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Outline

• Quasi-PDF approach 

• Physical picture and factorization formula 

• Systematic procedure to calculate parton distributions 

• Quasi-TMDPDF 

• Relation of the quasi-TMDPDF and physical TMDPDF 

• Collins-Soper Kernel from lattice QCD
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So far our knowledge of the PDFs mostly comes 
from the analysis of high-energy scattering data
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NNPDF 3.1, EPJ C77 (2017)

Unpolarized PDF
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Figure 3.1: The NNPDF3.1 NNLO PDFs, evaluated at µ2 = 10 GeV2 (left) and µ
2 = 104 GeV2 (right).

3.3 Parton distributions

We now inspect the baseline NNPDF3.1 parton distributions, and compare them to NNPDF3.0
and to MMHT14 [7], CT14 [6] and ABMP16 [8]. The NNLO NNPDF3.1 PDFs are displayed
in Fig. 3.1. It can be seen that although charm is now independently parametrized, it is still
known more precisely than the strange PDF. The most precisely determined PDF over most of
the experimentally accessible range of x is now the gluon, as will be discussed in more detail
below.

In Fig. 3.2 we show the distance between the NNPDF3.1 and NNPDF3.0 PDFs. According
to the definition of the distance given in Ref. [98], d ' 1 corresponds to statistically equivalent
sets. Comparing two sets with Nrep = 100 replicas, a distance of d ' 10 corresponds to a
di↵erence of one-sigma in units of the corresponding variance, both for central values and for
PDF uncertainties. For clarity only the distance between the total strangeness distributions
s
+ = s + s̄ is shown, rather than the strange and antistrange separately. We find important
di↵erences both at the level of central values and of PDF errors for all flavors and in the entire
range of x. The largest distance is found for charm, which is independently parametrized in
NNPDF3.1, while it was not in NNPDF3.0. Aside from this, the most significant distances are
seen in light quark distributions at large x and strangeness at medium x.

In Fig. 3.3 we compare the full set of NNPDF3.1 NNLO PDFs with NNPDF3.0. The
NNPDF3.1 gluon is slightly larger than its NNPDF3.0 counterpart in the x

⇠
< 0.03 region, while

it becomes smaller at larger x, with significantly reduced PDF errors. The NNPDF3.1 light
quarks and strangeness are larger than 3.0 at intermediate x, with the largest deviation seen
for the strange and antidown PDFs, while at both small and large x there is good agreement
between the two PDF determinations. The best-fit charm PDF of NNPDF3.1 is significantly

23

xq(x, Q2 = 10 GeV2)

🤔
👍

TMD PDF
Existing global analyses of TMDPDFs or TMD 
fragmentation functions rely on the modeling 
of their nonperturbative evolution.
• Kang, Prokudin, Sun and Yuan, PRD93 (2016); 
• Bacchetta et al., JHEP1706 (2017); 
• Bertone, Scimemi and Vladimirov, arXiv:1902.08474.

The most definite experimental finding so 
far is the sign change of the Sivers 
function in SIDIS and Drell-Yan processes.

Gluon PDF is key to the Standard 
Model predictions at LHC.

Midterm Review, Part III: Phenomenology - A. Prokudin �14

 Sign change of Sivers function 

Brodsky, Hwang, Schmidt (01), Collins (02)

Profound consequence of gauge invariance:  Sivers function has opposite sign when gluon 
couple after quark scatters (SIDIS) or before quark annihilates (Drell-Yan)

Crucial test of TMD and collinear factorizations 
Several labs worldwide aim at measurement of  
Sivers effect in Drell-Yan: BNL, COMPASS, FERMILAB etc  
The verification of the sign change is a DOE milestone

STAR Collab. Phys. Rev. Lett. 116, 132301 (2016)

First experimental hints on the sign change:

COMPASS  Phys.Rev.Lett. 119 (2017) 12002 
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KQ → Kang, Qiu (2009)

See also STAR Collaboration, PRL116 (2016).
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Lattice QCD calculation of PDFs?
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PDF: 

• Minkowski space, real time; 
• Defined on the light-cone which depends on 

the real time.

Lattice QCD: 

• Euclidean space, imaginary time; 
• General difficulty of analytically continuing to 

real time.

