

Recent Development of the Quasi-PDF Approach to Calculate Parton Physics in Lattice QCD

Yong Zhao Massachusetts Institute of Technology 03/26/2019

The XVIth annual workshop on Soft-Collinear Effective Theory University of California, San Diego, 25-28, Mar. 2019

Outline

- Quasi-PDF approach
 - Physical picture and factorization formula
 - Systematic procedure to calculate parton distributions
- Quasi-TMDPDF
 - Relation of the quasi-TMDPDF and physical TMDPDF
 - Collins-Soper Kernel from lattice QCD

So far our knowledge of the PDFs mostly comes from the analysis of high-energy scattering data

NNPDF 3.1, EPJ C77 (2017)

Gluon PDF is key to the Standard Model predictions at LHC.

Yong Zhao, SCET 2019, San Diego

TMD PDF

See also STAR Collaboration, PRL116 (2016).

14 ³

Lattice QCD calculation of PDFs?

PDF:

$$q(x,\mu) = \int \frac{db^{+}}{4\pi} e^{-i\frac{1}{2}b^{+}(xP^{-})} \langle P | \bar{\psi}(b^{+}) \frac{\gamma^{-}}{2} W[b^{+},0]\psi(0) | P \rangle$$
$$b^{\pm} = t \pm z$$

- Minkowski space, real time;
- Defined on the light-cone which depends on the real time.

Light-cone PDFs not directly accessible from the lattice!

Lattice QCD:

$$t = i\tau, e^{iS} \to e^{-S}, \langle O \rangle = \int D\psi D\bar{\psi} DA O(x) e^{-S}$$

- Euclidean space, imaginary time;
- General difficulty of analytically continuing to real time.

A novel approach to calculate light-cone PDFs

Large-Momentum Effective Theory:

A novel approach to calculate light-cone PDFs

A novel approach to calculate light-cone PDFs

A novel approach to calculate light-cone PDFs $\lim_{P^z \to \infty} \tilde{q}(x, P^z) = ?$

Instead of taking $P^{z} \rightarrow \infty$ limit, one can perform an expansion for large but finite P^{z} :

 $\tilde{q}(x,P^z) = C(x,P^z) \otimes q(x) + O\left(1/(P^z)^2\right)$

• X. Xiong, X. Ji, J.-H. Zhang and Y.Z., PRD90 (2014);

• $\tilde{q}(x, P^z)$ and q(x) have the same infrared physics (nonperturbative), but different ultraviolet (UV) physics (perturbative);

 Therefore, the matching coefficient C(x, P^z) is perturbative, which controls the logarithmic dependences on P^z.

The quasi-PDF factorization

Spatial correlator in a highly boosted hadron:

Operator product expansion at small distance:

$$\tilde{O}(z,\epsilon) = \bar{\psi}(z)\gamma^{z}P \exp\left[-ig \int_{0}^{z} dz' A^{z}(z')\right]\psi(0) = \left\langle \bar{\psi}(z)\gamma^{z}Q(z) \ \bar{Q}(0)\psi(0) \right\rangle_{\mathcal{L}_{Q}=\bar{Q}in\cdot DQ}$$

$$\tilde{O}(z,\epsilon) = \sqrt{2}\left[\frac{1}{2}\sqrt{2}\right] \tilde{V}(0) = \left\langle \bar{\psi}(z)\gamma^{z}Q(z) \ \bar{Q}(0)\psi(0) \right\rangle_{\mathcal{L}_{Q}=\bar{Q}in\cdot DQ}$$

 $\tilde{O}(z,\mu) = Z_{j_1}^{-1} Z_{j_2}^{-1} e^{\delta m|z|} \tilde{O}(z,\epsilon)$

 δm renormalizes linear divergence in Wilson line self energy (under lattice regularization). Yong Zhao, SCET 2019, San Diego

- X. Ji, J.-H. Zhang, and Y.Z., PRL120 (2018);
- J. Green et al., PRL121 (2018);
- T. Ishikawa, Y.-Q. Ma, J. Qiu, S. Yoshida, PRD96 (2017).

