated by
the arguments ŝt and �t respectively. This function is
known at two-loop order [22] and provides control over
the top mass scheme for mt through the parameter

�m = m
pole
t � mt . (42)

From Fig. 5a we see that the UC massless quark and
gluon modes could also be sensitive to the top decay
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Figure 12. Top quark decay to three quarks, showing the notation used for their four-momenta.

We perform the calculation of h using variables defined in the rest frame of top quark, and

then apply a boost in the top jet direction to obtain the result in the pp center of mass frame.

We start by simplifying the form of phase space integration for the three body top decay shown

in Fig. 12, using momenta for the quarks q, q̄0, and b as p1, p2, and pb, respectively. The phase

space integration measure is given by

PS ⌘
Z

d�d =

Z
d3p1

(2⇡)3E1

Z
d3p2

(2⇡)3E2

Z
d3pb

(2⇡)3Eb

(2⇡)4 �(4)
�
pt � p1 � p2 � pb

�
. (3.92)

Out of these nine variables for the momenta of three onshell particles, only five of them are

independent after using the momentum conserving �-function. Our choice of independent rest

frame variables are as follows:

x1 =
2E1

mt
, ✓1 , ✓2 , �S = �1 + �2 , �� = �1 � �2 , (3.93)

where ✓i and �i are the angles with the z axis and azimuthal angles in the rest frame of top

quark. The angles in the boosted frame can be expressed in terms of these variables:
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Here ✓̃it refers to angle of the decay product i with respect to the top direction in the pp

center-of-mass (or lab) frame. Thus in terms of these angles, the angle ✓d is defined as
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where ✓̃qq̄0 , ✓̃qb, ✓̃q̄0b are the pairwise angles between the three decay products. The second

condition determines the pair xy = qq̄0, qb, or q̄0b that is closest in angle, which is still grouped

as a subjet when the groomer stops by making a comparison to the subjet involving the third

particle which we call z. Here ✓̃(xy)t is the angle between the top decay axis and the parent

particle obtained by adding the four momenta pµx + pµy . Since these subjets are dominated by

the energetic decay products, ✓d can be directly calculated in terms of the t ! bqq̄0 phase space

variables.

We further note that due to symmetry of rotations about the boost axis �S is a cyclic

coordinate and can be integrated over. Hence, expressed in the four remaining variables, the
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where we have factored out the leading dependence on the boost Q/m and parameterized the

subleading dependence in an O(1) number, h(✓d), that is related to the fraction of the top

quark energy carried by the decay product at angle ✓d. Comparing the p+ components for the

“decay” and “high-pT ” cases in Eqs. (3.27) and (3.25) we find that the “decay” case is relevant

for
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⇤ ) Q . 2mh
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◆ 1
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. (3.28)

We discuss in detail the calculation of h in Sec. 3.3.5 below and comment further on the range

of validity of Eq. (3.28) there. For making estimates one can take h ' 2 which turns this

condition into

Q . 4m
�2mzcut
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. (3.29)

Using Eq. (3.22) and Eq. (3.27) we have
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which on comparison with Eq. (3.4) gives
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. (3.31)

Another interesting consideration in this intermediate pT regime for the decay dominated

version of the factorization is when we consider larger zcut values. Eq. (3.9) specifies the values

of zcut for which the ultra-collinear modes get groomed away. In absence of top decay products

this would correspond to the orange line moving down on increasing zcut and eventually meeting

the ultra-collinear mode for
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�t
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(3.32)
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Figure 12. Top quark decay to three quarks, showing the notation used for their four-momenta.

We perform the calculation of h using variables defined in the rest frame of top quark, and

then apply a boost in the top jet direction to obtain the result in the pp center of mass frame.

We start by simplifying the form of phase space integration for the three body top decay shown

in Fig. 12, using momenta for the quarks q, q̄0, and b as p1, p2, and pb, respectively. The phase
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Out of these nine variables for the momenta of three onshell particles, only five of them are

independent after using the momentum conserving �-function. Our choice of independent rest

frame variables are as follows:

x1 =
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, ✓1 , ✓2 , �S = �1 + �2 , �� = �1 � �2 , (3.93)
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Here ✓̃it refers to angle of the decay product i with respect to the top direction in the pp

center-of-mass (or lab) frame. Thus in terms of these angles, the angle ✓d is defined as
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where ✓̃qq̄0 , ✓̃qb, ✓̃q̄0b are the pairwise angles between the three decay products. The second

condition determines the pair xy = qq̄0, qb, or q̄0b that is closest in angle, which is still grouped

as a subjet when the groomer stops by making a comparison to the subjet involving the third

particle which we call z. Here ✓̃(xy)t is the angle between the top decay axis and the parent

particle obtained by adding the four momenta pµx + pµy . Since these subjets are dominated by

the energetic decay products, ✓d can be directly calculated in terms of the t ! bqq̄0 phase space

variables.

We further note that due to symmetry of rotations about the boost axis �S is a cyclic

coordinate and can be integrated over. Hence, expressed in the four remaining variables, the
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where we have factored out the leading dependence on the boost Q/m and parameterized the

subleading dependence in an O(1) number, h(✓d), that is related to the fraction of the top

quark energy carried by the decay product at angle ✓d. Comparing the p+ components for the

“decay” and “high-pT ” cases in Eqs. (3.27) and (3.25) we find that the “decay” case is relevant

for

pdecay+⇤ & phigh pT +
⇤ ) Q . 2mh
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◆ 1
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. (3.28)

We discuss in detail the calculation of h in Sec. 3.3.5 below and comment further on the range

of validity of Eq. (3.28) there. For making estimates one can take h ' 2 which turns this

condition into

Q . 4m
�2mzcut
⇤QCD
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. (3.29)

Using Eq. (3.22) and Eq. (3.27) we have
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which on comparison with Eq. (3.4) gives
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. (3.31)

Another interesting consideration in this intermediate pT regime for the decay dominated

version of the factorization is when we consider larger zcut values. Eq. (3.9) specifies the values

of zcut for which the ultra-collinear modes get groomed away. In absence of top decay products

this would correspond to the orange line moving down on increasing zcut and eventually meeting

the ultra-collinear mode for
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FIG. 7. Probability distribution of h for di↵erent values of Q
with mt = 173.1GeV.

Here dt also includes the full kinematics of the possibly
resonant W propagator, and is normalized such that

Z
d�d dt

⇣
�d,

mt

Q

⌘
= 1 . (50)

The residual dependence on Q in dt is still important
and hence indicated explicitly, while we leave implicit its
dependence on mW /mt.

The formula for Dt in Eq. (48) indicates that the ŝ
0

dependence appears in a Breit-Wigner, which factorizes
as a product with the �d dependence. As a result, on
convolving the stable jet function with Dt one recovers
the unstable jet function in Eq. (43).

Furthermore, the key information contained in the �d

phase space that is needed for the factorization formula is
given by the function h(�d, mt/Q), which is related to ✓d

by Eq. (36). Hence we find it convenient to work with a
distribution P which determines the relative probability
for di↵erent values of h,

P
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Q
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Q
)
⌘

. (51)

This probability distribution is shown in Fig. 7 for dif-
ferent Q/mt values, and peaks at h values near 2. As
anticipated it drops to zero near h = 1. For large h the
distribution falls o↵, and then drops sharply to zero. The
sharp drop o↵ occurs because we demand that the decay
products are always contained within the original jet of
radius R, which gives an upper limit on ✓d. This is indi-
cated by the subscript J in Eq. (51). While technically
a power correction, we find it useful to include this re-
striction since it ensures that only decay products that
are actually in the original jet can stop soft drop. The
same restriction is included on all �d integrals, including
the normalization imposed by Eq. (50), ensuring that

Z
dh̃ P

�
h̃, mt/Q

�
= 1 . (52)
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FIG. 8. The non-perturbative modes kept by the soft drop

factorization theorem at NLL when the groomer is stopped on

comparison between top decay products (blue dots), pictured

from above looking down the jet axis.

C. Universality with Light Quark Jets

Having determined P (h̃, mt/Q), and thus the distribu-
tion of the decay angle ✓d, we now address the question
how one determines the relevant scenario in the case of
multiple emissions and CA clustering. We first define ✓

0
d

for the other angle from the comparison of decay product
subjets in Eq. (36), and a corresponding variable h

0, via

✓
0
d ⌘ min

⇣
✓̃(xy)t, ✓̃zt

⌘
, tan

⇣
✓
0
d

2

⌘
=

mt

Q
h
0
⇣
�d,

mt

Q

⌘
.

(53)

If the decay products in the top rest frame are in the
most symmetric configuration then the boost results in
h ' h

0
' 1. For any other configuration we have h > 1

and h
0
< 1. (TODO) Since mt/Q ⌧ 1, at the stage of TODO:

Andre
should
improve
this
descrip-
tion.

clustering where the comparisons in Eq. (36) are made
the xy and z subjets containing top decay products carry
almost all of the jet-momentum. Hence at leading order
in the power counting they are in the same plane as the
total jet 3-momentum vector, and the angle between the
top decay product subjets is ✓d + ✓

0
d. Then this sum

has to be compared with the angle ✓cs of the first CS
subjet encountered in traversing the CA tree backwards
that has large enough pT and Rij to stop the soft drop
grooming via Eq. (3). From an exact calculation which
is weighted by the full top-decay di↵erential cross section
described above, we find that on averaging over �d we
have hh

0
i/hhi ' 0.22 for Q/mt = 5. This ratio decreases

to hh
0
i/hhi . 0.12 when Q/mt � 11, which is the range of

interest for our analysis. Therefore for our treatment of
the ⇤ modes we can safely assume ✓

0
d ⌧ ✓d or equivalently

h
0
⌧ h. This implies that which of the two cases we are

in is determined by a simple comparison of which subjets
are at a wider angle, with angles that are both defined
relative to the top jet axis:

case i) if ✓cs > ✓d , (54)

case ii) if ✓cs < ✓d .

Following the discussion Sec. II B we note that at NLL,

9

products. However, after integrating out mt these modes
are only sensitive to the overall color charge and direc-
tion of the top quark, since this direction is equivalent to
that of the decay products at leading order in mt/Q [9].
Therefore the top decay does not change e↵ects related
to this UC QCD radiation at leading power. Hence, the
unstable JB(ŝt, �t, �m, µ) in Eq. (41) can be defined in
terms of the stable jet function JB(ŝt, �m, µ) convolved
with the top Breit-Wigner [11]:

JB(ŝt, �t, �m, µ) (43)

=

Z ŝt

�1
dŝ

0
JB(ŝt � ŝ

0
, �m, µ)

�t

⇡
�
ŝ0 2 + �2

t

� .

In general to obtain results for the case where soft drop
acts on a boosted top quark jet, we need a collinear-soft

function S
(d)
C that in addition to the soft drop condition,

as in the case of usual S
(q)
C in Eq. (15), now also includes

angular information from the decay products. Thus S
(d)
C

is now aware of the vertical dashed line in Fig. 5b at
✓ = ✓d which contributes to the boundary of the soft drop
region, and hence a↵ects the location of the CS mode. At
one loop one finds that including the additional dashed
vertical line in Fig. 5b in the collinear-soft function yields
an additional logarithic term

S
(d)
C (`, �, ✓d, µ) = S

q
C(`, �, µ)

�
↵s(µ)CF

(�+2)⇡

2�+3

Qcut✓
�+2
d

L1

✓
`

Qcut

2�+2

✓
�+2
d

◆
⇥


Qcut✓

�+2
d

2�+2
� `

�

+ O(↵2
s) , (44)

where L1(x) = [(ln x)/x]+ is the standard logarithmic
plus function, defined as in Ref. [23]. Since at one loop in
fixed order perturbation theory we have a single emission,
the relevance of high-pT or decay scenario boils down to
a simple comparison between the emission angle ✓cs and
✓d, leading to the expression in Eq. (44). Note that at
O(↵s) that the extra term with ✓d dependence does not
have explicit dependence on µ, and only contributes for
case ii). To see this we first note that Eq. (9) implies
that `

+
⇠ m

2
J/Q, and thus using Eqs. (12) and (14) the

case ii) constraint ✓cs < ✓d at this order becomes

`
+
 Qcut

⇣
✓d

2

⌘�+2
= Qcut

⇣
mth

Q

⌘�+2
. (45)

The second line of Eq. (44) also only involves a logarithm
that is not large when ✓d ⇠ ✓cs, which is the relevant scal-
ing if the case i) and case ii) comparisons are necessary.
Demanding that this extra logarithm does not become
large precisely leads to the constraint in Eq. (7a), which
is necessary to ensure that the UC modes are not a↵ected
by soft drop. Thus this extra ✓d term only enters beyond
NLL order. In other words, light grooming constraints in
Eq. (7a) ensure that soft drop does not a↵ect the decay
products significantly and one can continue to use the
inclusive description of decay products. For all the terms

t t t t t t t t
b
q
q ‘

FIG. 6. Bubble chain for an unstable top quark leading to

a Breit-Wigner together with a di↵erential distribution for

the top decay products. From the closed two-loop bubble

calculation involving bqq̄0 only the imaginary top width term

is kept.

that appear at NLL, which can be determined by renor-
malization group evolution, the perturative CS function
is the same as the one that appeared at this order for
massless quark initiated jets in Eq. (9),

S
(d)
C (`, �, ✓d, µ)

���
NLL

= S
q
C(`, �, µ)

���
NLL

. (46)

Note that there is another relation which works with-
out limiting the order in resummed perturbation theory,
namely

lim
✓d⌧✓cs

S
(d)
C (`, �, ✓d, µ) = S

q
C(`, �, µ) . (47)

Here taking the limit ✓cs ⌧ ✓d ensures that it is always
the CS mode which stops soft drop.

Next we describe how to account for the distribution
of ✓d itself by incorporating the dependence on decay-
product phase space �d. Since this dependence is de-
termined at the scale mt it should be thought of as a
di↵erential hard matching coe�cient from the perspec-
tive of the low energy CS, UC, and S modes. Hence, in
the light grooming region the dynamics of the UC modes
is described by the same inclusive stable heavy quark jet
function JB(ŝ, �m, µ) in Eq. (43).

We refer to the function that encodes the distri-
bution of the top decay products as Dt(ŝ0, �d, mt/Q)
where ŝ

0 is the o↵shellness of the top-quark, such that
Dt(ŝ0, �d, mt/Q) and the stable jet function JB(ŝ, �m, µ)
together through convolution account for the e↵ects of
top decay and UC modes. Calculation of Dt requires
a geometric sum of decay product bubbles, where one
hadronically decaying bubble is cut, as shown in Fig. 6.

In the non-cut bubbles we just keep the total top width
�t, allowing us to write the result in terms of the purely
resonant contribution

Dt

⇣
ŝ
0
, �d,

mt

Q

⌘
=

�t

⇡(ŝ0 2+�2
t )

dt

⇣
�d,

mt

Q

⌘h
1+O

⇣
ŝ
0

mt

⌘i
.

(48)

The expansion here indicates that for the angular depen-
dence from the decay products we can work with an on-
shell quark function with ŝ

0 = 0. The full 5-body phase
space dependence of the top-decay t ! bW ! bqq̄

0 is
then contained in the dimensionless function

dt

⇣
�d,

mt

Q

⌘
=

1

�t!bqq̄0

d�t!bqq̄0

d�d
. (49)
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Figure 12. Top quark decay to three quarks, showing the notation used for their four-momenta.