Light-cone PDFs not directly 
accessible from the lattice!

b± = t ∓ z

b+ b−

q(x, μ) = ∫
db+

4π
e−i 1

2 b+(xP−)⟨P | ψ̄(b+)
γ−

2
W[b+,0]ψ(0) |P⟩

t = iτ, eiS → e−S, ⟨O⟩ = ∫ DψDψ̄DA O(x)e−S
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A novel approach to calculate 
light-cone PDFs

• Large-Momentum Effective Theory: 

�5

q̃(x, Pz)

• Ji, PRL110 (2013); 
• X. Ji, J.-H. Zhang, and Y.Z., PRL111 (2013); 
• Ji, SCPMA57 (2014).

PDF          : 
Cannot be calculated 
on the lattice

Quasi-PDF               : 
Directly calculable on the 
lattice

q(x)
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A novel approach to calculate 
light-cone PDFs

• Large-Momentum Effective Theory: 

�5

q̃(x, Pz)

• Ji, PRL110 (2013); 
• X. Ji, J.-H. Zhang, and Y.Z., PRL111 (2013); 
• Ji, SCPMA57 (2014).

PDF          : 
Cannot be calculated 
on the lattice

Quasi-PDF               : 
Directly calculable on the 
lattice

q(x)

Calculating the quasi-PDF at 
hadron momentum Pz is 
equivalent to boosting it.

Related by Lorentz boost
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A novel approach to calculate 
light-cone PDFs
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lim
Pz→∞

q̃(x, Pz) = ?

Instead of taking Pz→∞ limit, one can 
perform an expansion for large but finite Pz:

q̃(x, Pz) = C (x, Pz) ⊗ q(x)+O (1/(Pz)2)

•              and         have the same infrared physics (nonperturbative), 
but different ultraviolet (UV) physics (perturbative); 

• Therefore, the matching coefficient C(x, Pz) is perturbative, which 
controls the logarithmic dependences on Pz.

q̃(x, Pz) q(x)
Pz

Pz

∞

∞

• X. Xiong, X. Ji, J.-H. Zhang and Y.Z., PRD90 (2014);
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The quasi-PDF factorization
• Spatial correlator in a highly boosted hadron: 

• Operator product expansion at small distance: 

�7

z z

Re [⟨P = 0 | Õ(z) |P = 0⟩] Re [⟨P | Õ(z) |P⟩]

∼ Λ−1
QCD ≪ Λ−1

QCD

Õ(z, ϵ) = ψ̄(z)γzP exp [−ig∫
z

0
dz′�Az(z′�)] ψ(0) = ⟨ψ̄(z)γzQ(z) Q̄(0)ψ(0)⟩ℒQ=Q̄in⋅DQ

Õ(z, μ) = Z−1
j1 Z−1

j2 eδm|z|Õ(z, ϵ)
• X. Ji, J.-H. Zhang, and Y.Z., PRL120 (2018);  
• J. Green et al., PRL121 (2018);  
• T. Ishikawa, Y.-Q. Ma, J. Qiu, S. Yoshida, PRD96 (2017).

H Dorn, Fortschr. Phys. 34 (1986)

j1(z) j2(0)

𝛿m renormalizes linear divergence in Wilson 
line self energy (under lattice regularization).
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Factorization formula
• Operator product expansion (for the non-singlet case): 

�8

Õ(z, μ) = ∑
n=0

Cn(μ2z2)
(−iz)n

n!
̂zμ1

⋯ ̂zμn
Ozμ1⋯μn + higher twist

Oμ0μ1⋯μn(μ) = Z−1
n+1(ϵ, μ) [ψ̄γ{μ0iDμ1⋯iDμn}ψ − traces]

⟨P | Õ(z, μ) |P⟩ = 2∑
n=0

Cn(μ2z2)
(−iz)n

n!
an+1(μ)[(Pz)n+1 − O( M2

P2
z

)] + O(z2Λ2
QCD)

an+1(μ) = ∫
1

−1
dy ynq(y, μ)

q̃(x, Pz, μ) = ∫
dz
4π

eixPzz⟨P | Õ(z, μ) |P⟩ = ∫
1

−1

dy
|y |

C ( x
y

,
μ

yPz )q(y, μ)+O ( M2

P2
z

,
Λ2

QCD

x2P2
z )

• Y.-Q. Ma and J. Qiu, PRD98 (2018), PRL 120 (2018); 
• T. Izubuchi, X. Ji, L. Jin, I. Stewart, and Y.Z., PRD98 (2018).