Factorization formula

Operator product expansion (for the non-singlet case):

$$\begin{split} \tilde{O}(z,\mu) &= \sum_{n=0}^{\infty} C_n (\mu^2 z^2) \frac{(-iz)^n}{n!} \hat{z}_{\mu_1} \cdots \hat{z}_{\mu_n} O^{z\mu_1 \cdots \mu_n} + \text{higher twist} \\ O^{\mu_0 \mu_1 \cdots \mu_n}(\mu) &= Z_{n+1}^{-1}(\epsilon,\mu) \left[\bar{\psi} \gamma^{\{\mu_0 i} \widehat{D}^{\mu_1} \cdots i \widehat{D}^{\mu_n\}} \psi - \text{traces} \right] \\ a_{n+1}(\mu) &= \int_{-1}^{1} dy \ y^n q(y,\mu) \\ \langle P \mid \tilde{O}(z,\mu) \mid P \rangle &= 2 \sum_{n=0}^{\infty} C_n (\mu^2 z^2) \frac{(-iz)^n}{n!} a_{n+1}(\mu) \left[(P^z)^{n+1} - O\left(\frac{M^2}{P_z^2}\right) \right] + O(z^2 \Lambda_{\text{QCD}}^2) \\ C\left(\frac{x}{y}, \frac{\mu}{yP^z}\right) &= \int \frac{d(yzP^z)}{2\pi} e^{i\frac{x}{y}(yzP^z)} \sum_{n=0}^{\infty} C_n (\frac{\mu^2}{y^2 P_z^2} (yzP^z)^2) \frac{(-iyzP^z)^n}{n!} \\ \tilde{q}(x, P^z, \mu) &= \int \frac{dz}{4\pi} e^{ixP^z z} \langle P \mid \tilde{O}(z,\mu) \mid P \rangle = \int_{-1}^{1} \frac{dy}{|y|} C\left(\frac{x}{y}, \frac{\mu}{yP^z}\right) q(y,\mu) + O\left(\frac{M^2}{P_z^2}, \frac{\Lambda_{\text{QCD}}^2}{x^2 P_z^2}\right) \end{split}$$

• Y.-Q. Ma and J. Qiu, PRD98 (2018), PRL 120 (2018);

• T. Izubuchi, X. Ji, L. Jin, I. Stewart, and Y.Z., PRD98 (2018).

Yong Zhao, SCET 2019, San Diego

1. Simulation of the quasi PDF in lattice QCD

$$\tilde{q}(x, P^{z}, \mu) = \int \frac{dy}{|y|} C\left(\frac{x}{y}, \frac{\mu}{yP^{z}}\right) q(y, \mu) + O\left(\frac{M^{2}}{P_{z}^{2}}, \frac{\Lambda_{\text{QCD}}^{2}}{x^{2}P_{z}^{2}}\right)$$

$$\tilde{q}(x, P^{z}, \mu) = \int \frac{dy}{|y|} C\left(\frac{x}{y}, \frac{\mu}{yP^{z}}\right) q(y, \mu) + O\left(\frac{M^{2}}{P_{z}^{2}}, \frac{\Lambda_{\text{QCD}}^{2}}{x^{2}P_{z}^{2}}\right)$$

2. Renormalization of the lattice quasi PDF, and then taking the continuum limit

Nonperturbative renormalization on the lattice:

- I. Stewart and Y.Z., PRD97 (2018);
- J.-W. Chen, Y.Z. et al., LP3 Collaboration, PRD97 (2018).
- Constantinou and Panagopoulos, PRD96 (2017); C. Alexandrou et al., ETM Collaboration, NPB923 (2017).