We perform the calculation of h using variables defined in the rest frame of top quark, and

then apply a boost in the top jet direction to obtain the result in the pp center of mass frame.

We start by simplifying the form of phase space integration for the three body top decay shown

in Fig. 12, using momenta for the quarks q, q̄0, and b as p1, p2, and pb, respectively. The phase

space integration measure is given by

PS ⌘
Z

d�d =

Z
d3p1

(2⇡)3E1

Z
d3p2

(2⇡)3E2

Z
d3pb

(2⇡)3Eb

(2⇡)4 �(4)
�
pt � p1 � p2 � pb

�
. (3.92)

Out of these nine variables for the momenta of three onshell particles, only five of them are

independent after using the momentum conserving �-function. Our choice of independent rest

frame variables are as follows:

x1 =
2E1

mt
, ✓1 , ✓2 , �S = �1 + �2 , �� = �1 � �2 , (3.93)

where ✓i and �i are the angles with the z axis and azimuthal angles in the rest frame of top

quark. The angles in the boosted frame can be expressed in terms of these variables:

✓̃1t = ✓1t

✓
m

Q
, ✓1

◆
, ✓̃2t = ✓̃2t

✓
m

Q
, ✓2

◆
, ✓̃bt = ✓̃bt

✓
m

Q
, ✓1, ✓2,��

◆
. (3.94)

Here ✓̃it refers to angle of the decay product i with respect to the top direction in the pp

center-of-mass (or lab) frame. Thus in terms of these angles, the angle ✓d is defined as

✓d

✓
m

Q
, ✓1, ✓2,��

◆
⌘ max

⇣
✓̃(xy)t, ✓̃zt

⌘
, ✓̃xy = min

⇣
✓̃qq̄0 , ✓̃qb, ✓̃q̄0b

⌘
, (3.95)

where ✓̃qq̄0 , ✓̃qb, ✓̃q̄0b are the pairwise angles between the three decay products. The second

condition determines the pair xy = qq̄0, qb, or q̄0b that is closest in angle, which is still grouped

as a subjet when the groomer stops by making a comparison to the subjet involving the third

particle which we call z. Here ✓̃(xy)t is the angle between the top decay axis and the parent

particle obtained by adding the four momenta pµx + pµy . Since these subjets are dominated by

the energetic decay products, ✓d can be directly calculated in terms of the t ! bqq̄0 phase space

variables.

We further note that due to symmetry of rotations about the boost axis �S is a cyclic

coordinate and can be integrated over. Hence, expressed in the four remaining variables, the

– 45 –

Figure 5. Modes on z-✓ plane for the “decay” case.

where we have factored out the leading dependence on the boost Q/m and parameterized the

subleading dependence in an O(1) number, h(✓d), that is related to the fraction of the top

quark energy carried by the decay product at angle ✓d. Comparing the p+ components for the

“decay” and “high-pT ” cases in Eqs. (3.27) and (3.25) we find that the “decay” case is relevant

for

pdecay+⇤ & phigh pT +
⇤ ) Q . 2mh

✓
mhzcut
⇤QCD

◆ 1
�

. (3.28)

We discuss in detail the calculation of h in Sec. 3.3.5 below and comment further on the range

of validity of Eq. (3.28) there. For making estimates one can take h ' 2 which turns this

condition into

Q . 4m
�2mzcut
⇤QCD

�1/�
. (3.29)

Using Eq. (3.22) and Eq. (3.27) we have

pdecay⇤ ⇠ ⇤QCD

✓
mh

Q
,

Q

mh
, 1

◆
, (3.30)

which on comparison with Eq. (3.4) gives

h(✓d) =
Q

m

s
1� cos ✓d
1 + cos ✓d

=
Q

m
tan

✓d
2
. (3.31)

Another interesting consideration in this intermediate pT regime for the decay dominated

version of the factorization is when we consider larger zcut values. Eq. (3.9) specifies the values

of zcut for which the ultra-collinear modes get groomed away. In absence of top decay products

this would correspond to the orange line moving down on increasing zcut and eventually meeting

the ultra-collinear mode for

zuccut ⇠
�t

m

✓
Q

2m

◆
�

(3.32)
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• Top decay subjet momentum scaling:
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FIG. 7. Probability distribution of h for di↵erent values of Q
with mt = 173.1GeV.

Here dt also includes the full kinematics of the possibly
resonant W propagator, and is normalized such that

Z
d�d dt

⇣
�d,

mt

Q

⌘
= 1 . (50)

The residual dependence on Q in dt is still important
and hence indicated explicitly, while we leave implicit its
dependence on mW /mt.

The formula for Dt in Eq. (48) indicates that the ŝ
0

dependence appears in a Breit-Wigner, which factorizes
as a product with the �d dependence. As a result, on
convolving the stable jet function with Dt one recovers
the unstable jet function in Eq. (43).

Furthermore, the key information contained in the �d

phase space that is needed for the factorization formula is
given by the function h(�d, mt/Q), which is related to ✓d

by Eq. (36). Hence we find it convenient to work with a
distribution P which determines the relative probability
for di↵erent values of h,

P

⇣
h̃,

mt

Q

⌘
=

Z

J
d�d dt

�
�d,

mt

Q

�
�

⇣
h̃�h(�d,

mt

Q
)
⌘

. (51)

This probability distribution is shown in Fig. 7 for dif-
ferent Q/mt values, and peaks at h values near 2. As
anticipated it drops to zero near h = 1. For large h the
distribution falls o↵, and then drops sharply to zero. The
sharp drop o↵ occurs because we demand that the decay
products are always contained within the original jet of
radius R, which gives an upper limit on ✓d. This is indi-
cated by the subscript J in Eq. (51). While technically
a power correction, we find it useful to include this re-
striction since it ensures that only decay products that
are actually in the original jet can stop soft drop. The
same restriction is included on all �d integrals, including
the normalization imposed by Eq. (50), ensuring that

Z
dh̃ P

�
h̃, mt/Q

�
= 1 . (52)
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FIG. 8. The non-perturbative modes kept by the soft drop

factorization theorem at NLL when the groomer is stopped on

comparison between top decay products (blue dots), pictured

from above looking down the jet axis.

C. Universality with Light Quark Jets

Having determined P (h̃, mt/Q), and thus the distribu-
tion of the decay angle ✓d, we now address the question
how one determines the relevant scenario in the case of
multiple emissions and CA clustering. We first define ✓

0
d

for the other angle from the comparison of decay product
subjets in Eq. (36), and a corresponding variable h

0, via

✓
0
d ⌘ min

⇣
✓̃(xy)t, ✓̃zt

⌘
, tan

⇣
✓
0
d

2

⌘
=

mt

Q
h
0
⇣
�d,

mt

Q

⌘
.

(53)

If the decay products in the top rest frame are in the
most symmetric configuration then the boost results in
h ' h

0
' 1. For any other configuration we have h > 1

and h
0
< 1. (TODO) Since mt/Q ⌧ 1, at the stage of TODO:

Andre
should
improve
this
descrip-
tion.

clustering where the comparisons in Eq. (36) are made
the xy and z subjets containing top decay products carry
almost all of the jet-momentum. Hence at leading order
in the power counting they are in the same plane as the
total jet 3-momentum vector, and the angle between the
top decay product subjets is ✓d + ✓

0
d. Then this sum

has to be compared with the angle ✓cs of the first CS
subjet encountered in traversing the CA tree backwards
that has large enough pT and Rij to stop the soft drop
grooming via Eq. (3). From an exact calculation which
is weighted by the full top-decay di↵erential cross section
described above, we find that on averaging over �d we
have hh

0
i/hhi ' 0.22 for Q/mt = 5. This ratio decreases

to hh
0
i/hhi . 0.12 when Q/mt � 11, which is the range of

interest for our analysis. Therefore for our treatment of
the ⇤ modes we can safely assume ✓

0
d ⌧ ✓d or equivalently

h
0
⌧ h. This implies that which of the two cases we are

in is determined by a simple comparison of which subjets
are at a wider angle, with angles that are both defined
relative to the top jet axis:

case i) if ✓cs > ✓d , (54)

case ii) if ✓cs < ✓d .

Following the discussion Sec. II B we note that at NLL,

9

products. However, after integrating out mt these modes
are only sensitive to the overall color charge and direc-
tion of the top quark, since this direction is equivalent to
that of the decay products at leading order in mt/Q [9].
Therefore the top decay does not change e↵ects related
to this UC QCD radiation at leading power. Hence, the
unstable JB(ŝt, �t, �m, µ) in Eq. (41) can be defined in
terms of the stable jet function JB(ŝt, �m, µ) convolved
with the top Breit-Wigner [11]:

JB(ŝt, �t, �m, µ) (43)

=

Z ŝt

�1
dŝ

0
JB(ŝt � ŝ

0
, �m, µ)

�t

⇡
�
ŝ0 2 + �2

t

� .

In general to obtain results for the case where soft drop
acts on a boosted top quark jet, we need a collinear-soft

function S
(d)
C that in addition to the soft drop condition,

as in the case of usual S
(q)
C in Eq. (15), now also includes

angular information from the decay products. Thus S
(d)
C

is now aware of the vertical dashed line in Fig. 5b at
✓ = ✓d which contributes to the boundary of the soft drop
region, and hence a↵ects the location of the CS mode. At
one loop one finds that including the additional dashed
vertical line in Fig. 5b in the collinear-soft function yields
an additional logarithic term

S
(d)
C (`, �, ✓d, µ) = S

q
C(`, �, µ)

�
↵s(µ)CF

(�+2)⇡

2�+3

Qcut✓
�+2
d

L1

✓
`

Qcut

2�+2

✓
�+2
d

◆
⇥


Qcut✓

�+2
d

2�+2
� `

�

+ O(↵2
s) , (44)

where L1(x) = [(ln x)/x]+ is the standard logarithmic
plus function, defined as in Ref. [23]. Since at one loop in
fixed order perturbation theory we have a single emission,
the relevance of high-pT or decay scenario boils down to
a simple comparison between the emission angle ✓cs and
✓d, leading to the expression in Eq. (44). Note that at
O(↵s) that the extra term with ✓d dependence does not
have explicit dependence on µ, and only contributes for
case ii). To see this we first note that Eq. (9) implies
that `

+
⇠ m

2
J/Q, and thus using Eqs. (12) and (14) the

case ii) constraint ✓cs < ✓d at this order becomes

`
+
 Qcut

⇣
✓d

2

⌘�+2
= Qcut

⇣
mth

Q

⌘�+2
. (45)

The second line of Eq. (44) also only involves a logarithm
that is not large when ✓d ⇠ ✓cs, which is the relevant scal-
ing if the case i) and case ii) comparisons are necessary.
Demanding that this extra logarithm does not become
large precisely leads to the constraint in Eq. (7a), which
is necessary to ensure that the UC modes are not a↵ected
by soft drop. Thus this extra ✓d term only enters beyond
NLL order. In other words, light grooming constraints in
Eq. (7a) ensure that soft drop does not a↵ect the decay
products significantly and one can continue to use the
inclusive description of decay products. For all the terms

t t t t t t t t
b
q
q ‘

FIG. 6. Bubble chain for an unstable top quark leading to

a Breit-Wigner together with a di↵erential distribution for

the top decay products. From the closed two-loop bubble

calculation involving bqq̄0 only the imaginary top width term

is kept.

that appear at NLL, which can be determined by renor-
malization group evolution, the perturative CS function
is the same as the one that appeared at this order for
massless quark initiated jets in Eq. (9),

S
(d)
C (`, �, ✓d, µ)

���
NLL

= S
q
C(`, �, µ)

���
NLL

. (46)

Note that there is another relation which works with-
out limiting the order in resummed perturbation theory,
namely

lim
✓d⌧✓cs

S
(d)
C (`, �, ✓d, µ) = S

q
C(`, �, µ) . (47)

Here taking the limit ✓cs ⌧ ✓d ensures that it is always
the CS mode which stops soft drop.

Next we describe how to account for the distribution
of ✓d itself by incorporating the dependence on decay-
product phase space �d. Since this dependence is de-
termined at the scale mt it should be thought of as a
di↵erential hard matching coe�cient from the perspec-
tive of the low energy CS, UC, and S modes. Hence, in
the light grooming region the dynamics of the UC modes
is described by the same inclusive stable heavy quark jet
function JB(ŝ, �m, µ) in Eq. (43).

We refer to the function that encodes the distri-
bution of the top decay products as Dt(ŝ0, �d, mt/Q)
where ŝ

0 is the o↵shellness of the top-quark, such that
Dt(ŝ0, �d, mt/Q) and the stable jet function JB(ŝ, �m, µ)
together through convolution account for the e↵ects of
top decay and UC modes. Calculation of Dt requires
a geometric sum of decay product bubbles, where one
hadronically decaying bubble is cut, as shown in Fig. 6.

In the non-cut bubbles we just keep the total top width
�t, allowing us to write the result in terms of the purely
resonant contribution

Dt

⇣
ŝ
0
, �d,

mt

Q

⌘
=

�t

⇡(ŝ0 2+�2
t )

dt

⇣
�d,

mt

Q

⌘h
1+O

⇣
ŝ
0

mt

⌘i
.

(48)

The expansion here indicates that for the angular depen-
dence from the decay products we can work with an on-
shell quark function with ŝ

0 = 0. The full 5-body phase
space dependence of the top-decay t ! bW ! bqq̄

0 is
then contained in the dimensionless function

dt

⇣
�d,

mt

Q

⌘
=

1

�t!bqq̄0

d�t!bqq̄0

d�d
. (49)
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Figure 12. Top quark decay to three quarks, showing the notation used for their four-momenta.

We perform the calculation of h using variables defined in the rest frame of top quark, and

then apply a boost in the top jet direction to obtain the result in the pp center of mass frame.

We start by simplifying the form of phase space integration for the three body top decay shown

in Fig. 12, using momenta for the quarks q, q̄0, and b as p1, p2, and pb, respectively. The phase

space integration measure is given by

PS ⌘
Z

d�d =

Z
d3p1

(2⇡)3E1

Z
d3p2

(2⇡)3E2

Z
d3pb

(2⇡)3Eb

(2⇡)4 �(4)
�
pt � p1 � p2 � pb

�
. (3.92)

Out of these nine variables for the momenta of three onshell particles, only five of them are

independent after using the momentum conserving �-function. Our choice of independent rest

frame variables are as follows:

x1 =
2E1

mt
, ✓1 , ✓2 , �S = �1 + �2 , �� = �1 � �2 , (3.93)

where ✓i and �i are the angles with the z axis and azimuthal angles in the rest frame of top

quark. The angles in the boosted frame can be expressed in terms of these variables:

✓̃1t = ✓1t

✓
m

Q
, ✓1

◆
, ✓̃2t = ✓̃2t

✓
m

Q
, ✓2

◆
, ✓̃bt = ✓̃bt

✓
m

Q
, ✓1, ✓2,��

◆
. (3.94)

Here ✓̃it refers to angle of the decay product i with respect to the top direction in the pp

center-of-mass (or lab) frame. Thus in terms of these angles, the angle ✓d is defined as

✓d

✓
m

Q
, ✓1, ✓2,��

◆
⌘ max

⇣
✓̃(xy)t, ✓̃zt

⌘
, ✓̃xy = min

⇣
✓̃qq̄0 , ✓̃qb, ✓̃q̄0b

⌘
, (3.95)

where ✓̃qq̄0 , ✓̃qb, ✓̃q̄0b are the pairwise angles between the three decay products. The second

condition determines the pair xy = qq̄0, qb, or q̄0b that is closest in angle, which is still grouped

as a subjet when the groomer stops by making a comparison to the subjet involving the third

particle which we call z. Here ✓̃(xy)t is the angle between the top decay axis and the parent

particle obtained by adding the four momenta pµx + pµy . Since these subjets are dominated by

the energetic decay products, ✓d can be directly calculated in terms of the t ! bqq̄0 phase space

variables.