C ( x
y

,
μ

yPz ) ≡ ∫
d(yzPz)

2π
ei x

y (yzPz) ∑
n=0

Cn(
μ2

y2P2
z

(yzPz)2)
(−iyzPz)n

n!
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Systematic procedure of 
calculating the PDFs
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q̃(x, Pz, μ) = ∫
dy
|y |

C ( x
y

,
μ

yPz )q(y, μ)+O ( M2

P2
z

,
Λ2

QCD

x2P2
z )

1. Simulation of the quasi 
PDF in lattice QCD	
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Systematic procedure of 
calculating the PDFs
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q̃(x, Pz, μ) = ∫
dy
|y |

C ( x
y

,
μ

yPz )q(y, μ)+O ( M2

P2
z

,
Λ2

QCD

x2P2
z )

2. Renormalization of the 
lattice quasi PDF, and then 
taking the continuum limit	

Nonperturbative renormalization on the lattice: 
• I. Stewart and Y.Z., PRD97 (2018); 
• J.-W. Chen, Y.Z. et al., LP3 Collaboration, PRD97 (2018). 
• Constantinou and Panagopoulos, PRD96 (2017); C. Alexandrou 

et al., ETM Collaboration, NPB923 (2017).
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Systematic procedure of 
calculating the PDFs
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q̃(x, Pz, μ) = ∫
dy
|y |

C ( x
y

,
μ

yPz )q(y, μ)+O ( M2

P2
z

,
Λ2

QCD

x2P2
z )

• O Nachtmann, NPB63 (1973);  
• J.W. Chen et al. (LP3), NPB911 (2016).

3. Subtraction of power 
corrections	

Renormalon contribution to the power correction: 
Braun, Vladimirov, and Zhang, PRD99 (2019).

q(x) ⋅ O (
Λ2

QCD

x2(1 − x)P2
z )
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Systematic procedure of 
calculating the PDFs
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q̃(x, Pz, μ) = ∫
dy
|y |

C ( x
y

,
μ

yPz )q(y, μ)+O ( M2

P2
z

,
Λ2

QCD

x2P2
z )

4. Matching to the PDF.	

• Matching for the quasi-PDF: 
• X. Xiong, X. Ji, J.-H. Zhang and Y.Z., PRD90 (2014); 
• I. Stewart and Y.Z., PRD97 (2018); 
• Y.-S. Liu, Y.Z. et al. (LP3), arXiv:1807.06566; 
• T. Izubuchi, X. Ji, L. Jin, I. Stewart, and Y.Z., PRD98 

(2018); 
• Y.-S. Liu, Y.Z. et al., arXiv:1810.10879; 
• Y.Z., Int.J.Mod.Phys. A33 (2019);
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Systematic procedure of 
calculating the PDFs

�12

q̃(x, Pz, μ) = ∫
dy
|y |

C ( x
y

,
μ

yPz )q(y, μ)+O ( M2

P2
z

,
Λ2

QCD

x2P2
z )

4. Matching to the PDF.	

• Matching for the quasi-PDF: 
• X. Xiong, X. Ji, J.-H. Zhang and Y.Z., PRD90 (2014); 
• I. Stewart and Y.Z., PRD97 (2018); 
• Y.-S. Liu, Y.Z. et al. (LP3), arXiv:1807.06566; 
• T. Izubuchi, X. Ji, L. Jin, I. Stewart, and Y.Z., PRD98 

(2018); 
• Y.-S. Liu, Y.Z. et al., arXiv:1810.10879; 
• Y.Z., Int.J.Mod.Phys. A33 (2019);

5. Extract q(y)
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Lattice calculation of the iso-vector 
PDF                       

�13

3

FIG. 2: The physical quark distribution u(x)�d(x) extracted
from Fig. 1 after making Mn

N/Pn
z corrections and one-loop

corrections. The red, green and cyan bands correspond to
Pz 2 {1, 2, 3} 2⇡

L . The two higher-momentum distributions
are now almost identical.

from the cuto↵ scheme is correct to the leading logarithm
but not for the numerical constant. This is a compromise
that we make at the moment and will be rectified in the
future.

