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LEFT = ?

If you’re fortunate to know enough about an theory, one way to
construct the set of operators for an EFT is to:

• identify the degrees of freedom at the low scale,

• identify how they transform under given symmetries,

• and write down all possible singlets.

This procedure will over-count the number of operators that should
appear in the Lagrangian.
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Operator Bases

Effective operators Oa and Ob give the same S-matrix elements if:

• Oa = Ob + ∂O (integration by parts)
• Oa = Ob +O δS

δφ (equations of motion)

Eliminate either Oa or Ob. This choice is called an operator basis.

Easy, right?

[Politzer, (1980)], [Georgi, (1991)]
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An Example

Real singlet scalar s in 3+1 spacetime dimensions.

The singlet operators at mass dimension d = 5 and 6 are:

s5 s(∂µs)(∂µs) s6 s3∂2s (∂2s)2
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An Example

Real singlet scalar s in 3+1 spacetime dimensions.

The singlet operators at dimension d = 5 and 6 are:

s5 s(∂µs)(∂µs) s6 s3∂2s (∂2s)2

If the Lagrangian is:

L =
1
2

(∂µs)2 −
1
2
m2s2 −

1
3!
µs3 −

1
4!
λs4 · · ·

The equation of motion for s can be written as:

−∂2s = m2s+
1
2
µs2 +

1
3!
λs3 + · · ·

An instance of ∂2s can be replaced with other operators, yielding operators
already in the basis.

Best to think of this as a field redefinition.
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An Example

Real singlet scalar s in 3+1 spacetime dimensions.

The singlet operators at dimension d = 5 and 6 are:

s5 s(∂µs)(∂µs) s6 ���s3∂2s ���(∂2s)2

This operator can be written as:

s(∂µs)(∂µs) = 1
2 ∂µ(s2∂µs)︸ ︷︷ ︸

total derivative

−1
2 s

2∂2s︸ ︷︷ ︸
EOM

So this operator is redundant.

Relations like this get more and more complicated as one goes to higher
dimensions.
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An Example

Real singlet scalar s in 3+1 spacetime dimensions.

The singlet operators at dimension d = 5 and 6 are:
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������
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2 ∂µ(s2∂µs)︸ ︷︷ ︸
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2∂2s︸ ︷︷ ︸
EOM

So this operator is redundant.

Relations like this get more and more complicated as one goes to higher
dimensions.
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An Example

Up to and including d = 8, a non-redundant set of operators is:

s5 s6 s7 s8 (∂µs)4 · · ·

Operator bases are difficult to construct by hand. Try it.
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History: The SMEFT

Weinberg figured out the SMEFT operator basis at d = 5 in 1980.
[Weinberg, (1980)]

It took until 2010 to figure out the set of non-redundant operators for
the SMEFT with one family at d = 6.
[Grzadkowski, Iskrzynski, Misiak, and Rosiek, (2010)]

...and until 2013 for with three families at d = 6
[Alonso, Jenkins, Manohar, Trott, (2013)]

...and until 2015 until for d = 7, 8, 9, ...
[Henning, Lu, Meliac, Murayama, (2015)]

With plenty of missteps along the way...
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HQET

Consider a field theory with one heavy fermion, subject to external
gauge fields, with rotational symmetry in the rest frame:

L = ψ†
[
iDt + c2

D2

2M + cF
s ·B
2M + · · ·

]
ψ

Here, ψ is a 2-component Pauli spinor, [Dk, Dt] = igEk,
1
2 [Dj , Dk]εjkm = igBm, and s ≡ σ/2.

Additional constraints on the coefficients from reparameterization
invariance, but that does not change the number of operators.
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HQET

There has been little agreement in the literature regarding the
number of operators at each order in 1/M in HQET:

Operator dimension 5 6 7 8
Mannel (1994) 2 2 7 -
Manohar (1997) 2 2 11 -
Dassinger, Mannel, Turczyk (2007) 2 2 5 -
Mannel, Turczyk, Uraltsev (2010) 2 2 9 18
Gunawardana, Paz (2017, v1) 2 2 9 18

Goal: resolve this.