We further note that due to symmetry of rotations about the boost axis �S is a cyclic

coordinate and can be integrated over. Hence, expressed in the four remaining variables, the
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Probability distribution for θd

To derive
fact. theorem:  

Remove soft 
contamination.

Decouples top-jet from rest of the event!      

Light Soft Drop for tops zcut � 0.01

THEORY TOOLS: GUIDELINES, USAGE, ROBUSTNESS

HOW DO WE USE THESE THEORETICAL TOOLS?
Groomed top jet mass cross section:
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0�Q`

m
, �m,µ

⌘

⇥
Z
dk SC

h⇣
`� mk

Q
h
�
�d,

m

Q

�⌘
(2�Qzcut)

1
1+� ,�, µ

i
FC(k, 1) (3.29)

d�(�J)

dMJ

= N(�J , zcut,�, µ)

Z
dŝ
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ŝt�

Q`

m
, �m,�t, µ

⌘

⇥
Z
dk

0
SC

h⇣
`� mk

0

Q

⌘
(2�Qzcut)

1
1+� ,�, µ

i
F̃C(k

0
,�,m/Q) , (3.31)

where the induced nonperturbative model function is
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3.7 Angular Distribution of Decay Products

We outline calculation of Dt.

3.8 Summing Logarithms and Consistency

We demonstrate independence of the cross section on various renormalization scales by deriving

consistency relations for the SCET and bHQET+ theory.

4 NLL Implementation

4.1 Factorization Formulas for jets without grooming

4.1.1 Tree-level Cross Section

Here we derive the explicit tree-level result of the factorization formula. The beam function at

the soft scale µSa
is related to that at the beam jet scale µa by the RG evolution equation
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At tree level the evolution factor just reduces to a delta function
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0�Q`

m
, �m,µ

⌘

⇥
Z
dk SC

h⇣
`� mk

Q
h
�
�d,

m

Q

�⌘
(2�Qzcut)

1
1+� ,�, µ

i
FC(k, 1) (3.29)

d�(�J)

dMJ

= N(�J , zcut,�, µ)

Z
dŝ
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‣ Fully correct computation: gluon radiation off the top and decays 
properly accounted for. Width dependence of radiation taken 
care of. 

‣ Scale settings: Bulk of higher order corrections already taken 
care of through scale settings. Experience from ee studies. 

‣ Resummation of logarithms: EFT approach designed for specific 
kinematics of this process.
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The top quark mass mt is one of the most important
Standard Model (SM) parameters. It significantly af-
fects studies of the SM vacuum stability [1] and the elec-
troweak precision observables [2]. The most precise top
mass measurements are based on kinematic reconstruc-
tion, yielding results such as mMC

t = 172.44(49) GeV
(CMS) [3], mMC

t = 172.84(70) GeV (ATLAS) [4] and
mMC

t = 174.34(64) GeV (Tevatron) [5]. These measure-
ments are based on Monte Carlo (MC) simulations and
determine the mass parameter mMC

t of the MC genera-
tor, which depends on the shower dynamics and its in-
terface with hadronization. Identifying these values with
a Lagrangian top-mass scheme mt induces an additional
ambiguity at the 0.5–1.0 GeV level [6, 7]. We propose
a factorization approach to remove this uncertainty in
pp ! tt̄ by constructing an observable that has high kine-
matic sensitivity to mt and at the same time allows for
hadron level predictions from QCD employing a short
distance top-mass. It can be used to extract mt from ex-
perimental data, or to calibrate the parameter mMC

t as
was done for 2-Jettiness in e+e� collisions [8].

We consider boosted tops whose decay products are
collimated in a single jet region, enabling a simultaneous
theoretical description of both the top production and de-
cay [9]. This requires Q � mt � �t where �t ' 1.4GeV
is the top width andQ is twice the large momentum along
the boost direction. For pp collisions Q = 2pT cosh(⌘)
with pT and ⌘ being the jet’s transverse momentum and
pseudo-rapidity, respectively. Recently an experimental
analysis along these lines was carried out by CMS [10].
For e+e� ! tt̄ a hadron level factorization theorem for
a distribution with high kinematic sensitivity to a short
distance mt was derived in [9, 11]. So far an analogous
approach has been missing for pp ! tt̄, due to theory
complications in controlling external radiation, parame-
ters like the jet radius R, and soft contamination from
initial state radiation and underlying event (UE), which
is often modeled in MC simulations by multiple particle

interactions (MPI).
Our method relies on deriving new factorization the-

orems that enable the measurement of the jet mass MJ

on a jet of radius R ⇠ 1 with light soft drop grooming in
a boosted top sample. The soft drop algorithm [12, 13]
removes peripheral soft radiation by comparing subse-
quent jet constituents i, j in an angular ordered cluster
tree until

min[pTi, pTj ]/(pTi + pTj) > zcut(Rij/R)� , (1)

is satisfied. Here Rij is the angular distance in the
rapidity-� plane, and zcut and � are fixed soft drop pa-
rameters. When Eq. (1) is satisfied all subsequent con-
stituents in the tree are kept, thus setting a new jet ra-
dius Rg < R for the groomed jet. This retains strong
kinematic sensitivity to mt as in the template method,
grooms away contamination from other parts of the colli-
sion, and allows for a factorization based description [14].
It also reduces tuning dependence in MC simulations [15].
We make use of the Soft-Collinear E↵ective Theory [16]

to derive peak region factorization formulae for the cross-
section, with the modes pictured in Fig. 1a. Our calcu-
lation requires light grooming which satisfies

�t

4mt

⇣ Q

4mt

⌘�
>
⇠ zcut , z

1
2+�

cut �
1

2

✓
�t

mt

4m2
t

Q2

◆ 1
2+�

. (2)

The first constraint enables a simple treatment of the
top-decay products and ensures �t/mt(Q/2mt)� � zcut
so that boosted ultra-collinear (UC) massless radiation
associated with the top quark is not modified. These
e↵ects are then described by the same inclusive jet func-
tion JB(ŝ, �m,�t, µ) as in [9, 11], providing control over
the scheme for mt through �m = mpole

t �mt. This con-
straint is significantly stronger than that needed to retain
the decay products, (Q/2mt)� � zcut. The second con-
straint ensures that wide angle soft radiation (y-axis of
Fig. 1a above the green dot) is groomed away, isolating
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tree until
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Figure 5. Modes on z-✓ plane for the “decay” case.

3.1.3 E↵ects of Top-Decay Products

In the previous section we analyzed a case with pT = 1500GeV. For high-pT top jets the decay

products are more collimated and hence in this case the location of the non-perturbative mode

is analogous to the case of jets from massless quarks. In particular for high-pT the dashed line

in Fig. 4 is always on the right hand side of the ⇤ modes.

However, for an intermediate pT range of experimental interest the dashed line moves

further to the left, and we find that the dominant non-perturbative modes are located on the

dashed line. This occurs because the brown line now hits the dashed line instead of the orange

line. This is shown in Fig. 5 for pT = 750 GeV.

In such case the the non perturbative modes have the angle set by the decay product that

is furthest away from the top jet axis and stops the groomer:

✓⇤ ⇠ ✓d . (3.26)

We refer to the two cases in Figs. 4 and 5 as “high-pT ” and “decay” cases respectively. We

can ask at what Q we transition between the two pictures by comparing the p+ components

of the ⇤ modes, since the contribution of a mode to the measurement is proportional to the

plus component contribution as shown in Eq. (2.8). We first parameterize the plus component

of ⇤ mode in Fig. 5 as follows

p+⇤ = ⇤QCD
m

Q
h(✓d) , (3.27)

where we have factored out the leading dependence on the boost Q/m and parameterized the

subleading dependence in an O(1) number, h(✓d), that is related to the fraction of the top

quark energy carried by the decay product at angle ✓d. Comparing the p+ components for the

“decay” and “high-pT ” cases in Eqs. (3.27) and (3.25) we find that the “decay” case is relevant

for

pdecay+⇤ & phigh pT +
⇤ ) Q . 2mh

✓
mhzcut
⇤QCD

◆ 1
�

. (3.28)
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a)

b)

FIG. 4. Relevant SCET modes for soft drop jet mass for a top
jet. The dashed vertical line corresponds to the angle of the
furthest top-decay product from the jet axis which determines
h, shown with two di↵erent values in (a) and (b). This leads
to a dependence on h in the factorization formula. The other
parameters (pt, ⌘J , zcut, �) are held fixed.

the pair xy = qq̄0, qb, or q̄0b that is closest in angle, which
are grouped together in a subjet, while the third particle
we call z is in a di↵erent subjet. For case ii) soft drop
stops due to the comparison of these two subjets. In
the definition of ✓d the angle ✓̃(xy)t is measured between
the top decay axis and the parent subjet obtained by
adding the four momenta pµ

x + pµ
y , with the analogous

definition for ✓̃zt. The angle ✓d is also directly related to
the parameter h used above in Eq. (7a).

We now turn to the calculation of ✓d and h. Since these
subjets are dominated by the energetic decay products,
✓d can be directly calculated in terms of the t ! bqq̄0

phase space variables

✓d = ✓d(�d, mt/Q) . (38)

We define �d as the 5 independent dimensionless kine-
matic variables of the top-decay t ! bqq̄0 in its rest frame
(4 angles and one energy fraction). The dependence on
mt/Q arises from boosting to the frame with the high pT

top-quark, where the angles used by soft drop are com-
puted. The h function which appeared already in Eq. (7),
and will be needed below for the decay component of the
factorization theorem, is then defined by

tan
⇣✓d

2

⌘
=

mt

Q
h
⇣
�d,

mt

Q

⌘
. (39)

The mt/Q prefactor here pulls out the dominant depen-
dence that ✓d has on the boost of the top quark, indicat-

ing that ✓d ! 0 as Q/mt ! 1. The use of tangent in
Eq. (39) makes the p+ component of the ⇤ modes scale
in a manner proportional to h without further approxi-
mations: p+⇤ ⇠ (mt/Q)h⇤QCD. For the full scaling of the
(p+, p�, p?) components of ⇤ mode momenta in case ii)
we therefore have

pµ
⇤ ⇠ ⇤QCD

⇣
⇣d,

1

⇣d
, 1
⌘

, ⇣d ⌘
mt

Q
h . (40)

[Do we want to mention case i) scaling already here?]
We also define ✓0d for the other angle from the compar-

ison of decay product subjets in Eq. (37), and a corre-
sponding variable h0, via

✓0d ⌘ min
⇣
✓̃(xy)t, ✓̃zt

⌘
, tan

⇣✓0d
2

⌘
=

mt

Q
h0
⇣
�d,

mt

Q

⌘
.

(41)

(TODO) If the decay products in the top rest frame TODO:

Andre
should
improve
this
descrip-
tion.

are in the most symmetric configuration then the boost
results in h ' h0

' 1. For any other configuration we
have h > 1 and h0 < 1.

Since mt/Q ⌧ 1, at the stage of clustering where the
comparisons in Eq. (37) are made the xy and z sub-
jets containing top decay products carry almost all of
the jet-momentum. Hence at leading order in the power
counting they are in the same plane as the total jet 3-
momentum vector, and the angle between the top decay
product subjets is ✓d + ✓0d. Then this sum has to be
compared with the angle ✓sc of the first CS subjet en-
countered in traversing the CA tree backwards that has
large enough pT and Rij to stop the soft drop grooming
via Eq. (3). From an exact calculation which is weighted
by the full top-decay di↵erential cross section, we find
that on averaging over �d we have hh0

i/hhi ' 0.22 for
Q/mt = 5. This ratio decreases to hh0

i/hhi . 0.12 when
Q/mt � 11, which is the range of interest for our analy-
sis. Therefore for our treatment of the ⇤ modes we can
safely assume ✓0d ⌧ ✓d or equivalently h0

⌧ h. This im-
plies that which of the two cases we are in is determined
by a simple comparison of which subjets are at a wider
angle, with angles that are both defined relative to the
top jet axis:

case i) if ✓cs > ✓d , (42)

case ii) if ✓cs < ✓d .

Examples are shown in the panels in Fig. 4a for case i)
and in Fig. 4b for case ii), by considering two di↵erent
values for h, implying two di↵erent values of ✓d.

Figure 4 implies that the factorization theorems for a
jet initiated by an unstable massive quark will have sig-
nificant di↵erences from the massless quark jet case. In
particular, if in the power counting ✓cs ⇠ ✓d then the
comparison in Eq. (42) will also be made inside the op-

erator defining the collinear-soft function, denoted S(d)
C .

It will therefore depend on information about the decay
products, and in general di↵er from the Sq

C function ap-
pearing in Eq. (18). In general, resolving the comparison

updates since the last  
top mass talk

!6

10

Here dt also includes the full kinematics of the possibly
resonant W propagator, and is normalized such that

Z
d�d dt

⇣
�d,

mt

Q

⌘
= 1 . (50)

The residual dependence on Q in dt is still important
and hence indicated explicitly, while we leave implicit its
dependence on mW /mt.

The formula for Dt in Eq. (48) indicates that the ŝ0 de-
pendence appears in a Breit-Wigner, which factorizes as
a product with the �d dependence. In the factorization
formula this Breit-Wigner is convolved directly with the
stable jet function JB(ŝt, �m, µ) to yield the unstable jet
function [11]

JB(ŝt, �t, �m, µ) (51)

=

Z ŝt

�1
dŝ0 JB(ŝt � ŝ0, �m, µ)

�t

⇡
�
ŝ0 2 + �2

t

� .