At low nucleon momenta, the nucleon-mass correc-
tions are as important as the one-loop correction, if
not more. Using the operator product expansion,
the nonlocal operator in Eq. 1 can be expanded asP1

n=1 Cn(z)On(0), where the tree-level Wilson coe�-

cient Cn(z) = (iz)n�1
/ (n� 1)! + O(↵s) and On(0) =

 ̄(0)�z (iDz)n�1
 (0). The tensor On is symmetric but

not traceless, so it is a mixture of a twist-2 and higher-
twist operators with the matrix element

D
~P

���On(0)
���~P

E
= 2anP

n
z Kn +O(⇤2

QCD/P
2
z ) (4)

entirely expressible in terms of an =
R
dx x

n�1
q(x), the

n
th moment of the desired parton distribution, and Kn =

1+
Pimax

i=1 C
n�i
i (M2

N/4P 2
z )

i where C is the binomial func-

tion, and imax = n�(n mod 2)
2 . The O(⇤2

QCD/P
2
z ) term is

dynamical higher-twist correction. As one can see, the
actual nucleon-mass correction parameter is M2

N/4P 2
z .

After one-loop and nucleon-mass corrections, the re-
sulting distributions are shown in Fig. 2. For the nu-
clear momenta under consideration, both types of cor-
rection are important. As one can see, the corrected
distributions have much reduced Pz dependence, partic-
ularly for the two largest momenta. This suggests that

well known that this omits important tadpole contributions [15].
As a compromise, we take ↵s = 0.20±0.04, with the central value
determined by the prescription of Ref. [15] and the uncertainty
included as a part of the theoretical systematics.

MSTW
CJ12
Lattice
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FIG. 3: The unpolarized isovector quark distribution u(x)�
d(x) computed on the lattice after extrapolation in Pz is
shown as the purple band, compared with the global analyses
by MSTW [18] (brown dotted line), and CTEQ-JLab (CJ12,
green dashed line) [19] with medium nuclear correction near
(1.3 GeV)2. The negative x region is the sea quark distribu-
tion with q(x) = �q(�x). The lattice uncertainty band in
the plot reflects the 68% C.L. The global fit uncertainty is
not shown in the figure.

the corrections to the quasi-distributions will generate
a Pz-independent physical distribution. The remaining
small di↵erence between the two large-momenta results
could be due to the dynamical higher-twist corrections
O(⇤2

QCD/P
2
z ), which is expected to be smaller than the

nucleon-mass e↵ect. As for the lowest nucleon momen-
tum (430 MeV) result, the LaMET expansion might not
be very e↵ective, although the peak after corrections has
been shifted to near 0.8.

Finally, we find a Pz-independent distribution by tak-
ing into account the O(⇤2

QCD/P
2
z ) correction by extrap-

olating using the form a + b/P
2
z . The final unpolarized

distribution u(x)�d(x) is shown in Fig. 3. The distribu-
tion for the |x| > 1 region is within 2 sigma of zero; thus,
we recover the correct support for the physical distribu-
tion within error.

Our result cannot be directly compared with the ex-
perimental data because other lattice systematics are not
yet under control. To obtain the physical parton distri-
butions, we need to make a number of improvements,
including reducing the quark masses to physical ones,
increasing the number of configurations to reduce statis-
tical errors, using finer lattice spacing to accommodate
larger boosted momenta and improve the resolution, and
using larger lattice volumes to access smaller x. Nonethe-
less, we hope that the present results do provide some in-
sight into the qualitative features of the parton physics.

Also shown in Fig. 3 are the parton distributions from
the global analyses by CTEQ-JLab (CJ12) [19] and NLO
MSTW08 [18] at µ ⇡ 1.3 GeV. Note that the lattice re-

u(x) − d(x)

Lin et al., PRD91 (2015)

2014
1.

+
Lattice renormalization: 
• X. Ji, J.-H. Zhang, and Y.Z., PRL120 (2018);  
• J.-W. Chen, Y.Z. et al. (LP3), PRD97 (2018). 
Perturbative matching: 
• I. Stewart and Y.Z., PRD97 (2018); 
• Y.-S. Liu, Y.Z. et al. (LP3), arXiv:1807.06566; 
• T. Izubuchi, X. Ji, L. Jin, I. Stewart, and Y.Z., PRD98 (2018); 
• Y.-S. Liu, Y.Z. et al. (LP3), arXiv:1810.10879. 
Improved Fourier transform: 
• H.-W. Lin et al. (LP3), PRD98 (2018). 

2.

