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   Introduction        

Processes of  Interest

‣ We want to study semi-inclusive jet production  
p + p        Jet((with/without) substructure) + X !
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  Inclusive Jets  

Comparison with the inclusive hadron production case
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Kang, Ringer, Vitev `16
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µH ⇠ pT

µD ⇠ 1GeV
µJ ⇠ pTR

µH ⇠ pT

R ⌧ 1



  Inclusive Jets  

Comparison with the inclusive hadron production case
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Kang, Ringer, Vitev `16
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• Physically sensible for small R 
• DGLAP demonstrated to 1-loop  
• Dynamics that live inside the jet is separated   when observable     is measured inside the jet, replace                                                                . v Jc(z, pTR,µ) ! Gc(z, pTR, v, µ)



Jet Angularity           

Jet angularity
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⌧a

• A generalized class of  IR safe observables (                    ), angularity (applied to jet):

⌧ppa =
1

pT

X

i2J

pT,i(�RiJ)
2�a

⌧pp0 =
m2

J

p2T
+O((⌧pp0 )2)

Sterman et al. `03, `08,   
Hornig, C. Lee, Ovanesyan `09,  Ellis, Vermilion, Walsh, Hornig, C.Lee `10,  

Chien, Hornig, C. Lee `15,  Hornig, Makris, Mehen `16,  Kang, KL, Ringer `18

�1 < a < 2
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Factorization for the jet angularity

• Replace  
           

• When                  ,   refactorize        .   
 
 
 

Jc(z, pTR,µ) ! Gc(z, pTR, ⌧a, µ)

Gc

Kang, KL, Ringer, arXiv:1801.00790

Relevant modes for
Collinear

✓c ⇠ ⌧
1

2�a
a

✓s ⇠ R zcs ⇠
⌧a

R2�a

zc ⇠ 1
(Collinear-)soft

Hard-collinear

⌧a ⇠ z ✓2�a

µS ⇠ pT ⌧a
R1�a

µC ⇠ pT ⌧
1

2�a
a

zH ⇠ 1 µH ⇠ pTR✓H ⇠ R

⌧a ⌧ R2�a

⌧a ⌧ R2�a



Jet Angularity           

Appearance of  the NGLs
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Inclusive

Dasgupta, Salam `01
Banfi, Marchesini, Smye `02 
Larkoski, Moult, Neill `15 
Becher, Neubert, Rothen, Shao `15, `16 …

• Non-global logarithms (NGLs):  
arises from the correlation between  
the in-jet and the out-of-jet radiation.

✓s ⇠ R

Dasgupta, Salam `01

✓H ⇠ R

↵n
s lnn(⌧a/R

2�a)



Non-perturbative Effects
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• Non-perturbative effects: 

soft

soft

soft

soft

• Pileups 
Secondary proton collisions in a  
bunch may enter and contaminate jet.

• Multi-Parton Interactions (MPI) 
(Underlying Events (UE)) 
Multiple secondary scatterings of   
partons within the protons may enter  
and contaminate jet.

Non-perturbative Effects

µS ⇠ pT ⌧a
R1�a
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    Soft Drop Grooming

Soft Drop Grooming
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• Soft drop grooming algorithms:   

1. Reorder emissions in the identified jet according to their  
relative angle using C/A jet algorithm. 

2. Recursively remove soft branches until soft drop condition is met:

Larkoski, Marzani, Soyez, Thaler `14
Frye, Larkoski, Schwartz, Yan `16

z

1� z

min[pT,1, pT,2]

pT,1 + pT,2
> zcut

✓
�R12

R

◆�

Groom jets to reduce sensitivity to the wide-angle soft radiation.  

• Taming wide angle soft radiations, giving sensitivity to UE, PU, and NGLs directly changing 
distribution.