The Hilbert series = tool to aid construction of an operator basis.
[see any paper by Hanany; Manohar, Jenkins (2009); Lehman, Martin (2014, 2015, 2016);

Henning, Lu, Melia, Murayama (2015, 2016, 2017)].
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Hilbert Series

3 ingredients:
• Ordinary multiplication of characters of a group represent tensor

products of group representations.
• Symmetric products of characters are generated by a Taylor expansion

of this function:

exp

[
∞∑
n=0

χ(zn, yn, · · · )
n

]
• Products of derivatives are symmetric.

Method:
• Generate all operators, singlets or not
• Subtract all operators with equation of motion relations
• Subtract total derivatives
• Pick out the singlets
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1st Ingredient: Representations

In SU(2), we know 2⊗ 2 = 3⊗ 1:(
z + 1

z

)
︸ ︷︷ ︸

2

(
z + 1

z

)
︸ ︷︷ ︸

2

=
(
z2 + 1 + 1

z2

)
︸ ︷︷ ︸

3

+ 1︸︷︷︸
1

What are these polynomials? They’re the characters of these
representations of SU(2). For example:

χ
SU(2)
2j+1 =

∑
|m|≤j

〈m| eiθJ3 |m〉 , z ≡ eiθ/2

Or, put another way,

χ
SU(2)
2 χ

SU(2)
2 = χ

SU(2)
3 + χ

SU(2)
1
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2nd Ingredient: Exponentials

For all symmetric products of φ, Taylor expand in φ:

exp
[ ∞∑
n=1

φn

n
χ
SU(2)
2 (zn)

]
= 1 + χ

SU(2)
2 φ+ χ

SU(2)
3 φ2 + · · ·

And for all antisymmetric products of φ:

exp
[ ∞∑
n=1

(−1)n+1φn

n
χ
SU(2)
2 (zn)

]
= 1 + χ

SU(2)
2 φ+ φ2

φ is just a mathematical flag, not a field.
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3rd Ingredient: Derivatives

Generate all possible symmetric products of derivatives:

exp
[ ∞∑
n=1

P (αn)φ
n

n
χ
SU(2)
2 (zn)

]
= 1 + χ

SU(2)
2 φ+ χ

SO(3)
3 χ

SU(2)
2 D⊥φ+ χ

SU(2)
2 Dtφ+ · · ·

P (α) = exp
[ ∞∑
n=1

Dnt
n

]
· exp

[ ∞∑
n=1

Dn⊥
n
χ
SO(3)
3 (αn)

]

D⊥ and Dt are just mathematical flags for spatial and time
derivatives, not actual derivatives.
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Subtracting Equations of Motion

Don’t want operators with Dtφ? Just subtract it.

exp
[ ∞∑
n=1

P (αn)φ
n

n
χ
SU(2)
2 (zn)(1−Dt)

]
= 1 + χ

SU(2)
2 φ+ χ

SO(3)
3 χ

SU(2)
2 D⊥φ+ · · ·
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Subtracting Total Derivatives

Let S be the set of all operators.

S = O1 +O2 + · · ·+D(O1 +O2 + · · · ) +D2(O1 +O2 + · · · ) + · · ·︸ ︷︷ ︸
total derivatives

= (1 +D +D2 + · · · )︸ ︷︷ ︸
P

(O1 +O2 + · · · )︸ ︷︷ ︸
no total derivatives

P generates all terms with derivatives (and the number 1)

Sno total derivatives = 1
P
S
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Picking Out The Singlets

If you want to pick out the singlets, use character orthogonality:∮
[dµ]G χR(z) χR′(z) = δRR′

since χsinglet = 1,∮
[dµ]G χR = 1 iff χR = χsinglet = 1

[dµ]G is the Haar measure for the group G.
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Building Blocks for HQET

In the rest frame:

SO(3)rot SU(3)color SU(2)spin

ψ 1 3 2
ψ† 1 3 2
E 3 8 1
B 3 8 1
s 3 1 3
Dt 1 1 1
D⊥ 3 1 1

Input into Hilbert series...
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The Result

The output from the Hilbert series is, after imposing invariance under
parity...