• Nucleon momentum, from 1.4 GeV to 3.0 
GeV; 

• Pion mass, from 310 MeV to 135 MeV 
(physical point).
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by MSTW [18] (brown dotted line), and CTEQ-JLab (CJ12,
green dashed line) [19] with medium nuclear correction near
(1.3 GeV)2. The negative x region is the sea quark distribu-
tion with q(x) = �q(�x). The lattice uncertainty band in
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not shown in the figure.

the corrections to the quasi-distributions will generate
a Pz-independent physical distribution. The remaining
small di↵erence between the two large-momenta results
could be due to the dynamical higher-twist corrections
O(⇤2

QCD/P
2
z ), which is expected to be smaller than the

nucleon-mass e↵ect. As for the lowest nucleon momen-
tum (430 MeV) result, the LaMET expansion might not
be very e↵ective, although the peak after corrections has
been shifted to near 0.8.

Finally, we find a Pz-independent distribution by tak-
ing into account the O(⇤2

QCD/P
2
z ) correction by extrap-

olating using the form a + b/P
2
z . The final unpolarized

distribution u(x)�d(x) is shown in Fig. 3. The distribu-
tion for the |x| > 1 region is within 2 sigma of zero; thus,
we recover the correct support for the physical distribu-
tion within error.

Our result cannot be directly compared with the ex-
perimental data because other lattice systematics are not
yet under control. To obtain the physical parton distri-
butions, we need to make a number of improvements,
including reducing the quark masses to physical ones,
increasing the number of configurations to reduce statis-
tical errors, using finer lattice spacing to accommodate
larger boosted momenta and improve the resolution, and
using larger lattice volumes to access smaller x. Nonethe-
less, we hope that the present results do provide some in-
sight into the qualitative features of the parton physics.

Also shown in Fig. 3 are the parton distributions from
the global analyses by CTEQ-JLab (CJ12) [19] and NLO
MSTW08 [18] at µ ⇡ 1.3 GeV. Note that the lattice re-

u(x) − d(x)

Lin et al., PRD91 (2015)

2014 5

to plan improved calculations with total uncertainty less
than 10%. 2) With the promising results shown here, we
can proceed with similar analyses for the less known po-
larized PDFs, such as helicity and transversity (the lon-
gitudinal and transversely polarized PDFs), where the
isovector PDFs needed to make impacts for global anal-
ysis are less demanding than the unpolarized ones.

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0
-1

0

1

2

3

4

x

qu
-
d

CT14
matched PDF

FIG. 4. Our final PDF renormalized at 3 GeV and compared
with CT14 [63] at (µR, p

R
z ) = (3.7, 2.2) GeV. It is consistent

with NNPDF3.1 distribution [64] and CJ15 [65]. Our results
agree nicely with the global-analysis PDF.

Summary and Outlook: In this work, we report the
state-of-the-art isovector unpolarized quark distribution
using lattice QCD directly at physical pion mass. We
use nucleon boosted momenta as large as 3 GeV with
high-statistics analysis. We carefully study excited-state
systematics whose error is reflected in our final distribu-
tion uncertainty. We renormalize our nucleon matrix el-
ement using the nonperturbative RI/MOM renormaliza-
tion, and perform the LaMET one-loop finite-momentum
matching and conversion to MS-scheme to connect lattice
quasi-distribution to lightcone distribution. We found
our final distribution agree well with the global analysis
distribution. We carefully examine all possible system-
atics which will give us better guideline to improve our

future calculations and provide better precision distribu-
tions. Future direction will be investigating smaller lat-
tice spacing ensembles for reaching even higher boosted
momentum such that we can push toward smaller-x re-
gion.
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Lattice calculation of the iso-vector 
PDFs                       

�14
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H.W. Lin, Y.Z., et al. (LP3), Phys.Rev.Lett. 121 (2018). Y.-S. Liu, Y.Z., et al. (LP3), arXiv:1810.05043.

The first case of PDFs where lattice 
calculation outperforms experiments!

Similar improvements also achieved by 
ETMC collaboration, PRL121 (2018), PRD98 (2018).
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Outline

• Quasi-PDF approach 

• Physical picture and factorization formula 

• Systematic procedure to calculate parton distributions 

• Quasi-TMDPDF 

• Relation of the quasi-TMDPDF and physical TMDPDF 

• Collins-Soper Kernel from lattice QCD

�15
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TMDPDFs
• TMDPDF factorization for Drell-Yan: 

�16

l

p p

l

+

-

Soft

Beam

ζ: Collins-Soper Scale

f TMD
i (x, ⃗b T, μ, ζ) = Bi(x, ⃗b T, μ,

ζ
ν2

) Si(bT, μ, ν)