    Groomed Angularity

Relevant modes in the groomed jet
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z > zcut(✓/R)�
⌧a ⇠ z ✓2�a

• The ungroomed case (                    )

/2 gr

Hard-collinear

Collinear
✓c ⇠ ⌧

1
2�a
azc ⇠ 1

✓s ⇠ R zcs ⇠
⌧a

R2�a

(Collinear-)soft

Hard-collinear

Collinear
✓c ⇠ ⌧

1
2�a
azc ⇠ 1 soft

• The groomed case (                                 )

✓/2gr ⇠ R z/2gr ⇠ zcut

✓
✓

R

◆�

= zcut

soft (collinear-soft)2 gr

z2gr ⇠ zcut

✓
✓

R

◆�

= z
2�a

2�a+�

cut

⇣ ⌧a
R2�a

⌘ �
2�a+�

✓2gr ⇠
✓
⌧aR�

zcut

◆ 1
2�a+�

zH ⇠ 1✓H ⇠ R zH ⇠ 1✓H ⇠ R

⌧a ⌧ R2�a ⌧a,gr/R
2�a ⌧ zcut ⌧ 1



    Groomed Angularity

Non-global Logarithms
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↵n
s lnn(zcut)

n � 2

n � 2

• Non-global logs directly affect the jet angularity spectrum.

• Non-global logs only indirectly affects the  
jet angularity spectrum through normalization.

Dasgupta, Salam `01 and many more

✓s ⇠ R

✓/2gr ⇠ R
• The groomed case (                                         )⌧a,gr/R

2�a ⌧ zcut ⌧ 1

• The ungroomed case (                         )⌧a ⌧ R2�a ✓H ⇠ R

✓H ⇠ R

↵n
s lnn(⌧a/R

2�a)

Gi(z, pTR, ⌧a, µ) =
X

j

Hi!j(z, pTR,µ)Cj(⌧a, pT , µ)⌦ Sj(⌧a, pT , R, µ)

Gi(z, pTR, ⌧a, zcut,�, µ) =
X

j

Hi!j(z, pTR,µ)S /2gr
j (pT , R, zcut,�, µ)Cj(⌧a, pT , µ)⌦ S2gr

j (⌧a, pT , R, zcut,�, µ)
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Phenomenology

• General angularities show decent agreement with Pythia  
with reduced contamination from UE/PU. 

• Observe                  shift does well.

Kang, KL, Liu, Ringer, arXiv:1811.06983

⌦a =
⌦0

1� a
See Jim Talbert and Aditya Pathak’s talk
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NNLL for          (jet mass)

• NNLL calculated for jet mass. 

• Analytically derived non-cusp anomalous dimensions in 2-loop,  
and further improves agreement

Kang, KL, Liu, Ringer, arXiv:1811.06983

a = 0
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extraction↵s

• Complimentary study to           extractions.           e+e�

• Most precise input: lattice has less than 1% uncertainty 

↵s(mZ) = 0.118± 0.0013
• World Average with 1.1% total uncertainty

• Next precise input:            event shape determination:  
                                                     thrust and C-parameter. 

Using pp-extractions:

• High-quality of  data pouring out of  the LHC.

Les Houches 2017 I. Moult, B. Nachman, G. Soyez, J. Thaler (section coordinators)

• Currently feasible to determine with 10% uncertainty.

e+e�

3� 4�•            tension with lattice.
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extraction↵s

leading shift of  the first moment shown to be universal

• Key challenges in        extraction is the degeneracy with non-perturbative effects.  ↵s

See Jim Talbert’s talk



    Groomed Angularity

extraction↵s

• Extend range of  validity by two orders for 1 TeV jet.

pT ⌧

R

pT ⌧

R

✓
zcutR2

⌧2

◆ 1
2+�

Ungroomed: µS ⇠

µS ⇠SD Groomed: 

µS = ⇤QCD ⇠ 1 GeVwith ,

⌧gr = ⌧ungr

✓
⇤QCD

pTRzcut

◆ 1
1+�

• Reduced robustness to NP effects and increased sensitivity to ↵s

• Currently feasible to determine with 10% uncertainty.
Les Houches 2017 I. Moult, B. Nachman, G. Soyez, J. Thaler (section coordinators)

• Groomed angularities or energy-energy correlations provide  
additional independent handles with `a’.