HSd=5 = D2
⊥ + sB,

HSd=6 = 2ED⊥ + sED⊥,
HSd=7 = D4

⊥ + 2E2 + 2B2 + sE2 + sB2 +BD2
⊥ + 5sBD2

⊥,

HSd=8 = B2Dt + E2Dt + 2sB2Dt + 2sE2Dt + 6EBD⊥ + 3sED3
⊥

+ 5ED3
⊥ + 21sEBD⊥

These are the operators O that are sandwiched between ψ†Oψ.

The numerical coefficients count the number of singlets with those
degrees of freedom.

One can automatically impose invariance under parity if the fermion
is charged under SU(3), but not time reversal, since fabc is T -odd.
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Order HS T even T odd
1
M

D2
⊥ (iD⊥)2

sB siBjaδijT
a

1
M2

2ED⊥ [Di
⊥E

j ]aδijT a {Eia, iDj
⊥}δijT

a

sED⊥ si{Eja, iDk
⊥}εijkT a

1
M3

D4
⊥ (iD⊥)4

2E2 EiaE
j
bδijd

abcTc
EiaE

j
bδijδ

ab

2B2 BiaB
j
bδijd

abcTc
BiaB

j
bδijδ

ab

sE2 siEjaE
k
b εijkf

abcTc
sB2 siBjaB

k
b εijkf

abcTc
BD2

⊥ {[Di
⊥B

j ]a, iDk
⊥}εijkT a

5sBD2
⊥

{siBja, (iDk
⊥)2}δijT a {si[Dj

⊥B
k]a, iDl

⊥}δijδklT a
{siBja, iDk

⊥iD
l
⊥}(δikδjl + δilδjk)T a {si[Dj

⊥B
k]a, iDl

⊥}δikδjlT a
si[D2

⊥B
j ]aδijT a

1
M4

B2Dt Bia[DtBj ]bδijfabcTc
E2Dt Eia[DtEj ]bδijfabcTc

2sB2Dt
siBja[DtBk]bεijkδab

siBja[DtBk]bεijkdabcTc

2sE2Dt
siEja[DtEk]bεijkδab

siEja[DtEk]bεijkdabcTc

6EBD⊥

{EiaBjb , iD
k
⊥}εijkδab {EiaBjb , iD

k
⊥}εijkfabcTc

{EiaBjb , iD
k
⊥}εijkdabcTc Eia[Dj

⊥B
k
b ]bεijkδab

Eia[Dj
⊥B

k]bεijkfabcTc Eia[Dj
⊥B

k]bεijkdabcTc

3sED3
⊥

{siEja, iDk
⊥(iD⊥)2}εijkT a {si[Dj

⊥E
k]a, iDl

⊥iD
m
⊥ }T a(εijlδkm + εijmδkl + εiklδjm + εikmδjl)

{si[Dj
⊥D

k
⊥E

l]a, iDm
⊥ }T a(εijmδkl + εikmδjl + εilmδjk)

5ED3
⊥

{[Di
⊥E

j ]a, (iD⊥)2}δijT a {Eia, iDj
⊥iD

k
⊥iD

l
⊥}T a(δijδkl + δikδjl + δilδjk)

{[Di
⊥E

j ]a, iDk
⊥iD

l
⊥}T a(δikδjl + δilδjk) {[Di

⊥D
j
⊥E

k]a, iDl
⊥}T a(δijδkl + δikδjl + δilδjk)