• Collins, Soper and Sterman, NPB250 (1985); Collins, 2011; 
• Becher and Neubert, EPJC71 (2011); 
• Echevarria, Idilbi and Scimemi, JHEP07 (2012), PLB26 (2013); 
• Chiu, Jain, Neil and Rothstein, JHEP05 (2012), PRL108 (2012); 
• Li, Neil and Zhu, arXiv: 1604.00392. 
For a review of different schemes, see: 
• Ebert, Stewart and Y.Z., arXiv:1901.03685 (Appendix B).

dσ
dQdYd2qT

= ∑
ij

Hij(Q, μ)∫d2bT ei ⃗b T⋅ ⃗q TBi(xa, ⃗b T, μ,
ζa

ν2
) Bj(xb, ⃗b T, μ,

ζb

ν2
)Sij(bT, μ, ν)

= ∑
ij

Hij(Q, μ)∫d2bT ei ⃗b T⋅ ⃗q T f TMD
i (xa, ⃗b T, μ, ζa) f TMD

j (xb, ⃗b T, μ, ζb)

ζaζb = Q4

ij = qq̄ for DY
ij = gg for H
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Evolution of TMDPDFs

• Renormalization scale evolution: 

• Collins-Soper evolution: 

• Solution to evolution equations: 

�17

μ
d

dμ
f TMD
i (x, bT, μ, ζ) = γi

μ(μ, ζ)f TMD
i (x, bT, μ, ζ)

ζ
d
dζ

f TMD
i (x, bT, μ, ζ) =

1
2

γi
ζ(μ, bT)f TMD

i (x, bT, μ, ζ)

f TMD
i (x, ⃗b T, μ, ζ) = f TMD

i (x, ⃗b T, μ0, ζ0)exp[∫
μ

μ0

dμ′�
μ′ �

γi
μ(μ′ �, ζ0)]exp[ 1

2
γi

ζ(μ, bT)ln
ζ
ζ0 ]

γζ(µ,bT): Collins-Soper kernel, nonperturbative when bT~ΛQCD-1.

• µ, ζ: factorization scales, µ>>ΛQCD, ζ~Q2; 
• µ0, ζ0: initial or reference scales, measured in experiments or determined 

from lattice (~2 GeV).
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Quasi-beam function
• Beam function: 

• Quasi-beam function on lattice: 

�18

Bq(x, ⃗b T, ϵ, τ, xP−) = ∫
db+

4π
e−i 1

2 b+(xP−)⟨P | q̄(bμ)W(bμ)
γ−

2
WT(−∞n̄; ⃗b T, ⃗0 T)W†(0)q(0)

τ
|P⟩

B̃q(x, ⃗b T, a, L, Pz) = ∫
dbz

2π
eibz(xPz)B̃q(bz, ⃗b T, a, L, Pz)

Lorentz boost and L → ∞b⊥

t
z

q

q

b+

b⊥

t
z

q

q

bz

L

Bq B̃q

Finite Wilson line length L due to the finite lattice volume.

: rapidity regulatorτ

= ∫
dbz

2π
eibz(xPz)⟨P | q̄(bμ)W ̂z(bμ; L − bz)

Γ
2

WT(L ̂z; ⃗b T, ⃗0 T)W†
̂z (0)q(0) |P⟩

: UV regulatorϵ
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Quasi-soft function
• Soft function: 

• Quasi-soft function on lattice (naive definition):

�19

Sq(bT, ϵ, τ) =
1
Nc

⟨0 |Tr [S†
n( ⃗b T)Sn̄( ⃗b T)ST(−∞n̄; ⃗b T, ⃗0 T)S†

n̄( ⃗0 T)Sn( ⃗0 T)S†
T(−∞n; ⃗b T, ⃗0 T)]

τ
|0⟩

b⊥

t
z

b⊥

t
z

L

Cannot be related by 
Lorentz boost

S̃q(bT, a, L) =
1
Nc

⟨0 |Tr [S†
̂z ( ⃗b T; L)S− ̂z( ⃗b T; L)ST(L ̂z; ⃗b T, ⃗0 T)S†

− ̂z(
⃗0 T; L)Sn( ⃗0 T; L)S†

T(−L ̂z; ⃗b T, ⃗0 T)] |0⟩
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Impact of finite-length Wilson lines

• Linear power divergence under lattice regularization 

• Finite L regulates rapidity divergences: 

• Light-like Wilson lines 

• Space-like Wilson lines 

• By construction the L dependence has to be canceled out between 
the quasi-beam and soft functions.

