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Theory Uncertainties and Correlations.

Reliable theory uncertainties are essential for any precision studies and
interpretation of experimental measurements

Especially when theory uncertainties & experimental uncertainties

Correlations can have significant impact
I In fact, whenever one combines more than a single measurement, one

should ask how the theory uncertainties in the predictions for each
measurement are correlated with each other

I Correlations among different points in a resummed spectrum
I Correlations between predictions for different Q, processes, observables, ...

So far we have (mostly) been skirting the issue
I However, experimentalists have to treat theory uncertainties like any other

systematic uncertainty, and in absence of anything better they have to make
something up based on naive scale variations

I In likelihood fits, some (possibly enveloped) scale variation impact will get
treated as a free nuisance parameter and floated in the fit
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Example: Measurement of the W Mass.

Small pWT < 40 GeV is the
relevant region for mW

Needs very precise
predictions for pWT spectrum

' 2% uncertainties in pWT
translate into ' 10 MeV
uncertainty in mW

Direct theory predictions for
pWT are insufficient
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⇒ Strategy: Exploit precisely measured Z pT spectrum to get best possible
description for W

I Regardless how precisely dσ(W )/dpT can be calculated directly, one
always wants to exploit Z data to maximize precision
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Extrapolating from Z to W.

dσ(W )

dpT
=

[
dσ(Z)

dpT

]
measured

×
[
dσ(W )/dpT

dσ(Z)/dpT

]
theory︸ ︷︷ ︸

needed
︸ ︷︷ ︸

measure precisely
︸ ︷︷ ︸

calculate precisely
theory uncertainties cancel

Ratio is just a proxy
I More generally: Combined fit to both processes
I Tuning Pythia on Z and using it to predict W is one example of this

Crucial Caveat: Cancellation fundamentally relies on theory correlations
I Take 10% theory uncertainty on dσ(W ) and dσ(Z)

→ 99.5% correlation yields 1% uncertainty on their ratio
→ 98.0% correlation yields 2% uncertainty on their ratio – 2× larger!

One of many examples, this happens whenever experiments extrapolate
from some control region or process to the signal region
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Theory Correlations.

Correlations only come from common sources of uncertainties
Straightforward for unc. due to input parameters (αs(mZ), PDFs, ...)

What to do about perturbative theory uncertainties?
7 Scale variations are not quantitatively reliable to begin with
7 Moreover, they are inherently ill-suited for correlations

7 Scales are not physical parameters with an uncertainty that can be
propagated, they simply specify a particular perturbative scheme

7 They are not the underlying source of uncertainty, i.e., they do not become
better known at higher order

7 Taking an envelope is not a linear operation and so does not propagate
7 Trying to decide how to correlate scale variations (e.g. between processes)

is really just a bandaid, but not addressing the real problem

7 Even the most sophisticated profile scale variations are insufficient
7 The profile shapes are designed to turn off resummation and match to

fixed-order, not to capture correlations in the spectrum
7 See e.g. inconsistent uncertainties from spectrum vs. cumulant scales
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Power Expansion.
Define scaling variable τ ≡ p2T /m2

V ,T0/mV , ... and expand in powers of τ

dσ

dτ
= δ(τ ) + αs

[ ln τ
τ

+
1

τ
+ δ(τ ) + fnons

1 (τ )
]

+ α2
s

[ ln3 τ

τ
+

ln2 τ

τ
+

ln τ

τ
+

1

τ
+ δ(τ ) + fnons

2 (τ )
]

+
...

...
...

...
. . . + . . .

]
= dσ(0)/dτ +O(τ )/τ

For small τ � 1

I Logarithmic terms completely
dominate perturbative series

I Their all-order structure is actually
simpler and more universal, which
allows their resummation

I Also holds the key for a rigorous
treatment of theory correlations 0 20 40 60 80 100
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Factorization and Resummation.

Leading-power spectrum factorizes into
hard, collinear, and soft contributions, e.g. for pT

dσ(0)

d~pT
= σ0H(Q,µ)

∫
d2~ka d2~kb d2~ks

×Ba(~ka, Qe
Y , µ, ν)Bb(~kb, Qe

−Y , µ, ν)

× S(~ks, µ, ν) δ(~pT − ~ka − ~kb − ~ks)
ℓ

ℓ

p p

Soft

Jet Jet

Each function is a renormalized object with an associated RGE
I Structure depends on type of variable but is universal for all hard processes

⇒ Dependence on pT and Q is fully determined to all orders by a coupled
system of differential equations

I Their solution leads to resummed predictions
I Each resummation order (only) requires as ingredients anomalous

dimensions and boundary conditions entering the RG solution
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Simplest Example: Multiplicative RGE.