Renormalon contribution to the power correction: Braun, Vladimirov, and Zhang, PRD99 (2019).

$$\tilde{q}(x, P^{z}, \mu) = \int \frac{dy}{|y|} C\left(\frac{x}{y}, \frac{\mu}{yP^{z}}\right) q(y, \mu) + O\left(\frac{M^{2}}{P_{z}^{2}}, \frac{\Lambda_{\text{QCD}}^{2}}{x^{2}P_{z}^{2}}\right)$$

• Matching for the quasi-PDF:

- X. Xiong, X. Ji, J.-H. Zhang and Y.Z., PRD90 (2014);
- I. Stewart and Y.Z., PRD97 (2018);
- Y.-S. Liu, Y.Z. et al. (LP3), arXiv:1807.06566;
- T. Izubuchi, X. Ji, L. Jin, I. Stewart, and Y.Z., PRD98 (2018);
- Y.-S. Liu, Y.Z. et al., arXiv:1810.10879;
- Y.Z., Int.J.Mod.Phys. A33 (2019);

4. Matching to the PDF.

 $\dot{q}(y,\mu)+O$

5. Extract *q*(*y*)

$$q(x, P^{\lambda}, \mu) = \int \frac{1}{|y|}$$

Matching for the quasi-PDF:

• X. Xiong, X. Ji, J.-H. Zhang and Y.Z., PRD90 (2014);

dy

- I. Stewart and Y.Z., PRD97 (2018);
- Y.-S. Liu, Y.Z. et al. (LP3), arXiv:1807.06566;
- T. Izubuchi, X. Ji, L. Jin, I. Stewart, and Y.Z., PRD98 (2018);
- Y.-S. Liu, Y.Z. et al., arXiv:1810.10879;
- Y.Z., Int.J.Mod.Phys. A33 (2019);

4. Matching to the PDF.

 $\left(\frac{M^2}{P_{\tau}^2}, \frac{\Lambda_{\rm QCD}^2}{x^2 P_{\tau}^2}\right)$

Lattice calculation of the iso-vector

Lin et al., PRD91 (2015)

Lattice renormalization:

- X. Ji, J.-H. Zhang, and Y.Z., PRL120 (2018);
- J.-W. Chen, Y.Z. et al. (LP3), PRD97 (2018).

Perturbative matching:

- I. Stewart and Y.Z., PRD97 (2018);
- Y.-S. Liu, Y.Z. et al. (LP3), arXiv:1807.06566;
- T. Izubuchi, X. Ji, L. Jin, I. Stewart, and Y.Z., PRD98 (2018);
- Y.-S. Liu, Y.Z. et al. (LP3), arXiv:1810.10879.

Improved Fourier transform:

- H.-W. Lin et al. (LP3), PRD98 (2018).
- Yong Zhao, SCET 2019, San Diego

2.

- Nucleon momentum, from 1.4 GeV to 3.0 GeV;
 - Pion mass, from 310 MeV to 135 MeV (physical point).

Lattice calculation of the iso-vector

Lin et al., PRD91 (2015)

- X. Ji, J.-H. Zhang, and Y.Z., PRL120 (2018);
- J.-W. Chen, Y.Z. et al. (LP3), PRD97 (2018).

Perturbative matching:

- I. Stewart and Y.Z., PRD97 (2018);
- Y.-S. Liu, Y.Z. et al. (LP3), arXiv:1807.06566;
- T. Izubuchi, X. Ji, L. Jin, I. Stewart, and Y.Z., PRD98 (2018);
- Y.-S. Liu, Y.Z. et al. (LP3), arXiv:1810.10879.

Improved Fourier transform:

• H.-W. Lin et al. (LP3), PRD98 (2018).

- Nucleon momentum, from 1.4 GeV to 3.0 GeV;
 - Pion mass, from 310 MeV to 135 MeV (physical point).

J.W. Chen, Y.Z. et al. (LP3), arXiv:1803.04393.

2.

Lattice calculation of the iso-vector PDFs

Similar improvements also achieved by ETMC collaboration, PRL121 (2018), PRD98 (2018).

The first case of PDFs where lattice calculation outperforms experiments!