�20

gstanμ 1 − eik+L

k+
L→∞⟶ gstanμ 1

k+

Idiv = ∫ dk+dk− 1
(k+k−)1+ϵ

⟶ ∫ dk+dk− 1
(k+k−)ϵ

1 − eik+L

k+

1 − eik−L

k−

Ĩdiv = ∫ dk0dkz
1

(k2
0 − k2

z )ϵ

1
k2

z
⟶ ∫ dk0dkz

1
(k2

0 − k2
z )ϵ

1 − eikzL

kz

1 − e−ikzL

kz

∼ L/a
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Quasi-TMDPDF
• Quasi-TMDPDF in the MSbar scheme: 

• Schematic factorization formula: 

�21

f̃ TMD
q (x, ⃗b T, μ, Pz) = ∫

dbz

2π
eibz(xPz)Z̃′�(bz, μ, μ̃)Z̃UV(bz, μ, a)

B̃q(bz, ⃗b T, a, L, Pz)

S̃q(bT, a, L)

f̃ TMD
i (x, ⃗b T, μ, Pz) ∼ ∑

j

CTMD
ij (x, μ, Pz)exp [ 1

2
γ j

ζ(μ, bT)ln
(2xPz)2

ζ ]
× f TMD

j (x, ⃗b T, μ, ζ)+𝒪 ( bT

L
,

1
bTPz

,
1

PzL )
bz ∼

1
Pz

≪ bT ≪ L, bT ∼ Λ−1
QCDHierarchy of scales:
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One-loop test
• Physical TMDPDF: 

• Naive quasi-TMDPDF: 

�22

b0 = 2e−γE

Lb = ln
b2

T μ2

b2
0

Lζ = ln
μ2

ζ

• Same collinear divergence; 
• bT dependences do not 

match even if one sets 

• No perturbative matching 
when

ζ = 2xPz

bT ∼ Λ−1
QCD

fTMD(1)
q (x, ⃗b T, ϵ, ζ) =

αsCF

2π [−( 1
ϵIR

+ Lb) 1 + x2

1 − x
+ (1 − x)]

+

θ(x)θ(1 − x)

+
αsCF

2π
δ(1 − x)[ 1

ϵ2
UV

+
1

ϵUV ( 3
2

+ Lζ) +
1
2

−
π2

12 ]
+

αsCF

2π
δ(1 − x)[−

1
2

L2
b+

3
2

Lb+LbLζ]
f̃ TMD(1)

q (x, ⃗b T, ϵ, Pz) =
αsCF

2π [−( 1
ϵIR

+ Lb) 1 + x2

1 − x
+ (1 − x)]

+

θ(x)θ(1 − x)

+
αsCF

2π
δ(1 − x)[ 3

2
1

ϵUV
−

1
2

ln2 μ2

(2xPz)2
− ln

μ2

(2xPz)2
−

3
2 ]

+
αsCF

2π
δ(1 − x)[−

1
2

L2
b+

5
2

Lb+Lb ln
μ2

(2xPz)2 ]

• Ji, Jin, Yuan, Zhang and 
Y.Z., arXiv:1801.05930;  

• Ebert, Stewart and Y.Z., 
arXiv:1901.03685.
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One-loop test

�23

• Physical TMDPDF: 

• Bent quasi-soft function: 

fTMD(1)
q (x, ⃗b T, ϵ, ζ) =

αsCF

2π [−( 1
ϵIR

+ Lb) 1 + x2

1 − x
+ (1 − x)]

+

θ(x)θ(1 − x)

+
αsCF

2π
δ(1 − x)[ 1

ϵ2
UV

+
1

ϵUV ( 3
2

+ Lζ) +
1
2

−
π2

12 ]
+

αsCF

2π
δ(1 − x)[−

1
2

L2
b+

3
2

Lb+LbLζ]
f̃ TMD(1)

q (x, ⃗b T, ϵ, Pz) =
αsCF

2π [−( 1
ϵIR

+ Lb) 1 + x2

1 − x
+ (1 − x)]

+

θ(x)θ(1 − x)

+
αsCF

2π
δ(1 − x)[ 3

2
1

ϵUV
−

1
2

ln2 μ2

(2xPz)2
− ln

μ2

(2xPz)2
−

3
2 ]

+
αsCF

2π
δ(1 − x)[−

1
2

L2
b+

3
2

Lb+Lb ln
μ2

(2xPz)2 ]

b⊥

x

-z

L

y

L

• Ebert, Stewart and Y.Z., 
arXiv:1901.03685.

b0 = 2e−γE

Lb = ln
b2

T μ2

b2
0

Lζ = ln
μ2

ζ
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Correct relation between quasi-
TMDPDF and TMDPDF

• Factorization formula (for the non-singlet case): 

• gSi does not depend on the external state or quark flavor, but can 
be different between quark and gluon; 

• For the bent quasi-soft function, gSi needs to be checked at 
higher loop orders; 

• One can form ratios of TMDPDFs to cancel out gSi. 