Onset of  NP physics
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Groomed Jet Radius,
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Rg

• Two characteristic variables that describe  
soft drop groomed jet: 

Larkoski, Marzani, Soyez, Thaler `14
Tripathee, Xue, Larkoski, Marzani, Thaler`17

Kang, KL, Liu, Ringer, In Preparation

min[pT,1, pT,2]

pT,1 + pT,2
> zcut

✓
�R12

R

◆�

Rg

zg =
min[pT,1, pT,2]

pT,1 + pT,2
Rg = �R12

when soft drop condition is met

fig. from Tripathee, Xue, Larkoski, Marzani, Thaler`17



    Groomed Jet Radius

Refactorization
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• Replace  
           

• Refactorize for resummation region 
 
 

Jc(z, pTR,µ) ! Gc(z, pTR,Rg, zcut,�, µ)

Rg ⌧ R and zcut ⌧ 1

Large logs of  Rg

R
Grooming soft radiation

Hard-collinear

• Two of  the modes are immediate from the groomed angularities,  
and in general universal for                  groomed jet observables:zcut ⌧ 1

zH ⇠ 1✓H ⇠ R
/2 gr soft

✓/2gr ⇠ R z/2gr ⇠ zcut

✓
✓

R

◆�

= zcut

• Independent of  observables (i.e.                     ) ⌧a, Rg, ...



    Groomed Jet Radius

Groomed jet size
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C/A

anti-kT

Kelley, Walsh, Zuberi `12

⇢ij = min[(piT )
2p, (pjT )

2p]
�R2

ij

R2

⇢i = (piT )
2p

•      defines the maximal angle where a single clustering can occur:R
• Consider       type clusteringkT

= +1 = 0 = �1kT C/A anti-kT

Rg•      defines the maximal angle where a single clustering can occur.

Observation 1: groomed jet is of  size ⇠ O(⇡R2
g)

min[⇢i, ⇢j ] > ⇢ij =) R > �Rij•                                                   needs to be satisfied for a clustering to occur.

Cacciari, Salam, Soyez `08



    Groomed Jet Radius

Groomed jet size
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Observation 1: groomed jet is of  size ⇠ O(⇡R2
g)

C/A

anti-kT

Kelley, Walsh, Zuberi `12

fig. from Larkoski, Marzani, Soyez, Thaler `14

•      defines the maximal angle where a single clustering can occur.Rg

Rg

fig. from Tripathee, Xue, Larkoski, Marzani, Thaler`17
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Modes sensitive to 
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soft (collinear-soft)2 gr

✓2gr ⇠ Rgz2gr ⇠ zcut

✓
✓

R

◆�

= zcut

✓
Rg

R

◆�

Collinear
zc ⇠ 1 ✓c ⇠ Rg

Observation 2: no measurement to angularly order radiations inside the groomed jet.
(for instance groomed angularities,                       )⌧a ⇠ z ✓2�a

Modes of  the groomed jet have ✓ ⇠ Rg

Rg



    Groomed Jet Radius

Inclusive regions for
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Rg

/2 gr

Hard-collinear
✓H ⇠ RzH ⇠ 1

soft

•  

2 gr

✓2gr ⇠ Rgz2gr ⇠ zcut

✓
✓

R

◆�

= zcut

✓
Rg

R

◆�

z/2gr ⇠ zcut

✓
✓

R

◆�

= zcut ✓/2gr ⇠ R

zcut ⌧ 1 and Rg ⌧ R

Collinear
zc ⇠ 1 ✓c ⇠ Rg

correlation

correlation

Kang, KL, Liu, Ringer, In Preparation

soft (collinear-soft)

Inclusive
Inclusive

⇠ Rg

Observation 3: collinear modes create inclusive region inside the jet  
                          and show double correlations.
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Inclusive regions for
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Rg

Kang, KL, Liu, Ringer, In Preparation

Observation 3: collinear modes create inclusive region inside the jet  
                          and show double correlations.