Furthermore, the key information contained in the �d

phase space that is needed for the factorization formula is
given by the function h(�d, mt/Q), which is related to ✓d

by Eq. (37). Hence we find it convenient to work with a
distribution P which determines the relative probability
for di↵erent values of h,

P
⇣
h̃,

mt

Q

⌘
=

Z

J
d�d dt

�
�d,

mt

Q

�
�
⇣
h̃�h(�d,

mt

Q
)
⌘

. (52)

This probability distribution is shown in Fig. 6 for dif-
ferent Q/mt values, and peaks at h values near 2. As
anticipated it drops to zero near h = 1. For large h the
distribution falls o↵, and then drops sharply to zero. The
sharp drop o↵ occurs because we demand that the decay
products are always contained within the original jet of
radius R, which gives an upper limit on ✓d. While techni-
cally a power correction, we find it useful to include this
restriction since it ensures that only decay products that
are actually in the original jet can stop soft drop. The
same restriction is included on all �d integrals, including
the normalization imposed by Eq. (50), ensuring that

Z
dh̃ P

�
h̃, mt/Q

�
= 1 . (53)

C. Top Factorization Formula with Soft Drop

We now determine the factorization formula for
boosted top quarks with soft drop, building on results
obtained in Sec. III B. Once again we start with a fac-
torization theorem valid beyond NLL, which takes the

FIG. 6. Probability distribution of h for di↵erent values of Q
with mt = 173.1GeV.

form
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�

⇥ F̃ (d)
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p+⇤ , Qcut, �, {ri

cs}, h(�d, mt/Q)
i
. (54)

Further details on the derivations that lead to Eq. (54)
can be found in Ref. [17]. Here we have already used
Eq. (51) to obtain the unstable jet function JB , used

the S(d)
C function defined as in Sec. III B, and used dt

given by Eq. (49). The nonperturbative function F̃ (d) in
Eq. (54) is given by a matrix element involving Yn and
Yn̄ Wilson lines built out of ⇤ mode gluons, and at this
point contains the information needed for both cases in
Eq. (42). In particular we assume r1cs = ✓cs so that the
functional information needed to determine whether we
are in the high-pT or decay case is directly accessible to

F̃ (d). Since the jet must have a top quark, both S(d)
C and

F̃ (d) involve Wilson lines in the fundamental representa-
tion. Using the P (h̃, mt/Q) distribution function defined
in Eq. (52) we can reduce the number of integrations in
Eq. (54), obtaining

d�(�J)

dMJ
= N(�J , zcut, �, µ)

Z
dh̃ P

⇣
h̃,

mt

Q

⌘

⇥

Z
d`+ JB

⇣
ŝt � ŝ0�

Q`+

mt
, �m, �t, µ

⌘

⇥

Z
[dri

cs]

Z
dp+⇤ S(d)

C

h
`+� p+⇤ , Qcut, �, {ri

cs}, ✓d, µ
i

⇥ F̃ (d)
h
p+⇤ , Qcut, �, {ri

cs}, h̃
i
. (55)

The function N in Eqs. (54) and (55) contains factors
that a↵ect only the normalization and weight of di↵erent
pT values, like parton distributions, the global soft func-
tion, the hard function, as well as the other t or t̄ jet,
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FIG. 9. ✓d, ✓cs and the winning stopping pair angle as a

function of top jet mass.

on ignoring ✓
0
d, we have the same geometry of the catch-

ment area in the high-pT and decay factorizations. Fig. 8
illustrates the catchment area of the nonperturbative
modes for the shift term where the top decay products
stop soft drop. In contrast with Fig. 3 the blue dots
here signify that both the subjets containing top decay
products are much more energetic than the collinear-soft
subjet formed by pure QCD radiation. Hence, as a conse-
quence, the boundary correction originating from modifi-
cation of the soft drop test for softer subjet is not present
if the subjet contains a top decay product.

The projection operator for the shift term in Eq. (20)
for massless jets then generalizes to the following expres-
sion:

⇥
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NP(pµ

⇤, ✓X , �X) = ⇥
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⇡
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⇥

✓
1 �
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⇡

3
� |��|

◆
⇥

✓
2 cos(��) �

✓⇤

✓X

◆
(55)

where X = d when ✓d > ✓cs, and vice versa. The nonper-
turbative factorization for boosted tops will then involve
rescaling the nonperturbative momenta via either of the
two angles. We thus find that the shift correction at
leading power between the jets initiated by light quarks
and gluons ⌦��

1 is the same in the case of boosted tops,
once the perturbative dependence has been factored out
by rescaling with ✓X = ✓d or ✓cs in Eq. (22). The uni-
versality between the massive and light quark jets allows
us to use Eq. (54) at NLL even in the case of multiple
emissions and CA clustering.

D. Comparing High-pT and Decay Components

We now make use of the results derived above to make
a concrete numerical comparison between ✓cs and ✓d.
From Eq. (28) we note that resummed opening angle ✓cs

is simply twice the C1 nonperturbative Wilson coe�cient
with mJ expressed in terms of ŝt in the peak region:

✓cs = 2C1

�
m

2
J = mtŝt, Q, zcut, �

�
. (56)

FIG. 10. The full NLL hadronic top jet mass cross section

along with the decay and high-pT components for a represen-

tative set of top mass mMSR
t in MSR scheme and hadronic

parameters.

We give the result for C1(m2
J , Q, zcut, �) in App. A. On

the other hand, the average ✓d given by

✓d = 2

Z
dh̃ P

⇣
h̃,

mt

Q

⌘
arctan

⇣
mt

Q
h̃

⌘
, (57)

where unlike ✓cs in Eq. (56) ✓d involves no such resum-
mation at low energies probed by the jet mass measure-
ment in the peak region. The average opening angle of
the stopping pair at a given jet mass is then has then a
simple expression

✓stop = 2

Z
dh̃ P

⇣
h̃,

mt

Q

⌘
(58)

⇥ max
n

arctan
⇣

mt

Q
h̃

⌘
, C1

�
M

2
J � m

2
t , Q, zcut, �

�o
.

The winning scenario from Eq. (58) determines which of
the two factorizations: decay or high-pT applies. Fig. 9
shows the opening angles of the final soft drop stop-
ping pair in the two factorizations, ✓d and ✓cs, and the
winning angle ✓stop as a function of the jet mass for
zcut = 0.01 and � = 2 grooming parameters at pT � 750
GeV and central rapidity. This results in an average
jet energy EJ ⇠ 1200 GeV. The dashed vertical line is
at MJ = mt = 173.1 GeV, This choice of kinematic
point and grooming parameters satisfies the light groom-
ing constraints in Eq. (7).

We notice that the decay products predominantly
stop the soft drop groomer in the peak region, whereas
the high-pT component becomes significant only further
down the tail of the spectrum. This can be also seen
from the individual contributions of the two factoriza-
tion theorems to the net jet mass cross section, as shown
in Fig. 10. The hadronic factorization theorem is pre-
sented below in Sec. III E, and here we show the result
for a representative top mass m

MSR
t = 173.1 GeV in the

MSR scheme, and hadronic parameters (⌦��
1 , x2) = (1.5

GeV, 0.5). x2 is related to the second moment of the
nonperturbative shape function, and is defined below in

θd θcs
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The winning scenario from Eq. (58) determines which of
the two factorizations: decay or high-pT applies. Fig. 9
shows the opening angles of the final soft drop stop-
ping pair in the two factorizations, ✓d and ✓cs, and the
winning angle ✓stop as a function of the jet mass for
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GeV and central rapidity. This results in an average
jet energy EJ ⇠ 1200 GeV. The dashed vertical line is
at MJ = mt = 173.1 GeV, This choice of kinematic
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We notice that the decay products predominantly
stop the soft drop groomer in the peak region, whereas
the high-pT component becomes significant only further
down the tail of the spectrum. This can be also seen
from the individual contributions of the two factoriza-
tion theorems to the net jet mass cross section, as shown
in Fig. 10. The hadronic factorization theorem is pre-
sented below in Sec. III E, and here we show the result
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t = 173.1 GeV in the

MSR scheme, and hadronic parameters (⌦��
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• Non-perturbative effects for the groomed jet mass spectrum depend 
on the perturbative branching history. 
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a)

b)

FIG. 4. Relevant SCET modes for soft drop jet mass for a top
jet. The dashed vertical line corresponds to the angle of the
furthest top-decay product from the jet axis which determines
h, shown with two di↵erent values in (a) and (b). This leads
to a dependence on h in the factorization formula. The other
parameters (pt, ⌘J , zcut, �) are held fixed.

the pair xy = qq̄0, qb, or q̄0b that is closest in angle, which
are grouped together in a subjet, while the third particle
we call z is in a di↵erent subjet. For case ii) soft drop
stops due to the comparison of these two subjets. In
the definition of ✓d the angle ✓̃(xy)t is measured between
the top decay axis and the parent subjet obtained by
adding the four momenta pµ

x + pµ
y , with the analogous

definition for ✓̃zt. The angle ✓d is also directly related to
the parameter h used above in Eq. (7a).

We now turn to the calculation of ✓d and h. Since these
subjets are dominated by the energetic decay products,
✓d can be directly calculated in terms of the t ! bqq̄0

phase space variables

✓d = ✓d(�d, mt/Q) . (38)

We define �d as the 5 independent dimensionless kine-
matic variables of the top-decay t ! bqq̄0 in its rest frame
(4 angles and one energy fraction). The dependence on
mt/Q arises from boosting to the frame with the high pT

top-quark, where the angles used by soft drop are com-
puted. The h function which appeared already in Eq. (7),
and will be needed below for the decay component of the
factorization theorem, is then defined by

tan
⇣✓d

2

⌘
=

mt

Q
h
⇣
�d,

mt

Q

⌘
. (39)

The mt/Q prefactor here pulls out the dominant depen-
dence that ✓d has on the boost of the top quark, indicat-

ing that ✓d ! 0 as Q/mt ! 1. The use of tangent in
Eq. (39) makes the p+ component of the ⇤ modes scale
in a manner proportional to h without further approxi-
mations: p+⇤ ⇠ (mt/Q)h⇤QCD. For the full scaling of the
(p+, p�, p?) components of ⇤ mode momenta in case ii)
we therefore have

pµ
⇤ ⇠ ⇤QCD

⇣
⇣d,

1

⇣d
, 1
⌘

, ⇣d ⌘
mt

Q
h . (40)

[Do we want to mention case i) scaling already here?]
We also define ✓0d for the other angle from the compar-

ison of decay product subjets in Eq. (37), and a corre-
sponding variable h0, via

✓0d ⌘ min
⇣
✓̃(xy)t, ✓̃zt

⌘
, tan

⇣✓0d
2

⌘
=

mt

Q
h0
⇣
�d,

mt

Q

⌘
.

(41)

(TODO) If the decay products in the top rest frame TODO:

Andre
should
improve
this
descrip-
tion.

are in the most symmetric configuration then the boost
results in h ' h0

' 1. For any other configuration we
have h > 1 and h0 < 1.

Since mt/Q ⌧ 1, at the stage of clustering where the
comparisons in Eq. (37) are made the xy and z sub-
jets containing top decay products carry almost all of
the jet-momentum. Hence at leading order in the power
counting they are in the same plane as the total jet 3-
momentum vector, and the angle between the top decay
product subjets is ✓d + ✓0d. Then this sum has to be
compared with the angle ✓sc of the first CS subjet en-
countered in traversing the CA tree backwards that has
large enough pT and Rij to stop the soft drop grooming
via Eq. (3). From an exact calculation which is weighted
by the full top-decay di↵erential cross section, we find
that on averaging over �d we have hh0

i/hhi ' 0.22 for
Q/mt = 5. This ratio decreases to hh0

i/hhi . 0.12 when
Q/mt � 11, which is the range of interest for our analy-
sis. Therefore for our treatment of the ⇤ modes we can
safely assume ✓0d ⌧ ✓d or equivalently h0

⌧ h. This im-
plies that which of the two cases we are in is determined
by a simple comparison of which subjets are at a wider
angle, with angles that are both defined relative to the
top jet axis:

case i) if ✓cs > ✓d , (42)

case ii) if ✓cs < ✓d .

Examples are shown in the panels in Fig. 4a for case i)
and in Fig. 4b for case ii), by considering two di↵erent
values for h, implying two di↵erent values of ✓d.

Figure 4 implies that the factorization theorems for a
jet initiated by an unstable massive quark will have sig-
nificant di↵erences from the massless quark jet case. In
particular, if in the power counting ✓cs ⇠ ✓d then the
comparison in Eq. (42) will also be made inside the op-

erator defining the collinear-soft function, denoted S(d)
C .

It will therefore depend on information about the decay
products, and in general di↵er from the Sq

C function ap-
pearing in Eq. (18). In general, resolving the comparison
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C function ap-
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Gravity is the weakest of all the known forces that operate in our universe, being about one

trillion trillion trillion times smaller than the electromagnetic force that binds electrons and

nuclei into the atoms. And yet, gravity reigns supreme in determining the overall structure

and evolution of our universe, going all the way back to the moment of the Big Bang 13.8

billion years ago. Gravity is responsible for the formation of galaxies, stars, and planets

and keeping us confined to the Earth. Under extreme conditions, gravity leads to exotic

• Dominant non-perturbative modes:
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The matrix element definition for the more di↵erential
S

C

⇥
`+, Qcut, �, {ri

cs}
⇤

simply has additional �-functions
on the RHS of Eq. (14) which fix the relevant ri

cs variables
from the kinematics of the perturbative radiation that
are needed to determine the ⇤ modes kept by soft drop.
This information determines the kinematics of the CS
subjet which stops soft drop, and the amount of non-
perturbative radiation kept in F̃ . This dependence on
ri
cs makes deriving a joint functional dependence on `+

and Qcut more complicated, so we list these variables
separately when we have the arguments {ri

cs}.
However, the form of the {ri

cs} convolutions simpli-
fies at next to leading logarithmic (NLL) order due to
the associated kinematic approximations that one can
make. At this order the CS subjet can be approximated
by a single emission [13]. All the subsequent emissions
that contribute to the large logarithms are at smaller
angles due to the NLL approximation and angular order-
ing. Furthermore, the CA clustering of the perturbative
modes prior to grooming is una↵ected by the addition
of non-perturbative particles. Thus, at NLL the only
relevant information is the polar and azimuthal angles
{ri

cs} = {✓cs, �cs} of the perturbative CS subjet that
stops soft drop (or equivalently the largest angle CS par-
ticle), which is shown as the pink cross in Fig. 3. Thus
[dri

cs] = d✓csd�cs in Eq. (18). Furthermore, the ✓cs here
is already fixed by the `+ integration variable via [Is this
written correctly? It implies its actually `+ � p+⇤ that
appears in the �-function.]

S
C

h
`+, Qcut, �, {✓cs, �cs}

i ���
NLL

(20)

= �

✓
✓cs

2
�

✓
`+

Qcut

◆ 1
2+�

◆
SNLL

C

h
`+ Q

1
1+�

cut , �
i
,

so that the integration sets

✓cs

2
=

✓cs(`+, Qcut, �)

2
=

✓
`+

Qcut

◆ 1
2+�

. (21)

Eq. (20) further notes that at NLL order the perturbative
function S

C does not depend on the angle �cs, since the
matrix element has azimuthal symmetry. These proper-
ties are easy to see, since at this order SNLL

C is entirely
given by its tree level boundary condition plus RG evo-
lution that by consistency is related to that of the C and
Soft modes, and hence does not know about �cs.

These parameters {✓cs, �cs} determine the boundary
for the ⇤ modes that are kept and contribute to the def-
inition F̃ .