[Di
⊥D

j
⊥D

k
⊥E

l]aT a(δijδkl + δikδjl + δilδjk)

21sEBD⊥

{siEjaBkb , iDl
⊥}δijδklfabcTc {siEjaBkb , iDl

⊥}δijδkldabcTc
{siEjaBkb , iDl

⊥}δikδjlfabcTc {siEjaBkb , iDl
⊥}δikδjldabcTc

{siEjaBkb , iDl
⊥}δilδjkfabcTc {siEjaBkb , iDl

⊥}δilδjkdabcTc
siEja[Dk

⊥B
l]bδikδjldabcTc {siEjaBkb , iDl

⊥}δijδklδab
siEja[Dk

⊥B
l]bδilδjkdabcTc {siEjaBkb , iDl

⊥}δikδjlδab
siEja[Dk

⊥B
l]bδikδjlδab {siEjaBkb , iDl

⊥}δilδjkδab
siEja[Dk

⊥B
l]bδilδjkδab siEja[Dk

⊥B
l]bδikδjlfabcTc

siBja[Dk
⊥E

l]bdabcTc(δikδjl + δilδjk) siEja[Dk
⊥B

l]bδilδjkfabcTc
siBja[Dk

⊥E
l]bδijδkldabcTc siBja[Dk

⊥E
l]bfabcTc(δikδjl + δilδjk)

siBja[Dk
⊥E

l]bδab(δikδjl + δilδjk) siBja[Dk
⊥E

l]bδijδklfabcTc
siBja[Dk

⊥E
l]bδabδijδkl

Table: Same as Table ??, but for NRQCD/HQET, separating those
operators that are even and odd under time reversal. See the text at
the end of Section ?? for a discussion regarding notation.
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Number of operators in HQET

Operator dimension 5 6 7 8
Mannel (1994) 2 2 7 -
Manohar (1997) 2 2 11 -
Dassinger, Mannel, Turczyk (2007) 2 2 5 -
Mannel, Turczyk, Uraltsev (2010) 2 2 9 18
Gunawardana, Paz (2017, v1) 2 2 9 18
AK, Pal (2017) 2 2 11 25
Gunawardana, Paz (2017, v2) 2 2 11 25

[AK, Pal; Phys. Lett. B772 (2017)]
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Aside: Something fun

We removed all operators in our basis with Dtψ, due to the equations
of motion. This is functionally equivalent to setting Dtψ = 0.

This looks similar to ∂tψ = 0, which is the equation of motion for a
free fermion. Connection between operator basis and conformal
symmetry?

Yes. The HQET operator basis is indeed spanned by a special kind of
primary operator of tensor products of the Schrödinger group.

Direct analogy in relativistic theories, where the operator basis is
spanned by scalar primaries of tensor products of short
representations of the conformal group.
[Henning, Lu, Melia, Murayama (2015, 2016, 2017)]

[AK, Pal; Phys. Lett. B783 (2018)]
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Aside: Reparameterization Invariance

The number of operators does does not equal the number of free
parameters in HQET, due to reparameterization invariance.

Aided by another Hilbert series we developed, we constructed an
operator basis for a theory with a single fermion with degrees of
freedom that are manifestly invariant under reparameterization, and
showed that this is closely related to Lorentz invariance.

Possible, but cumbersome, to go from this to the heavy in HQET.
But that’s life.

Maybe possible to employ the Hilbert series to encode RPI from the
bottom up?

[AK, Pal; hep-ph:/1810.02356 ]
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Summary

• Writing down operator bases can be tricky. Hilbert-series
methods are valuable. Much more than just operator counting.

• We wrote down the HQET Lagrangian up to and including
1/M4 terms. Result replicated by other groups.

• Showed that the HQET operator basis is closely related to
representations of the Schrödinger group.

• How can reparameterization invariance be encoded in the Hilbert
series?

• Similar methods should be applicable for SCET. No one has yet
tried.
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