Outline

- Quasi-PDF approach
 - Physical picture and factorization formula
 - Systematic procedure to calculate parton distributions
- Quasi-TMDPDF
 - Relation of the quasi-TMDPDF and physical TMDPDF
 - Collins-Soper Kernel from lattice QCD

TMDPDFs

• TMDPDF factorization for Drell-Yan:

- Collins, Soper and Sterman, NPB250 (1985); Collins, 2011;
- Becher and Neubert, EPJC71 (2011);
- Echevarria, Idilbi and Scimemi, JHEP07 (2012), PLB26 (2013);
- Chiu, Jain, Neil and Rothstein, JHEP05 (2012), PRL108 (2012);
- Li, Neil and Zhu, arXiv: 1604.00392.

For a review of different schemes, see:

• Ebert, Stewart and Y.Z., arXiv:1901.03685 (Appendix B).

Yong Zhao, SCET 2019, San Diego

ij ii

Evolution of TMDPDFs

Renormalization scale evolution:

$$\mu \frac{d}{d\mu} f_i^{\text{TMD}}(x, b_T, \mu, \zeta) = \gamma_{\mu}^i(\mu, \zeta) f_i^{\text{TMD}}(x, b_T, \mu, \zeta)$$

Collins-Soper evolution:

$$\zeta \frac{d}{d\zeta} f_i^{\text{TMD}}(x, b_T, \mu, \zeta) = \frac{1}{2} \gamma_{\zeta}^i(\mu, b_T) f_i^{\text{TMD}}(x, b_T, \mu, \zeta)$$

 $\gamma_{\zeta}(\mu, b_T)$: Collins-Soper kernel, nonperturbative when $b_T \sim \Lambda_{QCD}^{-1}$.

Solution to evolution equations:

$$f_i^{\text{TMD}}(x, \overrightarrow{b}_T, \mu, \zeta) = f_i^{\text{TMD}}(x, \overrightarrow{b}_T, \mu_0, \zeta_0) \exp\left[\int_{\mu_0}^{\mu} \frac{d\mu'}{\mu'} \gamma_{\mu}^i(\mu', \zeta_0)\right] \exp\left[\frac{1}{2} \gamma_{\zeta}^i(\mu, b_T) \ln\frac{\zeta}{\zeta_0}\right]$$

- μ , ζ : factorization scales, μ >> Λ_{QCD} , ζ ~ Q^2 ;
- μ_0 , ζ_0 : initial or reference scales, measured in experiments or determined from lattice (~2 GeV).

Quasi-beam function

Beam function:

Quasi-beam function on lattice:

$$\begin{split} \tilde{B}_{q}(x,\overrightarrow{b}_{T},a,L,P^{z}) &= \int \frac{db^{z}}{2\pi} e^{ib^{z}(xP^{z})} \tilde{B}_{q}(b^{z},\overrightarrow{b}_{T},a,L,P^{z}) \\ &= \int \frac{db^{z}}{2\pi} e^{ib^{z}(xP^{z})} \langle P \,|\, \bar{q}(b^{\mu}) W_{\hat{z}}(b^{\mu};L-b^{z}) \frac{\Gamma}{2} W_{T}(L\hat{z};\overrightarrow{b}_{T},\overrightarrow{0}_{T}) W_{\hat{z}}^{\dagger}(0)q(0) \,|\, P \rangle \end{split}$$

Finite Wilson line length L due to the finite lattice volume.

Yong Zhao, SCET 2019, San Diego

Quasi-soft function

• Soft function:

Quasi-soft function on lattice (naive definition):

 $\tilde{S}_{q}(b_{T},a,L) = \frac{1}{N_{c}} \langle 0 | \operatorname{Tr} \left[S_{\hat{z}}^{\dagger}(\overrightarrow{b}_{T};L) S_{-\hat{z}}(\overrightarrow{b}_{T};L) S_{T}(L\hat{z};\overrightarrow{b}_{T},\overrightarrow{0}_{T}) S_{-\hat{z}}^{\dagger}(\overrightarrow{0}_{T};L) S_{n}(\overrightarrow{0}_{T};L) S_{T}(-L\hat{z};\overrightarrow{b}_{T},\overrightarrow{0}_{T}) \right] | 0 \rangle$