We find that the resulting region of momentum space
for the ⇤ modes at NLL is given by a pair of overlap-
ping cones, as shown in Fig. 3. Each cone is centered on
one of the pair of subjets that stops soft drop, and the
conic sections correspond to the non-perturbative radi-
ation collected by each of these subjets. Since the po-
lar angle of the CS subjet relative to the collinear top
jet axis is ✓cs ⌧ 1, for the axis scaled in the manner

2py/Q
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FIG. 3. The non-perturbative modes kept by the soft drop
factorization formula at NLL, pictured from above looking
down the jet axis. These modes are clustered with either
the collinear subjet located on the jet axis (blue dot) or the
collinear-soft subjet (pink cross), as indicated by the shaded
brown regions. The overlapping circles both have radius ✓cs.

shown, the two circles simply have radius ✓cs. Defining

the operator b⇥
⇤

sd = b⇥
⇤

sd(✓cs, �cs, p̂
µ
⇤) to be 1 when the

non-perturbative momentum selected by p̂µ
⇤ is in this re-

gion, and otherwise zero, the relevant F̃ at NLL order
is

F̃(p+⇤ , {✓cs, �cs}) (22)

=
1

n
tr
D
0
���TY †

nYn̄ �
⇣
p+⇤ �

b⇥
⇤

sd p̂+⇤

⌘
T̄ Y †

n̄Yn

���0
E

.

Here the Yn and Yn̄ are Wilson lines built from the ⇤
mode gauge fields in the color representation specified by
. From a more detailed analysis [19] we find that the
e↵ect of the ⇤ mode on the boundary of the soft drop
region, that in turn determines the location of CS mode,
is subleading at NLL order and hence can be ignored.
One can also ignore the e↵ects of CA clustering for the
perturbative SC at NLL.

At NLL we have denoted in Eq. (22) the fact that
the only dependence on zcut and � occurs through the
dependence that the non-perturbative shape-function F̃

has on ✓cs via the b⇥
⇤

sd operator. Given that the ⇤ mode in
Fig. 2 has the same parametric angle as the CS mode, this
dependence can be removed by using the boost properties
of Eq. (22). Defining new momentum variables kµ

i for
every ⇤ mode of momentum pµ

⇤i using

p+⇤i =
✓cs

2
k+

i , p?⇤i = k?
i , p�⇤i =

2

✓cs
k�

i , (23)

we find that (TODO) TODO:

Change
of
variable
vs.
Fig. 3,
where is
Q?

k+
i ⇠ k�

i ⇠ k?
i ⇠ ⇤QCD . (24)

This transformation e↵ectively boosts to momentum

11

pT values, like parton distributions, the global soft func-
tion, the hard function, as well as the other t or t̄ jet,
and may also be factorized and computed explicitly. For
our predictions below we will compute this N using 2-
Jettiness with XCone or anti-kT jets [28–32] and a loose
jet-veto following Ref. [33]. We note that beyond captur-
ing the Born �J dependence our analysis is insensitive
to these choices.

We next consider what simplifications can be made to
Eq. (55) at NLL order. Following the discussion leading
to Eq. (20) and from Sec. III A, the only relevant vari-
ables for soft drop at this order are {ri

cs} = {✓cs, �cs}

and the decay angle ✓d. Furthermore, ✓d was found to be

absent from S(d)NLL
C at NLL in Sec. III B. Thus we have

S(d)
C

h
`+, Qcut, �, {✓cs, �cs}, ✓d

i ���
NLL

(56)

= �

✓
✓cs

2
�

✓
`+

Qcut

◆ 1
2+�

◆
SqNLL

C

h
`+ Q

1
1+�

cut , �
i
,

where SqNLL
C is the same quark soft-collinear function ap-

pearing in the massless factorization theorem in Eq. (29).
Once again the result is independent of �cs at this order,
so the integration over this variable acts only on the non-
perturbative function. [Note: Same issue in Eq. (56) as
in Eq. (20).]

At NLL order the nonperturbative hadronization func-
tion can be split into contributions from the two cases in
Eq. (42) as

Z
d�cs F (d)

h
p+⇤ , Qcut, �, {✓cs, �cs}, mt/Q, h̃

i
(57)

= ⇥(✓cs � ✓d)F̃
q(p+⇤ , {✓cs, 0})

+ ⇥(✓d � ✓cs)F̃
d(p+⇤ , mt/Q, h̃) .

Here the high-pT component for case i) is given by the
same F̃ q function as for massless jets, defined in Eq. (22).
Therefore, for this component we can make the same
change of variables as in Eq. (23) to arrive at a result
in terms of the same F q

��(k+) function that appeared in
Eq. (27). For the decay component for case ii) we have
a di↵erent function F̃ (d). For it the region of momentum
space for the ⇤ modes is given by a di↵erent set of over-
lapping cones, shown in Fig. 7. [True? is �d related to
trivial variable in dt?] Since no other function depends
on the �d angle shown, we have already integrated over
this angle when obtaining F̃ (d). Note that the shape in
Fig. 7 is exactly analogous to that in Fig. 3, just with
✓d in place of ✓cs. The dependence on mt/Q and h̃ in
F̃ (d)(p+⇤ , mt/Q, h̃) can therefore be scaled out with the
change of variable

p+⇤i =
✓d

2
k+

i , p?⇤i = k?
i , p�⇤i =

2

✓d
k�

i , (58)

which gives kµ
i ⇠ ⇤QCD. This transformation again

leaves the Wilson lines inside F̃ (d) unchanged, and in
the new variables yields circles in Fig. 7 that again each
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FIG. 7. The non-perturbative modes kept by the soft drop
factorization theorem at NLL, pictured from above looking
down the jet axis.

have radius 1. Therefore, after this rescaling, the result is
described by the same nonperturbative function F q

��(k+)
also for this case. Altogether, accounting for the fact that
✓cs is given by Eq. (21) at this order, and ✓d = mth̃/Q,
this implies that the convolution between the perturba-
tive NLL SC function and F is
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The max here implements the choice given by the ⇥ func-
tions in Eq. (42), and thus whether the contribution is
obtained from the high-pT or decay cases respectively.

Putting these ingredients together gives the hadronic
factorization theorem for boosted top quarks with soft
drop at NLL order,
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We emphasize that this result involves exactly the same
F q
��(k+) which appeared for massless quark initiated jets

in Eq. (29). Thus, once again, at this order the nonper-
turbative power corrections are completely universal to
the choice of pT , ⌘J , zcut, �, mt, as well as other kine-
matic variables in the SC function.

Interestingly, when considering nonperturbative cor-
rections for the decay contribution in Eq. (60) the Q/mt

boost factor in the argument of JB cancels against the
mt/Q factor multiplying k+ in Sq

C . This implies that for
the lightly groomed jet there is a reduced Q dependence
of the peak position compared with the ungroomed case.
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Gravity is the weakest of all the known forces that operate in our universe, being about one

trillion trillion trillion times smaller than the electromagnetic force that binds electrons and

nuclei into the atoms. And yet, gravity reigns supreme in determining the overall structure

and evolution of our universe, going all the way back to the moment of the Big Bang 13.8

billion years ago. Gravity is responsible for the formation of galaxies, stars, and planets

and keeping us confined to the Earth. Under extreme conditions, gravity leads to exotic

• Catchment area for NP radiation clustered in with the final soft drop 
stopping pair of subjets:

CS subjet Decay
Subjet

• “Shift”: contribution from the jet mass from NP radiation kept 
in the groomed jet

θCS vs θd
Determines NP radiation captured!
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a) b)

Figure 5. The catchment area of nonperturbative modes kept relevant for a) shift and b) boundary terms
at NLL, pictured from above looking down the jet axis. These modes are clustered with either the collinear
subjet located on the jet axis (blue dot), the collinear-soft subjet (pink cross), or in b) a CS or a soft subjet
labeled i (green cross) as indicated by the shaded brown regions. The overlapping circles both have radius
✓cs in a) and ✓i in b).

stops soft drop lie at smaller angles. We illustrate in Fig. 5a the region of momentum space that
forms the catchment area of the kept NP particles at NLL. The perturbative emissions subsequent
to the stopping one will also lie within this region. Each cone is centered on one of the pair of
subjets that stops soft drop, and the conic sections correspond to the nonperturbative radiation
collected by each of these subjets. The size and the alignment of the region is determined by
{✓cs, �cs}, the polar and azimuthal location of the CS subjet measured relative to the jet axis.
Since the collinear subjet carries majority of the jet energy, we assume that the jet axis is aligned
with that of the collinear subjet. As a result the contribution of the NP particles to the observable
via the shift term would only come from this region in momentum space.

Thus, we can replace the constraint in Eq. (3.10) with a much simpler geometrical constraint
for the shift term:

Q p̂+
sd

(X, X⇤) |X⇤i
NLL
⇠ Q p̂+�� (✓cs, �cs) |X⇤i = Q p+

⇤sd
|X⇤i , (3.12)

The p̂+�� (✓cs, �cs) gives the + momentum of all the particles clustered with the collinear or CS
subjet, and is defined as:

p̂µ��(✓cs, �cs) ⌘
⇥
p̂µ ⇥

��
NP(p̂µ

⇤
, ✓cs, �cs)

⇤
, (3.13)

where the operator ⇥
��
NP is defined to be 1 when the NP subjet it falls in either of the collinear

or CS subjets as shown in Fig. 5a. The operator p̂µ�� acts on a multiparticle state the same way
as p̂µ

sd
does in Eq. (3.7). The condition ✓cs ⌧ 1 in the SDOE region implies that the two circles

simply have radius ✓cs, thus yielding a compact expression for ⇥
��
NP:

⇥
��
NP(pµ

⇤
, ✓cs, �cs) = ⇥

✓
|��|�

⇡

3

◆
⇥

✓
1 �

✓⇤
✓cs

◆
+ ⇥

✓
⇡

3
� |��|

◆
⇥

✓
2 cos(��) �

✓⇤
✓cs

◆

⌘ ⇥
��
NP(✓⇤, ✓cs, ��) (3.14)
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“High-pT”

• “Boundary correction” ONLY affects the “high-pT” case. Due to the much 
larger energy of the “decay” subjet, the NP effect on soft drop is suppressed.

CS subjet
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Soft function
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for “High-pT” case 
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FIG. 9. ✓d, ✓cs and the winning stopping pair angle as a

function of top jet mass.

on ignoring ✓
0
d, we have the same geometry of the catch-

ment area in the high-pT and decay factorizations. Fig. 8
illustrates the catchment area of the nonperturbative
modes for the shift term where the top decay products
stop soft drop. In contrast with Fig. 3 the blue dots
here signify that both the subjets containing top decay
products are much more energetic than the collinear-soft
subjet formed by pure QCD radiation. Hence, as a conse-
quence, the boundary correction originating from modifi-
cation of the soft drop test for softer subjet is not present
if the subjet contains a top decay product.

The projection operator for the shift term in Eq. (20)
for massless jets then generalizes to the following expres-
sion:

⇥
��
NP(pµ

⇤, ✓X , �X) = ⇥

✓
|��|�

⇡

3

◆
⇥

✓
1 �

✓⇤

✓X

◆

+ ⇥

✓
⇡

3
� |��|

◆
⇥

✓
2 cos(��) �

✓⇤

✓X

◆
(55)

where X = d when ✓d > ✓cs, and vice versa. The nonper-
turbative factorization for boosted tops will then involve
rescaling the nonperturbative momenta via either of the
two angles. We thus find that the shift correction at
leading power between the jets initiated by light quarks
and gluons ⌦��

1 is the same in the case of boosted tops,
once the perturbative dependence has been factored out
by rescaling with ✓X = ✓d or ✓cs in Eq. (22). The uni-
versality between the massive and light quark jets allows
us to use Eq. (54) at NLL even in the case of multiple
emissions and CA clustering.

D. Comparing High-pT and Decay Components

We now make use of the results derived above to make
a concrete numerical comparison between ✓cs and ✓d.
From Eq. (28) we note that resummed opening angle ✓cs

is simply twice the C1 nonperturbative Wilson coe�cient
with mJ expressed in terms of ŝt in the peak region:

✓cs = 2C1

�
m

2
J = mtŝt, Q, zcut, �

�
. (56)

FIG. 10. The full NLL hadronic top jet mass cross section

along with the decay and high-pT components for a represen-

tative set of top mass mMSR
t in MSR scheme and hadronic

parameters.

We give the result for C1(m2
J , Q, zcut, �) in App. A. On

the other hand, the average ✓d given by

✓d = 2

Z
dh̃ P

⇣
h̃,

mt

Q

⌘
arctan

⇣
mt

Q
h̃

⌘
, (57)

where unlike ✓cs in Eq. (56) ✓d involves no such resum-
mation at low energies probed by the jet mass measure-
ment in the peak region. The average opening angle of
the stopping pair at a given jet mass is then has then a
simple expression

✓stop = 2

Z
dh̃ P

⇣
h̃,

mt

Q

⌘
(58)

⇥ max
n

arctan
⇣

mt

Q
h̃

⌘
, C1

�
M

2
J � m

2
t , Q, zcut, �

�o
.

The winning scenario from Eq. (58) determines which of
the two factorizations: decay or high-pT applies. Fig. 9
shows the opening angles of the final soft drop stop-
ping pair in the two factorizations, ✓d and ✓cs, and the
winning angle ✓stop as a function of the jet mass for
zcut = 0.01 and � = 2 grooming parameters at pT � 750
GeV and central rapidity. This results in an average
jet energy EJ ⇠ 1200 GeV. The dashed vertical line is
at MJ = mt = 173.1 GeV, This choice of kinematic
point and grooming parameters satisfies the light groom-
ing constraints in Eq. (7).

We notice that the decay products predominantly
stop the soft drop groomer in the peak region, whereas
the high-pT component becomes significant only further
down the tail of the spectrum. This can be also seen
from the individual contributions of the two factoriza-
tion theorems to the net jet mass cross section, as shown
in Fig. 10. The hadronic factorization theorem is pre-
sented below in Sec. III E, and here we show the result
for a representative top mass m

MSR
t = 173.1 GeV in the

MSR scheme, and hadronic parameters (⌦��
1 , x2) = (1.5

GeV, 0.5). x2 is related to the second moment of the
nonperturbative shape function, and is defined below in
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as a result of which the projection ⇥
��
NP now solely de-

pends on k
i variables:

⇥
��
NP

⇣
k?
k� , 2, ��

⌘
= ⇥

✓
|��|�

⇡

3

◆
⇥

✓
1 �

k?
k�

◆
(24)

+ ⇥

✓
⇡

3
� |��|

◆
⇥

✓
2 cos(��) �

k?
k�

◆
.

Thus the contribution of an NP particle with momentum
q

µ to the jet mass is given by

Q q
+ =

✓cs

2
Q k

+
, for ⇥

��
NP

⇣
k?
k� , 2, ��

⌘
= 1 . (25)

The same argument can be repeated for the operator

⇥
�
NP in Eq. (21) where the rescaling in Eq. (22) is done

with ✓i. In this case Eq. (19) now becomes

⇥
pi+qi
sd = ⇥

pi

sd +
2

✓i
�

✓
zpi � zcut

⇣
✓i

R0

⌘�
◆

(26)

⇥
1

Q

�
k
�
i (1 + �) � � ki? cos(��)

�
,

The correction has a positive sign when an NP particle is

clustered with the subjet with ⇥
�
NP(k�

i /k?, 2, ��) = 1.
We get a negative correction when the NP particle is lost

and ⇥
�
NP(k�

i /k?, 2, ��) = 0.
We note that the shift correction results from an ex-

pansion in the + components: q
+
/p

+
cs ⌧ 1 in the SDOE

region, whereas the boundary correction from expansion
in the � components: q

�
i /p

�
i ⌧ 1. On expressing them

in terms of the boosted momenta k
µ the perturbative in-

formation is factored out as ✓cs/2 and 2/✓i for the two ef-
fects. Since the perturbative cross section has azimuthal
symmetry, the dependence on �� in Eqs. (25) and (26)
can be eliminated by shifting �k ! �k + �cs,i.