All-order RGE and its solution

µ
dH(Q,µ)

dµ
= γH(Q,µ)H(Q,µ)

⇒ H(Q,µ) = H(Q)× exp

[∫ µ

Q

dµ′

µ′
γH(Q,µ′)

]
Necessary ingredients

Boundary condition

H(Q) = 1 + αs(Q)h1 + α2
s(Q)h2 + · · ·

Anomalous dimension

γH(Q,µ) = αs(µ)
[
Γ0 + αs(µ) Γ1 + · · ·

]
ln
Q

µ

+ αs(µ)
[
γ0 + αs(µ) γ1 + · · ·

]
⇒ Resummation is determined by coefficients of three fixed-order series

I True regardless of how RGE is solved in more complicated cases
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Theory Nuisance Parameters.

Perturbative series at leading power is determined to all orders by a coupled
system of differential equations (RGEs)

→ Each resummation order only
depends on a few
semi-universal parameters

→ Unknown parameters at higher
orders are the actual sources of
perturbative theory uncertainty

boundary conditions anomalous dimensions

order hn sn bn γh
n γs

n Γn βn

LL h0 s0 b0 − − Γ0 β0

NLL′ h1 s1 b1 γh
0 γs

0 Γ1 β1

NNLL′ h2 s2 b2 γh
1 γs

1 Γ2 β2

N3LL′ h3 s3 b3 γh
2 γs

2 Γ3 β3

N4LL′ h4 s4 b4 γh
3 γs

3 Γ4 β4

Basic Idea: Treat them as theory nuisance parameters
X Vary them independently to estimate the theory uncertainties
X Impact of each independent nuisance parameter is fully correlated across all

kinematic regions and processes
X Impact of different nuisance parameters is fully uncorrelated

Price to Pay: Calculation becomes quite a bit more complex
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Numerous Advantages.

Immediately get all benefits of parametric uncertainties
X Encode correct correlations
X Can be propagated straightforwardly

I Including Monte Carlo, BDTs, neural networks, ...

X Can be consistently included in a fit and constrained by data
I Even okay to use control measurements to reduce theory uncertainties
I Due to central-limit theorem, total theory uncertainty becomes Gaussian

Additional theory benefits compared to scale variations
Uncertainties can be evaluated in one space and propagated to another
(Fourier conjugate, cumulant, spectrum)

Can do partial orders and fully exploit all known higher-order information
I Can account for new structures appearing at higher order

Fully factorizes the uncertainties
I Can study perturbative convergence at level of individual building blocks
I Much safer against accidental underestimates due to multiple parameters
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How to Vary What.

Level 1: At given order vary parameters around their known values

c0 + αs(µ)
[
c1 + αs(µ) c2 + · · ·

]
→ c0 + αs(µ)(c1 + θ̃1)

I Simpler but perhaps less robust

Level 2: Implement the full next order in terms of unknown parameters

c0 + αs(µ)
[
c1 + αs(µ) c2 + · · ·

]
→ c0 + αs(µ)

[
c1 + αs(µ) θ2

]
I More involved, but also more robust, allowing for maximal precision

In general, can have combination of both

Note: Some parameters are actually functions of additional variables
E.g. beam function constants, auxiliary dependences (jet radius, ...)
In principle, one needs to parametrize an unknown function

I Can e.g. expand/parametrize in terms of appropriate functional basis
I Compared to scale variations, choices are now explicit and testable
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Z pT Spectrum.
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For illustration use

Level 1: θ̃i = (0± 0.25)× ci
Level 2: θi = (0± 2)× ci
(with the true values for ci)

Relative impact of different
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W vs. Z.
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Drell-Yan at High Q vs. Z Pole.
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Summary.

A theory prediction without an uncertainty is about as useful as a
measurement without an uncertainty

Uncertainties need to be reliable (small is not good enough ...)

Theory nuisance parameters overcome many problems of scale variations

Allow to rigorously quantify pert. theory uncertainties and correlations

Encode correct correlations
I Between different pT values, Q values, partonic channels, hard processes
I Between different variables (~pT , pjet

T , T0, τ , C, ...),
I Multi-differential cases, cases with auxiliary measurements, ...

Can be propagated straightforwardly
I Including Monte Carlo, BDTs, neural networks, ...
I Crucial for consistent treatment of theory uncertainties by experiments

⇒ A plethora of applications to explore ...
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