Impact of finite-length Wilson lines

- Linear power divergence under lattice regularization $\sim L/a$
- Finite *L* regulates rapidity divergences:
 - Light-like Wilson lines

$$g_{s}t^{a}n^{\mu}\frac{1-e^{ik^{+}L}}{k^{+}} \xrightarrow{L \to \infty} g_{s}t^{a}n^{\mu}\frac{1}{k^{+}}$$
$$I_{\text{div}} = \int dk^{+}dk^{-}\frac{1}{(k^{+}k^{-})^{1+\epsilon}} \longrightarrow \int dk^{+}dk^{-}\frac{1}{(k^{+}k^{-})^{\epsilon}}\frac{1-e^{ik^{+}L}}{k^{+}}\frac{1-e^{ik^{-}L}}{k^{-}}$$

Space-like Wilson lines

$$\tilde{I}_{\rm div} = \int dk_0 dk_z \frac{1}{(k_0^2 - k_z^2)^{\epsilon}} \frac{1}{k_z^2} \longrightarrow \int dk_0 dk_z \frac{1}{(k_0^2 - k_z^2)^{\epsilon}} \frac{1 - e^{ik^z L}}{k^z} \frac{1 - e^{-ik^z L}}{k$$

 By construction the L dependence has to be canceled out between the quasi-beam and soft functions.

Yong Zhao, SCET 2019, San Diego

Quasi-TMDPDF

Quasi-TMDPDF in the MSbar scheme:

$$\tilde{f}_{q}^{\text{TMD}}(x,\vec{b}_{T},\mu,P^{z}) = \int \frac{db^{z}}{2\pi} e^{ib^{z}(xP^{z})} \tilde{Z}'(b^{z},\mu,\tilde{\mu}) \tilde{Z}_{\text{UV}}(b^{z},\mu,a) \frac{\tilde{B}_{q}(b^{z},\vec{b}_{T},a,L,P^{z})}{\sqrt{\tilde{S}_{q}(b_{T},a,L)}}$$

Schematic factorization formula:

$$\widetilde{f}_{i}^{\text{TMD}}(x, \overrightarrow{b}_{T}, \mu, P^{z}) \sim \sum_{j} C_{ij}^{\text{TMD}}(x, \mu, P^{z}) \exp\left[\frac{1}{2}\gamma_{\zeta}^{j}(\mu, b_{T}) \ln \frac{(2xP^{z})^{2}}{\zeta}\right]$$
$$\times f_{j}^{\text{TMD}}(x, \overrightarrow{b}_{T}, \mu, \zeta) + \mathcal{O}\left(\frac{b_{T}}{L}, \frac{1}{b_{T}P^{z}}, \frac{1}{P^{z}L}\right)$$
Hierarchy of scales: $b^{z} \sim \frac{1}{P^{z}} \ll b_{T} \ll L, \quad b_{T} \sim \Lambda_{\text{QCD}}^{-1}$

One-loop test

• Physical TMDPDF:

$$f_q^{\text{TMD}(1)}(x, \overrightarrow{b}_T, \epsilon, \zeta) = \frac{\alpha_s C_F}{2\pi} \left[-\left(\frac{1}{\epsilon_{\text{IR}}} + \mathbf{L}_b\right) \frac{1+x^2}{1-x} + (1-x) \right]_+ \theta(x)\theta(1-x)$$

$$b_0 = 2e^{-\gamma_E}$$

$$\mathbf{L}_b = \ln \frac{b_T^2 \mu^2}{b_0^2} + \frac{\alpha_s C_F}{2\pi} \delta(1-x) \left[\frac{1}{\epsilon_{\text{UV}}^2} + \frac{1}{\epsilon_{\text{UV}}} \left(\frac{3}{2} + \mathbf{L}_\zeta\right) + \frac{1}{2} - \frac{\pi^2}{12} \right]$$