We show in Ref. [17] that as a result of these two ef-
fects, the power corrections to the partonic cross section
have the following form

d�
had


dm
2
J

=
d�̂

dm
2
J

� Q ⌦��
1

d

dm
2
J

✓
C1(m

2
J , Q, zcut, �)

d�̂

dm
2
J

◆

+
⌥

1 (�)

Q
C2(m

2
J , Q; zcut, �)

d�̂

dm
2
J

, (27)

where ⌦��
1 and ⌥

1 (�) are the hadronic parameters re-
lated to the shift and boundary power corrections re-
spectively and depend on the partonic channel . The
superscript ‘��’ for the shift correction is meant to dis-
tinguish it from the power correction in the ungroomed
event shapes and that it results from a specific geometry
of the catchment area shown in Fig. 3. The Wilson co-
e�cients C1(m2

J , Q, zcut, �) and C2(m2
J , Q, zcut, �) have

the interpretation of resummed average of the factors of
angles in Eqs. (25) and (26):

C1(m
2
J , Q, zcut, �) ⇠

⌧
✓cs

2

�
, (28)

C2(m
2
J , Q; zcut, �) ⇠

⌧
2

✓i
�

✓
zpi � zcut

⇣
✓i

R0

⌘�
◆�

. (29)

We now state the result for the factorization formula
for the hadronic groomed jet mass cross section:

d�
had


dm
2
J

=
X

=q,g

D(�J , zcut, �, µ)

Z 1

0
d`

+
J

�
m

2
J � Q `

+
, µ

�

⇥

Z 1

0
dk S


c

h�
`
+
� C1(m

2
J , Q) k

�
Q

1
1+�

cut , �, µ

i
(30)

⇥

✓
1 � Q k

dC1(m2
J , Q)

dm
2
J

+
⌥

1 (�)

Q
C2(m

2
J , Q)

◆
F


��(k) ,

where we have suppressed the zcut and � arguments in
the Wilson coe�cients for the sake of brevity. The nor-
malized shape function F


��(k) satisfies:

Z 1

0
dk k F


��(k) = ⌦��

1 ,

Z 1

0
dk F


��(k) = 1 . (31)

We see that a key feature of nonperturbative correc-
tions in Eq. (30) is the universality properties of hadronic
parameters. First we note that the power corrections
are independent of the energy Q and the jet mass mJ ,
however, the Wilson coe�cients do have a nontrivial de-
pendence on these parameters. Following Eq. (25) we
note that the catchment area for the shift correction in
the SDOE region is solely set by the perturbative sub-
jets, all of the zcut and � dependence is accounted by
C1(m2

J , Q, zcut, �), and thus the parameter ⌦��
1 is both

zcut and � independent. The boundary power correction
⌥

1 (�) is, however, � dependent as can be gleaned from
Eqs. (26) and (29). Thus we conclude that the power cor-
rections to groomed jet mass cannot be simply described
by a simple shape function convolution as has been the
case for ungroomed event shape. We further remark that
the function F


�� from the field theory derivation does

not formally contain corrections from underlying event
or multiple-parton interactions, but it is known that it
may serve as a useful model for these e↵ects [21].

In the next section we will show that the same univer-
sal leading power correction ⌦��

1 shows up for the leading
non-perturbative corrections for a jet generated by a mas-
sive top quark at NLL, even when accounting for the top
decay products.

III. HADRON LEVEL FACTORIZATION FOR
TOP JETS

Next we derive a hadron level factorization formula
that predicts the top jet mass MJ spectrum for a boosted
top quark Q � mt with light soft drop grooming, as in
Fig. 1. We focus entirely on the peak region since this is
the most important region for a top mass measurement.
The peak region is given by

M
2
J � m

2
t ⇠ mt� , (32)

with � determined by the top width �t together with
broadening e↵ects from non-perturbative radiation. We
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Thus the contribution of an NP particle with momentum
q

µ to the jet mass is given by

Q q
+ =

✓cs

2
Q k

+
, for ⇥
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⌘
= 1 . (25)

The same argument can be repeated for the operator

⇥
�
NP in Eq. (21) where the rescaling in Eq. (22) is done

with ✓i. In this case Eq. (19) now becomes
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pi+qi
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The correction has a positive sign when an NP particle is

clustered with the subjet with ⇥
�
NP(k�

i /k?, 2, ��) = 1.
We get a negative correction when the NP particle is lost

and ⇥
�
NP(k�

i /k?, 2, ��) = 0.
We note that the shift correction results from an ex-

pansion in the + components: q
+
/p

+
cs ⌧ 1 in the SDOE

region, whereas the boundary correction from expansion
in the � components: q

�
i /p

�
i ⌧ 1. On expressing them

in terms of the boosted momenta k
µ the perturbative in-

formation is factored out as ✓cs/2 and 2/✓i for the two ef-
fects. Since the perturbative cross section has azimuthal
symmetry, the dependence on �� in Eqs. (25) and (26)
can be eliminated by shifting �k ! �k + �cs,i.

We show in Ref. [17] that as a result of these two ef-
fects, the power corrections to the partonic cross section
have the following form

d�
had


dm
2
J

=
d�̂

dm
2
J

� Q ⌦��
1

d

dm
2
J

✓
C1(m

2
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2
J

◆

+
⌥

1 (�)

Q
C2(m

2
J , Q; zcut, �)

d�̂
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2
J

, (27)

where ⌦��
1 and ⌥

1 (�) are the hadronic parameters re-
lated to the shift and boundary power corrections re-
spectively and depend on the partonic channel . The
superscript ‘��’ for the shift correction is meant to dis-
tinguish it from the power correction in the ungroomed
event shapes and that it results from a specific geometry
of the catchment area shown in Fig. 3. The Wilson co-
e�cients C1(m2

J , Q, zcut, �) and C2(m2
J , Q, zcut, �) have

the interpretation of resummed average of the factors of
angles in Eqs. (25) and (26):

C1(m
2
J , Q, zcut, �) ⇠

⌧
✓cs

2

�
, (28)
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2
J , Q; zcut, �) ⇠

⌧
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⇣
✓i

R0
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. (29)

We now state the result for the factorization formula
for the hadronic groomed jet mass cross section:

d�
had


dm
2
J

=
X

=q,g

D(�J , zcut, �, µ)

Z 1

0
d`

+
J

�
m

2
J � Q `

+
, µ

�

⇥

Z 1

0
dk S


c

h�
`
+
� C1(m

2
J , Q) k

�
Q

1
1+�

cut , �, µ

i
(30)

⇥

✓
1 � Q k

dC1(m2
J , Q)

dm
2
J

+
⌥

1 (�)

Q
C2(m

2
J , Q)

◆
F


��(k) ,

where we have suppressed the zcut and � arguments in
the Wilson coe�cients for the sake of brevity. The nor-
malized shape function F


��(k) satisfies:

Z 1

0
dk k F


��(k) = ⌦��

1 ,

Z 1

0
dk F


��(k) = 1 . (31)

We see that a key feature of nonperturbative correc-
tions in Eq. (30) is the universality properties of hadronic
parameters. First we note that the power corrections
are independent of the energy Q and the jet mass mJ ,
however, the Wilson coe�cients do have a nontrivial de-
pendence on these parameters. Following Eq. (25) we
note that the catchment area for the shift correction in
the SDOE region is solely set by the perturbative sub-
jets, all of the zcut and � dependence is accounted by
C1(m2

J , Q, zcut, �), and thus the parameter ⌦��
1 is both

zcut and � independent. The boundary power correction
⌥

1 (�) is, however, � dependent as can be gleaned from
Eqs. (26) and (29). Thus we conclude that the power cor-
rections to groomed jet mass cannot be simply described
by a simple shape function convolution as has been the
case for ungroomed event shape. We further remark that
the function F


�� from the field theory derivation does

not formally contain corrections from underlying event
or multiple-parton interactions, but it is known that it
may serve as a useful model for these e↵ects [21].

In the next section we will show that the same univer-
sal leading power correction ⌦��

1 shows up for the leading
non-perturbative corrections for a jet generated by a mas-
sive top quark at NLL, even when accounting for the top
decay products.

III. HADRON LEVEL FACTORIZATION FOR
TOP JETS

Next we derive a hadron level factorization formula
that predicts the top jet mass MJ spectrum for a boosted
top quark Q � mt with light soft drop grooming, as in
Fig. 1. We focus entirely on the peak region since this is
the most important region for a top mass measurement.
The peak region is given by

M
2
J � m

2
t ⇠ mt� , (32)

with � determined by the top width �t together with
broadening e↵ects from non-perturbative radiation. We

• The top jet mass spectrum in the peak region is dominated by the “decay” 
contribution. Thus, boundary term effect can be neglected! 12

FIG. 11. The nonperturbative Wilson coe�cient C2 for

boundary correction, rescaled by the center of mass energy

Q. The actual correction to the jet mass cross section is sig-

nificantly smaller on account of reduced contribution from

high-pT case.

Eq. (61). The cross section has negligible correction from
the boundary term, the reason for which we now clarify.

The boundary correction is relevant only for the high-
pT component of the jet mass cross section. For the decay
cross section we simply set it to zero. Following Eq. (27)
the normalization correction to the cross section is given
by ⌥q

1(�)C2(MJ)/Q. In Fig. 11 we show C2(MJ)/Q as a
function of jet mass. For ⌥q

1(�) ⇠ 1 GeV, we see this cor-
rection to the high-pT cross section around the peak is ⇠
5%. However, taking into account the reduced contribu-
tion of high-pT component in the peak region in Fig. 10
the overall correction is less than 1%, and can be safely
ignored for our analysis. Hence, the only relevant e↵ect
from hadronization to the top jet mass is the shift cor-
rection. Interestingly, this implies that all the leading
nonperturbative corrections to the top jet mass are de-
scribed by ⌦��

1 and are independent of both zcut and �.
as well as the kinematic variables.

E. Top Factorization Formula with Soft Drop

We now present the factorization formula for boosted
top quarks with soft drop, building on results obtained in
Secs. III B and IIID. The factorization theorem gener-
alizing the hadron level factorization for light quark and
gluon jets in Eq. (30) is given by

d�
NLL(�J)

dMJ
= N(�J , zcut, �, µ)

Z
dh̃ P

⇣
h̃,

mt

Q

⌘
(59)

⇥

Z
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+
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Q`
+

mt
, �m, �t, µ

⌘Z
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+
F

q
��(k

+)

⇥ S
q
C

"✓
`
+
�max

⇢
C1(mtŝt),

mth̃

Q

�
k

+

◆
Q

1
1+�

cut , �, µ

#

⇥

✓
1 � ⇥

⇣
C1(mtŝt) �

mth̃

Q

⌘
Q

mt
k

+ dC1(mtŝt)

dŝt

◆
,

where for the sake of brevity we have suppressed the other
arguments of C1. The nonperturbative factorization is
carried out by rescaling the NP momentum by ✓d/2 or
✓cs/2 in Eq. (22) as shown in the argument of SC . We
note that the normalization correction in the last line
due to the derivative of C1 appears only for the high-pT

case. Unlike Eq. (41) we avoid specifying the expansion
parameters involved due to sheer complexity. We instead
stress that the factorization formula is valid when the
constraints for the light grooming region are satisfied.

We emphasize that this result involves exactly the
same leading power correction ⌦��

1 which appeared for
massless quark initiated jets in Eq. (9), which is included
via the shape function F

q
��(k) in Eq. (59). Thus, once

again, at this order the nonperturbative power correc-
tions are completely universal to the choice of pT , ⌘J ,
zcut, �, mt, as well as other kinematic variables in the
SC function. Interestingly, when considering nonpertur-
bative corrections for the decay contribution in Eq. (59)
the Q/mt boost factor in the argument of JB cancels
against the mt/Q factor multiplying k

+ in S
q
C . This im-

plies that for the lightly groomed jet there is a reduced
Q dependence of the peak position compared with the
ungroomed case. This is also supported by the Monte
Carlo studies discussed below.

By charge conjugation Eq. (59) applies whether the
jet being considered was initiated by the top or antitop
quark. Here only MJ associated to either the hadron-
ically decaying t or t̄ is measured, while the other can
decay hadronically or semi-leptonically. In fully hadronic
decays both jets can be sampled independently. We have
explicitly confirmed that our factorization formulae in
Eq. (59) satisfies renormalization group consistency be-
tween the anomalous dimensions of the various functions
at NLL order.

IV. RESULTS

Eq. (59) determines the MJ spectrum as a Breit-
Wigner distribution smeared by non-perturbative correc-
tions and dressed by perturbative corrections including
resummed large Sudakov double logarithms from the hi-
erarchy pT � mt � �t > ⇤QCD. As a default we take
pT � 750 GeV, |⌘J | < 2.5, zcut = 0.01, � = 2, jets with
radius R = 1, p

veto
T = 200GeV, and plot spectra normal-

ized over the displayed range.
In Fig. 12 we test the factorization theorem predictions

using default Pythia 8.235 including hadronization and
MPI e↵ects, and the soft drop plugin in FastJet [13, 24].
In Fig. 12a we show the dependence on zcut, and observe
that for zcut & 0.005 the light grooming is e↵ective, as
predicted by Eq. (7a). Increasing zcut further does not
groom soft radiation inside the radius determined by the
top decay products, leaving the peak position quite sta-
ble even beyond the limit in Eq. (7a), unlike for massless
jets. In Fig. 12b we demonstrate that the light groomed
spectrum becomes independent of the jet radius R for
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Eq. (61). The cross section has negligible correction from
the boundary term, the reason for which we now clarify.

The boundary correction is relevant only for the high-
pT component of the jet mass cross section. For the decay
cross section we simply set it to zero. Following Eq. (27)
the normalization correction to the cross section is given
by ⌥q

1(�)C2(MJ)/Q. In Fig. 11 we show C2(MJ)/Q as a
function of jet mass. For ⌥q

1(�) ⇠ 1 GeV, we see this cor-
rection to the high-pT cross section around the peak is ⇠
5%. However, taking into account the reduced contribu-
tion of high-pT component in the peak region in Fig. 10
the overall correction is less than 1%, and can be safely
ignored for our analysis. Hence, the only relevant e↵ect
from hadronization to the top jet mass is the shift cor-
rection. Interestingly, this implies that all the leading
nonperturbative corrections to the top jet mass are de-
scribed by ⌦��

1 and are independent of both zcut and �.
as well as the kinematic variables.
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the Q/mt boost factor in the argument of JB cancels
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ungroomed case. This is also supported by the Monte
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By charge conjugation Eq. (59) applies whether the
jet being considered was initiated by the top or antitop
quark. Here only MJ associated to either the hadron-
ically decaying t or t̄ is measured, while the other can
decay hadronically or semi-leptonically. In fully hadronic
decays both jets can be sampled independently. We have
explicitly confirmed that our factorization formulae in
Eq. (59) satisfies renormalization group consistency be-
tween the anomalous dimensions of the various functions
at NLL order.