Dasgupta and Salam `01

�CFCA↵
2
s ln

2(zcut(Rg/R)�)/12

�CFCA↵
2
s ln

2(zcut)/12

Inclusive
Inclusive

⇠ Rg

* up to clustering
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Factorization of  
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See also Becher, Neubert, Rothen, Shao `15, `16

Gc(z, pT , R,Rg, µ; zcut,�) =
X

i

X

n

H
n
c!i(z, pTR,µ)⌦⌦ S /2gr

i,n (zcutpTR,µ)
X

m

Cm
i (pTRg, µ)⌦⌦ S2gr

i,m (✓gzcutpT RS2gr
i,m (✓gzcutpT R,µ;�)

Rg

• Two Multi-Wilson line structures to account for NGLs.  
(correlation in matrix elements is accounted for by tracking radiations  
 in the inclusive regions through multi-wilson lines.)

• Compared to the usual multi-wilson line consideration,  
modification of  measurement functions due to clustering effects between                        .Cm

i and Si,m

• For now, we neglect both effects.

• Similarly, 
Dasgupta, Salam `01,  Banfi, Marchesini, Syme `02, Larkoski, Moult, Neill `15

Monte Carlo resummation including clustering effects in Larkoski, Moult, Neill `17

d⌃(Rg)

d⌘dpT
=

X

abc

fa(xa, µ)⌦ fb(xb, µ)⌦H
c
ab(xa, xb, ⌘, pT /z, µ)⌦ Gc(z, pT , Rg, R, µ; zcut,�)

d�

d⌘dpT dRg
=

d

dRg

d⌃(Rg)

d⌘dpT
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Consistency checks I
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U /2gr
Si

(µ/2gr
S , µH)UCi(µC , µH)U2gr

Si
(µ2gr

S , µH)

f.c.'
canonical

exp


�↵s

⇡
Ci

✓
� ln2

Rg

R
+ 2 ln zcut ln

Rg

R
+ 2

�i
Ci

ln
Rg

R

◆�

UF (µ, µF ) = exp{
Z µ

µF

�F (↵s(µ
0), lnµ0) d lnµ0}

f.c.' exp

"
↵sCi

⇡

1

1 + �

 
� ln2

µJ

µ2gr
S

+ ln2
µJ

µ/2gr
S

+ (1 + �) ln2
µJ

µC

!
+

↵s�i
⇡

ln
µJ

µC

#

⌃(Rg) = fq ⌃q(Rg) + fg ⌃g(Rg)

MLL (modified LL), considers any number of  independent emissions: 
Larkoski, Marzani, Soyez, Thaler `14

⌃i(Rg)
f.c.' exp


�↵s

⇡
Ci

✓
� ln2

Rg

R
+ 2 ln zcut ln

Rg

R
+ 2

�i
Ci

ln
Rg

R

◆�
where

This (Sudakov) exponents are derived from evolution factors of  the modes inside the jet. 

where NLO anomalous dimensions are used in 
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Consistency checks II
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DGLAP

µJ ⇠ pTR

µH ⇠ pT

DGLAP / Sudakov

µv

v

v

d�

dpT d⌘dv

• When we measure a substructure      from the jet, once we evolve  
to      (sometimes used      ) the remaining evolution to       is given by DGLAP evolution.µJ µHµH

• This is checked for our       refactorization.Rg



    Groomed Jet Radius

Phenomenology (groomed jet radius)
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• Shows very good agreement without having to account for NGLs and clustering logs. 
• At the LHC kinematics, small changes due to non-perturbative effects. 

    

✓g =
Rg

R

PRELIMINARY

Kang, KL, Liu, Ringer, In Preparation
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Conclusions
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• Formalisms for studying semi-inclusive jet production with and without  
a substructure measurement were introduced.  

• Discussed soft drop and reduced sensitivity to NP effects and NGLs. 

• Groomed jet angularity and its application to       extraction was discussed.  

• Refactorized groomed jet radius in the context of SCET, which gave double 
correlation structures and clustering effects.  

• Showed comparisons against Pythia for the groomed angularities and Rg. 

↵s