$$\mathbf{L}_\zeta = \ln \frac{\mu^2}{\zeta} + \frac{\alpha_s C_F}{2\pi} \delta(1-x) \left[-\frac{1}{2} \mathbf{L}_b^2 + \frac{3}{2} \mathbf{L}_b + \mathbf{L}_b \mathbf{L}_\zeta \right] + \frac{3}{2} (1-x) \left[-\frac{1}{2} \mathbf{L}_b^2 + \frac{3}{2} \mathbf{L}_b + \mathbf{L}_b \mathbf{L}_\zeta \right]$$

$$\mathbf{J}_i = \frac{1}{2} \frac{1}{2$$

Naive quasi-TMDPDF:

$$\tilde{f}_q^{\text{TMD}(1)}(x,\vec{b}_T,\epsilon,P^z) = \frac{\alpha_s C_F}{2\pi} \left[-\left(\frac{1}{\epsilon_{\text{IR}}} + \mathbf{L}_b\right) \frac{1+x^2}{1-x} + (1-x) \right]_+^{\text{arXiv:1901.03685.}} \theta(x)\theta(1-x)$$

Same collinear divergence;

b_T dependences do not match even if one sets ζ = 2xP^z

• No perturbative matching when $b_T \sim \Lambda_{\rm QCD}^{-1}$ Yong Zhao, SCET 2019, San Diego

$$+\frac{\alpha_{s}C_{F}}{2\pi}\delta(1-x)\left[\frac{3}{2}\frac{1}{\epsilon_{\rm UV}}-\frac{1}{2}\ln^{2}\frac{\mu^{2}}{(2xP^{z})^{2}}-\ln\frac{\mu^{2}}{(2xP^{z})^{2}}-\frac{3}{2}\right]$$
$$+\frac{\alpha_{s}C_{F}}{2\pi}\delta(1-x)\left[-\frac{1}{2}\mathbf{L}_{b}^{2}+\frac{5}{2}\mathbf{L}_{b}+\mathbf{L}_{b}\ln\frac{\mu^{2}}{(2xP^{z})^{2}}\right]$$

Ebert, Stewart and Y.Z.,

One-loop test

• Physical TMDPDF:

$$f_q^{\text{TMD}(1)}(x, \overrightarrow{b}_T, \epsilon, \zeta) = \frac{\alpha_s C_F}{2\pi} \left[-\left(\frac{1}{\epsilon_{\text{IR}}} + \mathbf{L}_b\right) \frac{1+x^2}{1-x} + (1-x) \right]_+ \theta(x)\theta(1-x)$$

$$b_0 = 2e^{-\gamma_E}$$

$$\mathbf{L}_b = \ln \frac{b_T^2 \mu^2}{b_0^2} + \frac{\alpha_s C_F}{2\pi} \delta(1-x) \left[\frac{1}{\epsilon_{\text{UV}}^2} + \frac{1}{\epsilon_{\text{UV}}} \left(\frac{3}{2} + \mathbf{L}_\zeta\right) + \frac{1}{2} - \frac{\pi^2}{12} \right]$$

$$\mathbf{L}_\zeta = \ln \frac{\mu^2}{\zeta} + \frac{\alpha_s C_F}{2\pi} \delta(1-x) \left[-\frac{1}{2} \mathbf{L}_b^2 + \frac{3}{2} \mathbf{L}_b + \mathbf{L}_b \mathbf{L}_\zeta \right]$$

Bent quasi-soft function:

• Ebert, Stewart and Y.Z., arXiv:1901.03685.