IV. RESULTS

Eq. (59) determines the MJ spectrum as a Breit-
Wigner distribution smeared by non-perturbative correc-
tions and dressed by perturbative corrections including
resummed large Sudakov double logarithms from the hi-
erarchy pT � mt � �t > ⇤QCD. As a default we take
pT � 750 GeV, |⌘J | < 2.5, zcut = 0.01, � = 2, jets with
radius R = 1, p

veto
T = 200GeV, and plot spectra normal-

ized over the displayed range.
In Fig. 12 we test the factorization theorem predictions

using default Pythia 8.235 including hadronization and
MPI e↵ects, and the soft drop plugin in FastJet [13, 24].
In Fig. 12a we show the dependence on zcut, and observe
that for zcut & 0.005 the light grooming is e↵ective, as
predicted by Eq. (7a). Increasing zcut further does not
groom soft radiation inside the radius determined by the
top decay products, leaving the peak position quite sta-
ble even beyond the limit in Eq. (7a), unlike for massless
jets. In Fig. 12b we demonstrate that the light groomed
spectrum becomes independent of the jet radius R for
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Eq. (61). The cross section has negligible correction from
the boundary term, the reason for which we now clarify.

The boundary correction is relevant only for the high-
pT component of the jet mass cross section. For the decay
cross section we simply set it to zero. Following Eq. (27)
the normalization correction to the cross section is given
by ⌥q

1(�)C2(MJ)/Q. In Fig. 11 we show C2(MJ)/Q as a
function of jet mass. For ⌥q

1(�) ⇠ 1 GeV, we see this cor-
rection to the high-pT cross section around the peak is ⇠
5%. However, taking into account the reduced contribu-
tion of high-pT component in the peak region in Fig. 10
the overall correction is less than 1%, and can be safely
ignored for our analysis. Hence, the only relevant e↵ect
from hadronization to the top jet mass is the shift cor-
rection. Interestingly, this implies that all the leading
nonperturbative corrections to the top jet mass are de-
scribed by ⌦��

1 and are independent of both zcut and �.
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top quarks with soft drop, building on results obtained in
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where for the sake of brevity we have suppressed the other
arguments of C1. The nonperturbative factorization is
carried out by rescaling the NP momentum by ✓d/2 or
✓cs/2 in Eq. (22) as shown in the argument of SC . We
note that the normalization correction in the last line
due to the derivative of C1 appears only for the high-pT

case. Unlike Eq. (41) we avoid specifying the expansion
parameters involved due to sheer complexity. We instead
stress that the factorization formula is valid when the
constraints for the light grooming region are satisfied.

We emphasize that this result involves exactly the
same leading power correction ⌦��

1 which appeared for
massless quark initiated jets in Eq. (9), which is included
via the shape function F
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��(k) in Eq. (59). Thus, once

again, at this order the nonperturbative power correc-
tions are completely universal to the choice of pT , ⌘J ,
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SC function. Interestingly, when considering nonpertur-
bative corrections for the decay contribution in Eq. (59)
the Q/mt boost factor in the argument of JB cancels
against the mt/Q factor multiplying k
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plies that for the lightly groomed jet there is a reduced
Q dependence of the peak position compared with the
ungroomed case. This is also supported by the Monte
Carlo studies discussed below.

By charge conjugation Eq. (59) applies whether the
jet being considered was initiated by the top or antitop
quark. Here only MJ associated to either the hadron-
ically decaying t or t̄ is measured, while the other can
decay hadronically or semi-leptonically. In fully hadronic
decays both jets can be sampled independently. We have
explicitly confirmed that our factorization formulae in
Eq. (59) satisfies renormalization group consistency be-
tween the anomalous dimensions of the various functions
at NLL order.

IV. RESULTS

Eq. (59) determines the MJ spectrum as a Breit-
Wigner distribution smeared by non-perturbative correc-
tions and dressed by perturbative corrections including
resummed large Sudakov double logarithms from the hi-
erarchy pT � mt � �t > ⇤QCD. As a default we take
pT � 750 GeV, |⌘J | < 2.5, zcut = 0.01, � = 2, jets with
radius R = 1, p

veto
T = 200GeV, and plot spectra normal-

ized over the displayed range.
In Fig. 12 we test the factorization theorem predictions

using default Pythia 8.235 including hadronization and
MPI e↵ects, and the soft drop plugin in FastJet [13, 24].
In Fig. 12a we show the dependence on zcut, and observe
that for zcut & 0.005 the light grooming is e↵ective, as
predicted by Eq. (7a). Increasing zcut further does not
groom soft radiation inside the radius determined by the
top decay products, leaving the peak position quite sta-
ble even beyond the limit in Eq. (7a), unlike for massless
jets. In Fig. 12b we demonstrate that the light groomed
spectrum becomes independent of the jet radius R for
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Eq. (61). The cross section has negligible correction from
the boundary term, the reason for which we now clarify.

The boundary correction is relevant only for the high-
pT component of the jet mass cross section. For the decay
cross section we simply set it to zero. Following Eq. (27)
the normalization correction to the cross section is given
by ⌥q

1(�)C2(MJ)/Q. In Fig. 11 we show C2(MJ)/Q as a
function of jet mass. For ⌥q

1(�) ⇠ 1 GeV, we see this cor-
rection to the high-pT cross section around the peak is ⇠
5%. However, taking into account the reduced contribu-
tion of high-pT component in the peak region in Fig. 10
the overall correction is less than 1%, and can be safely
ignored for our analysis. Hence, the only relevant e↵ect
from hadronization to the top jet mass is the shift cor-
rection. Interestingly, this implies that all the leading
nonperturbative corrections to the top jet mass are de-
scribed by ⌦��

1 and are independent of both zcut and �.
as well as the kinematic variables.

E. Top Factorization Formula with Soft Drop

We now present the factorization formula for boosted
top quarks with soft drop, building on results obtained in
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where for the sake of brevity we have suppressed the other
arguments of C1. The nonperturbative factorization is
carried out by rescaling the NP momentum by ✓d/2 or
✓cs/2 in Eq. (22) as shown in the argument of SC . We
note that the normalization correction in the last line
due to the derivative of C1 appears only for the high-pT

case. Unlike Eq. (41) we avoid specifying the expansion
parameters involved due to sheer complexity. We instead
stress that the factorization formula is valid when the
constraints for the light grooming region are satisfied.

We emphasize that this result involves exactly the
same leading power correction ⌦��

1 which appeared for
massless quark initiated jets in Eq. (9), which is included
via the shape function F
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��(k) in Eq. (59). Thus, once

again, at this order the nonperturbative power correc-
tions are completely universal to the choice of pT , ⌘J ,
zcut, �, mt, as well as other kinematic variables in the
SC function. Interestingly, when considering nonpertur-
bative corrections for the decay contribution in Eq. (59)
the Q/mt boost factor in the argument of JB cancels
against the mt/Q factor multiplying k
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C . This im-

plies that for the lightly groomed jet there is a reduced
Q dependence of the peak position compared with the
ungroomed case. This is also supported by the Monte
Carlo studies discussed below.

By charge conjugation Eq. (59) applies whether the
jet being considered was initiated by the top or antitop
quark. Here only MJ associated to either the hadron-
ically decaying t or t̄ is measured, while the other can
decay hadronically or semi-leptonically. In fully hadronic
decays both jets can be sampled independently. We have
explicitly confirmed that our factorization formulae in
Eq. (59) satisfies renormalization group consistency be-
tween the anomalous dimensions of the various functions
at NLL order.

IV. RESULTS

Eq. (59) determines the MJ spectrum as a Breit-
Wigner distribution smeared by non-perturbative correc-
tions and dressed by perturbative corrections including
resummed large Sudakov double logarithms from the hi-
erarchy pT � mt � �t > ⇤QCD. As a default we take
pT � 750 GeV, |⌘J | < 2.5, zcut = 0.01, � = 2, jets with
radius R = 1, p

veto
T = 200GeV, and plot spectra normal-

ized over the displayed range.
In Fig. 12 we test the factorization theorem predictions

using default Pythia 8.235 including hadronization and
MPI e↵ects, and the soft drop plugin in FastJet [13, 24].
In Fig. 12a we show the dependence on zcut, and observe
that for zcut & 0.005 the light grooming is e↵ective, as
predicted by Eq. (7a). Increasing zcut further does not
groom soft radiation inside the radius determined by the
top decay products, leaving the peak position quite sta-
ble even beyond the limit in Eq. (7a), unlike for massless
jets. In Fig. 12b we demonstrate that the light groomed
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Eq. (61). The cross section has negligible correction from
the boundary term, the reason for which we now clarify.

The boundary correction is relevant only for the high-
pT component of the jet mass cross section. For the decay
cross section we simply set it to zero. Following Eq. (27)
the normalization correction to the cross section is given
by ⌥q

1(�)C2(MJ)/Q. In Fig. 11 we show C2(MJ)/Q as a
function of jet mass. For ⌥q

1(�) ⇠ 1 GeV, we see this cor-
rection to the high-pT cross section around the peak is ⇠
5%. However, taking into account the reduced contribu-
tion of high-pT component in the peak region in Fig. 10
the overall correction is less than 1%, and can be safely
ignored for our analysis. Hence, the only relevant e↵ect
from hadronization to the top jet mass is the shift cor-
rection. Interestingly, this implies that all the leading
nonperturbative corrections to the top jet mass are de-
scribed by ⌦��

1 and are independent of both zcut and �.
as well as the kinematic variables.
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top quarks with soft drop, building on results obtained in
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where for the sake of brevity we have suppressed the other
arguments of C1. The nonperturbative factorization is
carried out by rescaling the NP momentum by ✓d/2 or
✓cs/2 in Eq. (22) as shown in the argument of SC . We
note that the normalization correction in the last line
due to the derivative of C1 appears only for the high-pT

case. Unlike Eq. (41) we avoid specifying the expansion
parameters involved due to sheer complexity. We instead
stress that the factorization formula is valid when the
constraints for the light grooming region are satisfied.

We emphasize that this result involves exactly the
same leading power correction ⌦��

1 which appeared for
massless quark initiated jets in Eq. (9), which is included
via the shape function F
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��(k) in Eq. (59). Thus, once

again, at this order the nonperturbative power correc-
tions are completely universal to the choice of pT , ⌘J ,
zcut, �, mt, as well as other kinematic variables in the
SC function. Interestingly, when considering nonpertur-
bative corrections for the decay contribution in Eq. (59)
the Q/mt boost factor in the argument of JB cancels
against the mt/Q factor multiplying k

+ in S
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C . This im-

plies that for the lightly groomed jet there is a reduced
Q dependence of the peak position compared with the
ungroomed case. This is also supported by the Monte
Carlo studies discussed below.

By charge conjugation Eq. (59) applies whether the
jet being considered was initiated by the top or antitop
quark. Here only MJ associated to either the hadron-
ically decaying t or t̄ is measured, while the other can
decay hadronically or semi-leptonically. In fully hadronic
decays both jets can be sampled independently. We have
explicitly confirmed that our factorization formulae in
Eq. (59) satisfies renormalization group consistency be-
tween the anomalous dimensions of the various functions
at NLL order.

IV. RESULTS

Eq. (59) determines the MJ spectrum as a Breit-
Wigner distribution smeared by non-perturbative correc-
tions and dressed by perturbative corrections including
resummed large Sudakov double logarithms from the hi-
erarchy pT � mt � �t > ⇤QCD. As a default we take
pT � 750 GeV, |⌘J | < 2.5, zcut = 0.01, � = 2, jets with
radius R = 1, p

veto
T = 200GeV, and plot spectra normal-

ized over the displayed range.
In Fig. 12 we test the factorization theorem predictions

using default Pythia 8.235 including hadronization and
MPI e↵ects, and the soft drop plugin in FastJet [13, 24].
In Fig. 12a we show the dependence on zcut, and observe
that for zcut & 0.005 the light grooming is e↵ective, as
predicted by Eq. (7a). Increasing zcut further does not
groom soft radiation inside the radius determined by the
top decay products, leaving the peak position quite sta-
ble even beyond the limit in Eq. (7a), unlike for massless
jets. In Fig. 12b we demonstrate that the light groomed
spectrum becomes independent of the jet radius R for
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b)

c)

d)

FIG. 8. Dependence in Pythia 8 of the MJ spectrum on the

a) soft drop parameter zcut, b) jet radius R, and c) anti-kT
jet veto pvetoT . In d) we compare results for e+e� ! tt̄ and

pp ! tt̄ with and without the light soft drop and with MPI

interactions on and o↵.

the two top jets. We see in Fig. 8d that the spectra dif-
fer without soft drop (dotted green and dot-dashed blue

curves), but agree quite well with soft drop (solid green
and dashed blue curves). Also shown is the impact of
MPI on the pp spectra. Without soft drop adding MPI
shifts the peak of the spectrum by 4.5 GeV (dotted red
versus dotted green), whereas with light soft drop the
shift is only 1.1 GeV (solid red versus green). Formally
e↵ects from UE are outside the framework of factoriza-
tion. However, in Ref. [25] it was shown that MPI in
Pythia for the ungroomed jet mass spectrum can be well
modeled by simply changing FC . This occurs because the
dominant impact of MPI is to populate the jet with un-
correlated soft radiation of somewhat higher energy than
that associated to the soft hadronization. We adopt this
approach to account for hadronization plus UE, replacing

⌦(�)
n ! ⌦(�)MPI

n . (66)

Estimating this treatment of UE is uncertain at the
. 30% level, this induces a residual uncertainty of
�mt . 0.3 GeV for our soft drop top mass extraction,
compared to �mt . 1.4 GeV without soft drop. With
additional dedicated studies this uncertainty may be fur-
ther reduced.

In Fig. 9 we show a comparison between Pythia8 re-
sults and the “decay” and “high-pT ” factorization for-
mulae in Eqs. (??) and (55) with all ingredients taken
at tree-level with next-to-leading-logarithmic (NLL) or-
der resummation and ↵s(mZ) = 0.118. In the factor-
ization theorems we adopt the MSR short distance top
mass scheme mMSR

t (R) [36, 37] and include its leading
logarithmic evolution from a reference scale R = 1 GeV
to the scale µ in JB . When not otherwise indicated we
therefore use the shorthand mMSR

t ⌘ mMSR
t (R = 1GeV).

We fix mMC
t = 173.1 GeV in Pythia8, and use the de-

fault Monash 2013 tune [38] of the Lund string fragmen-
tation model for its hadronization corrections. For the
factorization theorem results the parameters include the
MSR mass mMSR

t ⌘ mMSR
t (R = 1 GeV), and two non-

perturbative hadronization parameters:

⌦(�)
1 and x(�)

2 ⌘
⌦(�)

2

(⌦(�)
1 )2

� 1 . (67)

We do a fit of these parameters to the Pythia8 re-
sults simultaneously including pT � 750 GeV and pT �

1000 GeV bins. For the fit range we take MJ 2

[173, 180] GeV, over which the curves are also normal-
ized. The fits are carried out independently for Pythia8
with only hadronization (with the results shown in
Figs. 9a,b), and for Pythia8 with both hadronization

and MPI where we expect modified parameters ⌦(�)
1 !

