#### Theory Uncertainties from Nuisance Parameters.

#### Frank Tackmann

Deutsches Elektronen-Synchrotron

SCET 2019 Workshop San Diego, March 27, 2019

[arxiv:1904.sooon]

### Theory Uncertainties and Correlations.

Reliable theory uncertainties are essential for any precision studies and interpretation of experimental measurements

- Especially when theory uncertainties  $\gtrsim$  experimental uncertainties
- Correlations can have significant impact
  - In fact, whenever one combines more than a single measurement, one should ask how the theory uncertainties in the predictions for each measurement are correlated with each other
  - Correlations among different points in a resummed spectrum
  - ► Correlations between predictions for different *Q*, processes, observables, ...
- So far we have (mostly) been skirting the issue
  - However, experimentalists have to treat theory uncertainties like any other systematic uncertainty, and in absence of anything better they have to make something up based on naive scale variations
  - In likelihood fits, some (possibly enveloped) scale variation impact will get treated as a free nuisance parameter and floated in the fit

### Example: Measurement of the W Mass.

# Small $p_T^W < 40 \, { m GeV}$ is the relevant region for $m_W$

- Needs very precise predictions for p<sup>W</sup><sub>T</sub> spectrum
- $\simeq 2\%$  uncertainties in  $p_T^W$ translate into  $\simeq 10 \, {
  m MeV}$ uncertainty in  $m_W$
- Direct theory predictions for  $p_T^W$  are insufficient



- $\Rightarrow$  Strategy: Exploit precisely measured  $Z p_T$  spectrum to get best possible description for W
  - ► Regardless how precisely dσ(W)/dp<sub>T</sub> can be calculated directly, one always wants to exploit Z data to maximize precision

### Extrapolating from Z to W.



Ratio is just a proxy

- More generally: Combined fit to both processes
- Tuning Pythia on Z and using it to predict W is one example of this

### Extrapolating from Z to W.



- Ratio is just a proxy
  - More generally: Combined fit to both processes
  - Tuning Pythia on Z and using it to predict W is one example of this
- Crucial Caveat: Cancellation fundamentally relies on theory correlations
  - Take 10% theory uncertainty on  $d\sigma(W)$  and  $d\sigma(Z)$ 
    - $\rightarrow$  99.5% correlation yields 1% uncertainty on their ratio
    - $\rightarrow$  98.0% correlation yields 2% uncertainty on their ratio 2× larger!
- One of many examples, this happens whenever experiments extrapolate from some control region or process to the signal region

### Theory Correlations.

#### Correlations only come from common sources of uncertainties

• Straightforward for unc. due to input parameters  $(\alpha_s(m_Z), PDFs, ...)$ 

#### What to do about perturbative theory uncertainties?

- X Scale variations are not quantitatively reliable to begin with
- X Moreover, they are inherently ill-suited for correlations
  - Scales are not physical parameters with an uncertainty that can be propagated, they simply specify a particular perturbative scheme
  - They are not the underlying source of uncertainty, i.e., they do not become better known at higher order
  - X Taking an envelope is not a linear operation and so does not propagate
  - Trying to decide how to correlate scale variations (e.g. between processes) is really just a bandaid, but not addressing the real problem

# Theory Correlations.

#### Correlations only come from common sources of uncertainties

• Straightforward for unc. due to input parameters  $(\alpha_s(m_Z), PDFs, ...)$ 

#### What to do about perturbative theory uncertainties?

- X Scale variations are not quantitatively reliable to begin with
- X Moreover, they are inherently ill-suited for correlations
  - Scales are not physical parameters with an uncertainty that can be propagated, they simply specify a particular perturbative scheme
  - X They are not the underlying source of uncertainty, i.e., they do not become better known at higher order
  - X Taking an envelope is not a linear operation and so does not propagate
  - X Trying to decide how to correlate scale variations (e.g. between processes) is really just a bandaid, but not addressing the real problem
- X Even the most sophisticated profile scale variations are insufficient
  - The profile shapes are designed to turn off resummation and match to fixed-order, not to capture correlations in the spectrum
  - X See e.g. inconsistent uncertainties from spectrum vs. cumulant scales

#### Power Expansion.

Define scaling variable  $au\equiv p_T^2/m_V^2, \mathcal{T}_0/m_V,...$  and expand in powers of au

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}\tau} &= \delta(\tau) + \alpha_s \Big[ \frac{\ln\tau}{\tau} + \frac{1}{\tau} + \frac{1}{\tau} + \delta(\tau) + f_1^{\mathrm{nons}}(\tau) \Big] \\ &+ \alpha_s^2 \Big[ \frac{\ln^3\tau}{\tau} + \frac{\ln^2\tau}{\tau} + \frac{\ln\tau}{\tau} + \frac{1}{\tau} + \delta(\tau) + f_2^{\mathrm{nons}}(\tau) \Big] \\ &+ \vdots & \vdots & \vdots & \ddots + \dots \Big] \\ &= & \mathrm{d}\sigma^{(0)}/\mathrm{d}\tau + \mathcal{O}(\tau)/\tau \end{aligned}$$