23

$$\tilde{f}_{q}^{\text{TMD}(1)}(x, \vec{b}_{T}, \epsilon, P^{z}) = \frac{\alpha_{s}C_{F}}{2\pi} \left[-\left(\frac{1}{\epsilon_{\text{IR}}} + \mathbf{L}_{b}\right) \frac{1+x^{2}}{1-x} + (1-x) \right]_{+} \theta(x)\theta(1-x) + \frac{\theta(x)\theta(1-x)}{1-x} + \frac{\alpha_{s}C_{F}}{2\pi}\delta(1-x) \left[\frac{3}{2}\frac{1}{\epsilon_{\text{UV}}} - \frac{1}{2}\ln^{2}\frac{\mu^{2}}{(2xP^{z})^{2}} - \ln\frac{\mu^{2}}{(2xP^{z})^{2}} - \frac{3}{2} \right] + \frac{\alpha_{s}C_{F}}{2\pi}\delta(1-x) \left[-\frac{1}{2}\mathbf{L}_{b}^{2} + \frac{3}{2}\mathbf{L}_{b} + \mathbf{L}_{b}\ln\frac{\mu^{2}}{(2xP^{z})^{2}} \right]$$

Correct relation between quasi-TMDPDF and TMDPDF Ebert, Stewart and Y.Z., PRD99 (2019), arXiv:1901.03685.

• Factorization formula (for the non-singlet case):

 $\tilde{f}_{\rm ns}^{\rm TMD}(x,\vec{b}_{T},\mu,P^{z}) = C_{\rm ns}^{\rm TMD}(\mu,xP^{z}) g_{q}^{S}(b_{T},\mu) \exp\left[\frac{1}{2}\gamma_{\zeta}^{q}(\mu,b_{T})\ln\frac{(2xP^{z})^{2}}{\zeta}\right] f_{\rm ns}^{\rm TMD}(x,\vec{b}_{T},\mu,\zeta)$ $C_{\rm ns}^{\rm TMD}(\mu,xP^{z}) = 1 + \frac{\alpha_{s}C_{F}}{2\pi} \left[-\frac{1}{2}\ln^{2}\frac{(2xP^{z})^{2}}{\mu^{2}} + \ln\frac{(2xP^{z})^{2}}{\mu^{2}} - 2 + \frac{\pi^{2}}{12}\right] \qquad g_{q}^{S_{\rm naive}}(b_{T},\mu) = 1 + \frac{\alpha_{s}C_{F}}{2\pi}L_{b} + O(\alpha_{s}^{2})$ $g_{q}^{S_{\rm bent}}(b_{T},\mu) = 1 + O(\alpha_{s}^{2})$

- g^s; does not depend on the external state or quark flavor, but can be different between quark and gluon;
- For the bent quasi-soft function, g^s, needs to be checked at higher loop orders;
- One can form ratios of TMDPDFs to cancel out g^{s_i} .

Lattice calculation of the ratios of the TMDPDF moments: Hagler, Musch, Engelhardt, Yoon, et al., EPL88 (2009), PRD83 (2011), PRD85 (2012), PRD93 (2016), arXiv:1601.05717, PRD96 (2017)

Collins-Soper kernel from lattice

- Proposal to calculate $\gamma_{\zeta}(\mu, b_T)$ with Lattice QCD

Ebert, Stewart and Y.Z., PRD99 (2019).

$$\begin{split} \gamma_{\zeta}^{q}(\mu, b_{T}) &= \frac{1}{\ln(P_{1}^{z}/P_{2}^{z})} \ln \frac{C_{\rm ns}^{\rm TMD}(\mu, xP_{2}^{z}) \tilde{f}_{\rm ns}^{\rm TMD}(x, \vec{b}_{T}, \mu, P_{1}^{z})}{C_{\rm ns}^{\rm TMD}(\mu, xP_{1}^{z}) \tilde{f}_{\rm ns}^{\rm TMD}(x, \vec{b}_{T}, \mu, P_{2}^{z})} \\ &= \frac{1}{\ln(P_{1}^{z}/P_{2}^{z})} \ln \frac{C_{\rm ns}^{\rm TMD}(\mu, xP_{2}^{z}) \int db^{z} \ e^{ib^{z}xP_{1}^{z}} \tilde{Z}'(b^{z}, \mu, \tilde{\mu}) \tilde{Z}_{\rm UV}(b^{z}, \tilde{\mu}, a) \tilde{B}_{\rm ns}(b^{z}, \vec{b}_{T}, a, L, P_{1}^{z})}{C_{\rm ns}^{\rm TMD}(\mu, xP_{2}^{z}) \int db^{z} \ e^{ib^{z}xP_{2}^{z}} \tilde{Z}'(b^{z}, \mu, \tilde{\mu}) \tilde{Z}_{\rm UV}(b^{z}, \tilde{\mu}, a) \tilde{B}_{\rm ns}(b^{z}, \vec{b}_{T}, a, L, P_{2}^{z})} \end{split}$$