⌦(�)MPI
1 and x(�)

2 ! x(�)MPI
2 (with the results shown in

Figs. 9c,d). The orange bands in Fig. 9 show the per-
turbative NLL uncertainty on the “decay” result, from
varying scales in the factorization theorem. The values
of pT considered are close to the upper limit of Eq. (61),
and we find that both factorization theorems reproduce
the Pythia8 results accurately in the fit range. The cross

• Light grooming region effective in removing contamination

• For more aggressive grooming, SD stops on decay subjects. Thus, peak 
position remains stable since decay products are always kept (unlike massless 
case). 
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(mt/Q)h(�d,mt/Q). The mt/Q prefactor pulls out the
dominant dependence on the boost. It cancels out the
Q/mt boost factor in the argument of JB in Eq. (4),
which largely eliminates the Q dependence of the peak
position observed in the ungroomed case. If we take the

n-th moment then ⌦(1)e↵
n =

R
dk0 k0nF̃C(k0, 1,mt/Q) =

[
R
d�d dt(�d)hn(�d,mt/Q)]⌦(1)

n ⌘ hhn
i⌦(1)

n , so the hhn
i

causes the e↵ective moments to only have residual mt/Q
dependence. We implement Eq. (6) by computing hhi

and hh2
i exactly and using the resulting ⌦(1)e↵

1 and ⌦(1)e↵
2

to specify the function F̃C .
The result in Eq. (5) is a direct generalization of the

results in Refs. [9, 11, 14, 17, 23], whereas Eq. (4) is more
involved. To derive it we first show that
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ŝ0,�d,

mt

Q

⌘

⇥

Z
d` dk JB

⇣
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where this JB(ŝ, �m,µ) is the stable top jet-function and
Dt(ŝ0,�d,mt/Q) encodes the angular cross-section of the
top-decay products. The calculation of Dt requires a geo-
metric sum of decay product bubbles, where one hadron-
ically decaying bubble is cut. In the non-cut bubbles we
just keep �t yielding the resonant contribution
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For the calculation of dt(�d,mt/Q) we can set ŝ0 = 0,
leading to the factorized structure in Eq. (8). Thus we
can do the integral over ŝ0 in Eq. (7) which gives back
the unstable jet function JB(ŝ, �m,�t, µ) [9]. Changing
variable to k0 = h(�d)k then turns Eq. (7) into Eq. (4)
with Eq. (6) for the function F̃C .

Eqs. (4) and (5) determine theMJ spectrum as a Breit-
Wigner distribution smeared by non-perturbative correc-
tions and dressed by perturbative corrections including
resummed large Sudakov double logarithms from the hi-
erarchy pT � mt � �t > ⇤QCD. As a default we take
pT � 750GeV, |⌘| < 2.5, zcut = .01, � = 2, jets with
radius R = 1, pvetoT = 200GeV, and plot spectra nor-
malized over the displayed range. In Fig. 2 we test the
factorization theorem predictions using default Pythia
8.219 including hadronization and MPI e↵ects, and the
soft drop plugin in FastJet [13, 24]. In Fig. 2a we show
the dependence on zcut, and observe a dramatic shift to
smaller MJ at precisely the small zcut ⇠ 0.005 predicted
by Eq. (2), see Fig.1b’s red line. Increasing zcut further
does not groom soft radiation inside the radius deter-
mined by the top decay products, leaving the peak posi-
tion quite stable even beyond the limit in Eq. (2), unlike
for massless jets. In Fig. 2b we demonstrate that the

a)

b)

c)

d)

FIG. 2. Dependence in Pythia 8 of the MJ spectrum on the
a) soft drop parameter zcut, b) jet radius R, and c) anti-kT
jet veto pvetoT . In d) we compare results for e+e� ! tt̄ and
pp ! tt̄ with and without the light soft drop and with MPI
interactions on and o↵.

light groomed spectrum becomes independent of the jet
radius R for R >

⇠ 0.9, as expected, in contrast to the

Jet Radius Dependence

• Groomed top jet mass spectrum is independent of the original top jet 
radius for R ≳ 0.9
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radius R = 1, pvetoT = 200GeV, and plot spectra nor-
malized over the displayed range. In Fig. 2 we test the
factorization theorem predictions using default Pythia
8.219 including hadronization and MPI e↵ects, and the
soft drop plugin in FastJet [13, 24]. In Fig. 2a we show
the dependence on zcut, and observe a dramatic shift to
smaller MJ at precisely the small zcut ⇠ 0.005 predicted
by Eq. (2), see Fig.1b’s red line. Increasing zcut further
does not groom soft radiation inside the radius deter-
mined by the top decay products, leaving the peak posi-
tion quite stable even beyond the limit in Eq. (2), unlike
for massless jets. In Fig. 2b we demonstrate that the
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FIG. 2. Dependence in Pythia 8 of the MJ spectrum on the
a) soft drop parameter zcut, b) jet radius R, and c) anti-kT
jet veto pvetoT . In d) we compare results for e+e� ! tt̄ and
pp ! tt̄ with and without the light soft drop and with MPI
interactions on and o↵.

light groomed spectrum becomes independent of the jet
radius R for R >

⇠ 0.9, as expected, in contrast to the

• Groomed top jet mass spectrum is independent of jet veto on additional 
jets for 
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FIG. 12. Dependence in Pythia 8 of the MJ spectrum on the

a) soft drop parameter zcut, b) jet radius R, and c) anti-kT
jet veto pvetoT . In d) we compare results for e+e� ! tt̄ and

pp ! tt̄ with and without the light soft drop and with MPI

interactions on and o↵.

R & 0.9, as expected, in contrast to the strong depen-
dence on R that is present for ungroomed jets [25, 26].

The light groomed spectrum is also independent of an
anti-kT jet-veto cut p

veto
T (for jets beyond the two with

largest pT ) once p
veto
T & 50 GeV, as shown in Fig. 12c.

The independence to R and p
veto
T are predicted by both

our high-pT and decay factorization theorems.
An important prediction of the light soft dropped top

factorization theorems is an insensitivity to parts of the
event outside the groomed top jet. Thus the same fac-
torization theorems apply for top-jets from e

+
e
�

! tt̄

and pp ! tt̄, with only changes to the meaning of Q

and the function N . To obtain a reasonable comparison
with Pythia8 we take the e

+
e
� center-of-mass energy

Q = 2400GeV to approximate the spectrum weighted
average Q for pp with |⌘J | < 2.5 and pT � 750 GeV. In
the e

+
e
� case we reconstruct hemishpere masses of the

two top jets. We see in Fig. 12d that the spectra dif-
fer without soft drop (dotted green and dot-dashed blue
curves), but agree quite well with soft drop (solid green
and dashed blue curves). Also shown is the impact of
MPI on the pp spectra. Without soft drop adding MPI
shifts the peak of the spectrum by 4.5 GeV (dotted red
versus dotted green), whereas with light soft drop the
shift is only 1.1 GeV (solid red versus green). Formally
e↵ects from UE are outside the framework of factoriza-
tion. However, in Ref. [21] it was shown that MPI in
Pythia for the ungroomed jet mass spectrum can be well
modeled by simply changing F

q
��. This occurs because the

dominant impact of MPI is to populate the jet with un-
correlated soft radiation of somewhat higher energy than
that associated to the soft hadronization. We adopt this
approach to account for hadronization plus UE, replacing

⌦��
n ! ⌦��MPI

n . (60)

Estimating this treatment of UE is uncertain at the
. 30% level, this induces a residual uncertainty of �mt .
0.3 GeV for our soft drop top mass extraction, compared
to �mt . 1.4 GeV without soft drop. With additional
dedicated studies this uncertainty may be further re-
duced. Lastly, we note that from the work in Ref. [17]
we know the universality properties of the first moment
⌦��

1 , whereas the higher moments n � 2 may depend on
the grooming parameters and the kinematic variables.

In Fig. 13 we show a comparison between Pythia8
results and the factorization formula in Eq. (59) with
all ingredients taken at tree-level with next-to-leading-
logarithmic (NLL) order resummation and ↵s(mZ) =
0.118. In the factorization theorem we adopt the MSR
short distance top mass scheme m

MSR
t (R) [27, 28] and

include its leading logarithmic evolution from a refer-
ence scale R = 1 GeV to the scale µ in JB . When
not otherwise indicated we therefore use the shorthand
m

MSR
t ⌘ m

MSR
t (R = 1GeV). We fix m

MC
t = 173.1 GeV

in Pythia8, and use the default Monash 2013 tune [29]
of the Lund string fragmentation model for its hadroniza-
tion corrections. For the factorization theorem results the
parameters include the MSR mass m

MSR
t ⌘ m

MSR
t (R =

1 GeV), and two non-perturbative hadronization param-
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FIG. 13. Comparison of Pythia8 without and with MPI to

the combined “decay” and “high-pT ” factorization theorems

at NLL with mt in the MSR mass scheme.

FIG. 14. Perturbative NLL uncertainty in the normalization

of the cross section.

eters:

⌦��
1 and x2 ⌘

⌦2

(⌦��
1 )2

� 1 . (61)

We do a fit of these parameters to the Pythia8 re-
sults simultaneously including pT � 750 GeV and pT �

1000 GeV bins. For the fit range we take MJ 2

[173, 180] GeV, over which the curves are also normal-
ized. The fits are carried out independently for Pythia8
with only hadronization (with the results shown in
Figs. 13a,b), and for Pythia8 with both hadroniza-
tion and MPI where we expect modified parameters
⌦��

1 ! ⌦��MPI
1 and x2 ! x

MPI
2 (with the results shown

in Figs. 13c,d). The orange bands in Fig. 13 show the
perturbative NLL uncertainty on the normalized cross
section, from varying scales in the factorization theo-
rem. The cross sections look quite similar for the two pT

bins as expected from the structure of the factorization
theorems, and in particular peak in the same location.
There is a noticeable di↵erence between the factorization
theorem results and Pythia8 for the tail on the left of
the peak., which is a↵ected by events where the decay
products are outside the R = 1 jet cone, or are close to
the boundary within the cone. Likely both the factoriza-
tion and Pythia8 predictions could be improved in this
region.

The m
MSR
t fit values we find are within 0.2 GeV of

the input m
MC
t , so these mass parameters agree within

the uncertainties we anticipate for this analysis. This
is compatible with the e

+
e
� calibration result in [8].

We also observe that the fit values of m
MSR
t are com-

patible between results with and without MPI e↵ects
(within 0.3 GeV). As anticipated, the dominant e↵ect
of adding MPI is to significantly increase the scale of the
hadronization parameter ⌦��

1 ! ⌦��MPI
1 and to modify

x2 ! x
MPI
2 . The fact that this is the dominant e↵ect is

crucial and enables a precision mt to be obtained from
this method. Examining a bin with pT 2 [550, 750] GeV
we find poorer agreement with Pythia8, which likely
indicates that higher order terms in the soft drop factor-
ization expansions are becoming important.

In Fig. 14 we show the perturbative NLL uncertainty
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• MPI effects are well-described through a shift in the shape function 
parameters, just like in the ungroomed case: 
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FIG. 12. Dependence in Pythia 8 of the MJ spectrum on the

a) soft drop parameter zcut, b) jet radius R, and c) anti-kT
jet veto pvetoT . In d) we compare results for e+e� ! tt̄ and

pp ! tt̄ with and without the light soft drop and with MPI

interactions on and o↵.

R & 0.9, as expected, in contrast to the strong depen-
dence on R that is present for ungroomed jets [25, 26].

The light groomed spectrum is also independent of an
anti-kT jet-veto cut p

veto
T (for jets beyond the two with

largest pT ) once p
veto
T & 50 GeV, as shown in Fig. 12c.

The independence to R and p
veto
T are predicted by both

our high-pT and decay factorization theorems.
An important prediction of the light soft dropped top

factorization theorems is an insensitivity to parts of the
event outside the groomed top jet. Thus the same fac-
torization theorems apply for top-jets from e

+
e
�

! tt̄

and pp ! tt̄, with only changes to the meaning of Q

and the function N . To obtain a reasonable comparison
with Pythia8 we take the e

+
e
� center-of-mass energy

Q = 2400GeV to approximate the spectrum weighted
average Q for pp with |⌘J | < 2.5 and pT � 750 GeV. In
the e

+
e
� case we reconstruct hemishpere masses of the

two top jets. We see in Fig. 12d that the spectra dif-
fer without soft drop (dotted green and dot-dashed blue
curves), but agree quite well with soft drop (solid green
and dashed blue curves). Also shown is the impact of
MPI on the pp spectra. Without soft drop adding MPI
shifts the peak of the spectrum by 4.5 GeV (dotted red
versus dotted green), whereas with light soft drop the
shift is only 1.1 GeV (solid red versus green). Formally
e↵ects from UE are outside the framework of factoriza-
tion. However, in Ref. [21] it was shown that MPI in
Pythia for the ungroomed jet mass spectrum can be well
modeled by simply changing F

q
��. This occurs because the

dominant impact of MPI is to populate the jet with un-
correlated soft radiation of somewhat higher energy than
that associated to the soft hadronization. We adopt this
approach to account for hadronization plus UE, replacing

⌦��
n ! ⌦��MPI

n . (60)

Estimating this treatment of UE is uncertain at the
. 30% level, this induces a residual uncertainty of �mt .
0.3 GeV for our soft drop top mass extraction, compared
to �mt . 1.4 GeV without soft drop. With additional
dedicated studies this uncertainty may be further re-
duced. Lastly, we note that from the work in Ref. [17]
we know the universality properties of the first moment
⌦��

1 , whereas the higher moments n � 2 may depend on
the grooming parameters and the kinematic variables.

In Fig. 13 we show a comparison between Pythia8
results and the factorization formula in Eq. (59) with
all ingredients taken at tree-level with next-to-leading-
logarithmic (NLL) order resummation and ↵s(mZ) =
0.118. In the factorization theorem we adopt the MSR
short distance top mass scheme m

MSR
t (R) [27, 28] and

include its leading logarithmic evolution from a refer-
ence scale R = 1 GeV to the scale µ in JB . When
not otherwise indicated we therefore use the shorthand
m

MSR
t ⌘ m

MSR
t (R = 1GeV). We fix m

MC
t = 173.1 GeV

in Pythia8, and use the default Monash 2013 tune [29]
of the Lund string fragmentation model for its hadroniza-
tion corrections. For the factorization theorem results the
parameters include the MSR mass m

MSR
t ⌘ m

MSR
t (R =

1 GeV), and two non-perturbative hadronization param-



Conclusions
• New factorization framework for the groomed top jet mass distribution in 
the peak region that allows for the a short distance top mass extraction. 

• Unlike the case of massless groomed jets, non-perturbative effects can be 
treated with a standard shape function analysis.

• Soft Drop can terminate on top decay products, requiring a more careful 
treatment of top decay dynamics compared to the ungroomed case. 

• MPI effects are well described through a shift in the shape function 
moment, just like in the ungroomed case.

• The new factorization framework provides a unified treatment of the two 
possibilities: (i) soft drop terminates on a collinear-soft subjet (ii) soft drop 
terminates on subjet containing top decay products

• Novel dependence in the factorization formula on a perturbative decay 
distribution P(h).