#### • For small $au \ll 1$

- Logarithmic terms completely dominate perturbative series
- Their all-order structure is actually simpler and more universal, which allows their resummation
- Also holds the key for a rigorous treatment of theory correlations



### Factorization and Resummation.

Leading-power spectrum factorizes into hard, collinear, and soft contributions, e.g. for  $p_T$  $\frac{d\sigma^{(0)}}{d\vec{p}_T} = \sigma_0 H(Q,\mu) \int d^2 \vec{k}_a \, d^2 \vec{k}_b \, d^2 \vec{k}_s$  $\times B_a(\vec{k}_a, Qe^Y, \mu, \nu) B_b(\vec{k}_b, Qe^{-Y}, \mu, \nu)$  $\times \frac{S(\vec{k}_s, \mu, \nu)}{\delta(\vec{p}_T - \vec{k}_a - \vec{k}_b - \vec{k}_s)}$ 

- Each function is a renormalized object with an associated RGE
  - Structure depends on type of variable but is universal for all hard processes
- $\Rightarrow$  Dependence on  $p_T$  and Q is fully determined to all orders by a coupled system of differential equations
  - Their solution leads to resummed predictions
  - Each resummation order (only) requires as ingredients anomalous dimensions and boundary conditions entering the RG solution

### Simplest Example: Multiplicative RGE.

#### All-order RGE and its solution

$$\mu rac{\mathrm{d} H(Q,\mu)}{\mathrm{d} \mu} = \gamma_H(Q,\mu) \, H(Q,\mu)$$

$$\Rightarrow \qquad H(Q,\mu) = H(Q) imes \exp \left[ \int_Q^\mu rac{\mathrm{d}\mu'}{\mu'} \gamma_H(Q,\mu') 
ight]$$

#### Necessary ingredients

Boundary condition

$$H(Q) = 1 + \alpha_s(Q) h_1 + \alpha_s^2(Q) h_2 + \cdots$$

Anomalous dimension

$$egin{aligned} \gamma_H(Q,\mu) &= lpha_s(\mu)ig[\Gamma_0+lpha_s(\mu)\,\Gamma_1+\cdotsig]\lnrac{Q}{\mu} \ &+ lpha_s(\mu)ig[\gamma_0+lpha_s(\mu)\,\gamma_1+\cdotsig] \end{aligned}$$

⇒ Resummation is determined by coefficients of three fixed-order series
 ▶ True regardless of how RGE is solved in more complicated cases

Perturbative series at leading power is determined to all orders by a coupled system of differential equations (RGEs)

- $\rightarrow$  Each resummation order only depends on a few semi-universal parameters
- → Unknown parameters at higher orders are the actual sources of perturbative theory uncertainty

|                    | boundary conditions |            |                    | anomaious unitensions |              |            |                    |
|--------------------|---------------------|------------|--------------------|-----------------------|--------------|------------|--------------------|
| order              | $h_n$               | $s_n$      | $\boldsymbol{b_n}$ | $\gamma^h_n$          | $\gamma_n^s$ | $\Gamma_n$ | $eta_n$            |
| LL                 | $h_0$               | $s_0$      | $b_0$              | _                     | _            | $\Gamma_0$ | $\beta_0$          |
| NLL'               | $h_1$               | $s_1$      | $\boldsymbol{b_1}$ | $\gamma_0^h$          | $\gamma_0^s$ | $\Gamma_1$ | $oldsymbol{eta_1}$ |
| NNLL'              | $h_2$               | $s_2$      | $\boldsymbol{b_2}$ | $\gamma_1^h$          | $\gamma_1^s$ | $\Gamma_2$ | $m{eta_2}$         |
| N <sup>3</sup> LL′ | $h_3$               | <b>S</b> 3 | $b_3$              | $\gamma^h_2$          | $\gamma_2^s$ | $\Gamma_3$ | $\beta_3$          |
| N <sup>4</sup> LL′ | $h_4$               | $s_4$      | $b_4$              | $\gamma^h_3$          | $\gamma_3^s$ | $\Gamma_4$ | $eta_4$            |

houndary conditional anomalous dimensiona

- Basic Idea: Treat them as theory nuisance parameters
  - ✓ Vary them independently to estimate the theory uncertainties
  - Impact of each independent nuisance parameter is fully correlated across all  $\checkmark$ kinematic regions and processes
  - Impact of different nuisance parameters is fully uncorrelated
- Price to Pay: Calculation becomes guite a bit more complex

### Numerous Advantages.

#### Immediately get all benefits of parametric uncertainties

- ✓ Encode correct correlations
- ✓ Can be propagated straightforwardly
  - Including Monte Carlo, BDTs, neural networks, ...
- $\checkmark\,$  Can be consistently included in a fit and constrained by data
  - Even okay to use control measurements to reduce theory uncertainties
  - Due to central-limit theorem, total theory uncertainty becomes Gaussian