- g^s as well as the quasi-soft function gets canceled in the ratio;
- The quasi-beam function includes a linear power divergence that depends on b^z/a, which needs to be nonperturbatively renormalized by *Ž*_{UV}(b^z, μ, a) before the Fourier transform.

 $|\vec{b}|$

Summary and Outlook

In 5~10 years, expect:

- Lattice calculation of quark PDFs to be within 10% accuracy or even better;
- Determination of sea quark distributions to be better than experiments;
- Reaching smaller x region with larger nucleon momentum;
- Lattice calculation of gluon PDFs;

Renormalization: Zhang et al., arXiv:1808.10824; Li et al., PRL122 (2019); Perturbative matching: Wang et al., EPJC78 (2018), JHEP1805 (2018); First lattice attempt: Fan et al., PRL121 (2018).

- Lattice calculation of gluon spin and parton orbital angular momentum (OAM);
- Lattice calculation of GPDs;
- First lattice calculation of gluon spin: Y.-B. Yang, R. S. Suffian, Y.Z., et al.
 - (χQCD), PRL118 (2017).
- Method to calculate canonical OAM: Y.Z., Liu and Yang, PRD93 (2016)

Perturbative matching: Liu, Y.Z. et al., arXiv:1902.00307.

Lattice calculation of transverse structures such the TMDPDFs.

The next frontier of QCD

Electron-Ion Collider!

- Highly Polarized Beams
- Large Kinematic Range
- High Intensity Beams

3-D tomography of the nucleon:

- More precise PDFs
- Sea quark distributions
- Gluonic structure of nucleon and nuclei
- Small-x physics
- Gluon polarization and parton orbital angular momentum
- TMDPDFs, GPDs

A. Accardi et al., Eur.Phys.J. A52 (2016) no.9, 268.

•

$$B_{i}(x, \overrightarrow{b}_{T}, \mu, \frac{\zeta}{\nu^{2}}) = \lim_{\epsilon \to 0, \tau \to 0} Z_{B}^{i}(b_{T}, \mu, \nu, \epsilon, \tau, xP^{-}) \frac{B_{i}^{\text{unsub}}(x, \overrightarrow{b}_{T}, \epsilon, \tau, xP^{-})}{S_{i}^{0}(b_{T}, \epsilon, \tau)}$$

$$S^{i}(b_{T}, \mu, \nu) = \lim_{\epsilon \to 0, \tau \to 0} Z^{i}_{S}(b_{T}, \mu, \nu, \epsilon, \tau) S^{i}(b_{T}, \epsilon, \tau)$$

$$\tilde{f}_{i}^{\text{TMD}}(x, \overrightarrow{b}_{T}, \mu, \tilde{P}^{z}) \sim \sum_{j} \int_{-1}^{1} \frac{dy}{|y|} C_{ij}^{\text{TMD}}\left(x, y, \mu, \tilde{P}^{z}, \tilde{\zeta}(x, \tilde{P}^{z})\right)$$

$$\times \exp\left[\frac{1}{2}\gamma_{\zeta}^{j}(\mu, b_{T})\ln\frac{\tilde{\zeta}(x, \tilde{P}^{z})}{\zeta}\right]f_{j}^{\text{TMD}}(y, \overrightarrow{b}_{T}, \mu, \zeta)$$

28

Yong Zhao, SCET 2019, San Diego