### Numerous Advantages.

#### Immediately get all benefits of parametric uncertainties

- ✓ Encode correct correlations
- $\checkmark$  Can be propagated straightforwardly
  - Including Monte Carlo, BDTs, neural networks, ...
- $\checkmark\,$  Can be consistently included in a fit and constrained by data
  - Even okay to use control measurements to reduce theory uncertainties
  - Due to central-limit theorem, total theory uncertainty becomes Gaussian

#### Additional theory benefits compared to scale variations

- Uncertainties can be evaluated in one space and propagated to another (Fourier conjugate, cumulant, spectrum)
- Can do partial orders and fully exploit all known higher-order information
  - Can account for new structures appearing at higher order
- Fully factorizes the uncertainties
  - Can study perturbative convergence at level of individual building blocks
  - Much safer against accidental underestimates due to multiple parameters

### How to Vary What.

- Level 1: At given order vary parameters around their known values  $c_0 + \alpha_s(\mu) [c_1 + \alpha_s(\mu) c_2 + \cdots] \rightarrow c_0 + \alpha_s(\mu) (c_1 + \tilde{\theta}_1)$ 
  - Simpler but perhaps less robust
- Level 2: Implement the full next order in terms of unknown parameters  $c_0 + \alpha_s(\mu)[c_1 + \alpha_s(\mu) c_2 + \cdots] \rightarrow c_0 + \alpha_s(\mu)[c_1 + \alpha_s(\mu) \theta_2]$ 
  - More involved, but also more robust, allowing for maximal precision
- In general, can have combination of both

### How to Vary What.

- Level 1: At given order vary parameters around their known values  $c_0 + \alpha_s(\mu) [c_1 + \alpha_s(\mu) c_2 + \cdots] \rightarrow c_0 + \alpha_s(\mu) (c_1 + \tilde{\theta}_1)$ 
  - Simpler but perhaps less robust
- Level 2: Implement the full next order in terms of unknown parameters  $c_0 + \alpha_s(\mu)[c_1 + \alpha_s(\mu) c_2 + \cdots] \rightarrow c_0 + \alpha_s(\mu)[c_1 + \alpha_s(\mu) \theta_2]$ 
  - More involved, but also more robust, allowing for maximal precision
- In general, can have combination of both

Note: Some parameters are actually functions of additional variables

- E.g. beam function constants, auxiliary dependences (jet radius, ...)
- In principle, one needs to parametrize an unknown function
  - Can e.g. expand/parametrize in terms of appropriate functional basis
  - Compared to scale variations, choices are now explicit and testable

# $Z p_T$ Spectrum.

#### For illustration use

- Level 1:  $ilde{ heta}_i = (0 \pm 0.25) imes c_i$
- Level 2:  $\theta_i = (0 \pm 2) \times c_i$ (with the true values for  $c_i$ )

![](_page_15_Figure_4.jpeg)

Relative impact of different nuisance parameters

• *h*<sub>1</sub>

•  $b_1$ : q o q, g o q

• s<sub>1</sub>

Relative impact [%]

# $Z p_T$ Spectrum.

#### For illustration use

- Level 1:  $ilde{ heta}_i = (0 \pm 0.25) imes c_i$
- Level 2:  $\theta_i = (0 \pm 2) \times c_i$ (with the true values for  $c_i$ )

![](_page_16_Figure_4.jpeg)

Relative impact of different nuisance parameters

• *h*<sub>1</sub>

- $\gamma_0^{\mu}$
- $b_1$ : q o q, g o q
- Γ<sub>1</sub>

S1

Relative impact [%]

# $Z p_T$ Spectrum.

#### For illustration use

- ullet Level 1:  $ilde{ heta}_i = (0 \pm 0.25) imes c_i$
- Level 2:  $\theta_i = (0 \pm 2) \times c_i$ (with the true values for  $c_i$ )

![](_page_17_Figure_4.jpeg)

Relative impact of different nuisance parameters

• h<sub>2</sub>

- $\gamma_1^{\mu}$
- ullet  $b_2$ : q o q, g o q
- Γ<sub>2</sub>
- $\gamma_1^{\boldsymbol{\nu}}$
- s<sub>2</sub>

Relative impact [%]

#### W vs. Z.

![](_page_18_Figure_1.jpeg)

Frank Tackmann (DESY)

#### Drell-Yan at High Q vs. Z Pole.

![](_page_19_Figure_1.jpeg)

Frank Tackmann (DESY)

### Summary.

A theory prediction without an uncertainty is about as useful as a measurement without an uncertainty

• Uncertainties need to be reliable (small is not good enough ...)

Theory nuisance parameters overcome many problems of scale variations

- Allow to rigorously quantify pert. theory uncertainties and correlations
- Encode correct correlations
  - Between different  $p_T$  values, Q values, partonic channels, hard processes
  - Between different variables  $(\vec{p}_T, p_T^{\text{jet}}, \mathcal{T}_0, \tau, C, ...),$
  - Multi-differential cases, cases with auxiliary measurements, ...
- Can be propagated straightforwardly
  - Including Monte Carlo, BDTs, neural networks, ...
  - Crucial for consistent treatment of theory uncertainties by experiments
- $\Rightarrow$  A plethora of applications to explore ...