�24

f̃ TMD
ns (x, ⃗b T, μ, Pz) = CTMD

ns (μ, xPz) gS
q(bT, μ) exp[ 1

2
γq
ζ (μ, bT)ln

(2xPz)2

ζ ]f TMD
ns (x, ⃗b T, μ, ζ)

Ebert, Stewart and Y.Z., PRD99 (2019), arXiv:1901.03685.

CTMD
ns (μ, xPz) = 1 +

αsCF

2π [−
1
2

ln2 (2xPz)2

μ2
+ ln

(2xPz)2

μ2
− 2 +

π2

12 ]
gSnaive

q (bT, μ) = 1 +
αsCF

2π
Lb + O(α2

s )

gSbent
q (bT, μ) = 1 + O(α2

s )

Lattice calculation of the ratios of the TMDPDF moments: 
Hagler, Musch, Engelhardt, Yoon, et al., EPL88 (2009), PRD83 (2011), 
PRD85 (2012), PRD93 (2016), arXiv:1601.05717, PRD96 (2017)
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Collins-Soper kernel from lattice

�25

Ebert, Stewart and Y.Z., PRD99 (2019).

γq
ζ (μ, bT) =

1
ln(Pz

1 /Pz
2)

ln
CTMD

ns (μ, xPz
2) f̃ TMD

ns (x, ⃗b T, μ, Pz
1)

CTMD
ns (μ, xPz

1) f̃ TMD
ns (x, ⃗b T, μ, Pz

2)

=
1

ln(Pz
1 /Pz

2)
ln

CTMD
ns (μ, xPz

2) ∫ dbz eibzxPz
1Z̃′�(bz, μ, μ̃)Z̃UV(bz, μ̃, a)B̃ns(bz, ⃗b T, a, L, Pz

1)

CTMD
ns (μ, xPz

2) ∫ dbz eibzxPz
2Z̃′�(bz, μ, μ̃)Z̃UV(bz, μ̃, a)B̃ns(bz, ⃗b T, a, L, Pz

2)

• gS as well as the quasi-soft function gets canceled in the ratio; 

• The quasi-beam function includes a linear power divergence that depends on 
bz/a, which needs to be nonperturbatively renormalized by                           
before the Fourier transform.

Z̃UV(bz, μ̃, a)

b⊥

t
z

q

q

bz

L

• Proposal to calculate                    with Lattice QCDγζ(μ, bT)
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Summary and Outlook

In 5~10 years, expect: 
• Lattice calculation of quark PDFs to be within 10% accuracy or even better; 

• Determination of sea quark distributions to be better than experiments; 

• Reaching smaller x region with larger nucleon momentum; 

• Lattice calculation of gluon PDFs; 

• Lattice calculation of gluon spin and parton orbital angular momentum (OAM); 

• Lattice calculation of GPDs; 

• Lattice calculation of transverse structures such the TMDPDFs.

�26

• First lattice calculation of gluon spin: Y.-B. Yang, R. S. Suffian, Y.Z., et al. 
(χQCD), PRL118 (2017). 

• Method to calculate canonical OAM: Y.Z., Liu and Yang, PRD93 (2016)

Renormalization: Zhang et al., arXiv:1808.10824; Li et al., PRL122 (2019); 
Perturbative matching: Wang et al., EPJC78 (2018), JHEP1805 (2018); 
First lattice attempt: Fan et al., PRL121 (2018).

Perturbative matching: Liu, Y.Z. et al., arXiv:1902.00307.
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The next frontier of QCD

Electron-Ion Collider! 

�27

A. Accardi et al., Eur.Phys.J. A52 (2016) no.9, 268.

• Highly Polarized Beams 
• Large Kinematic Range 
• High Intensity Beams

3-D tomography of the nucleon: 
• More precise PDFs 
• Sea quark distributions 
• Gluonic structure of nucleon and nuclei 
• Small-x physics 
• Gluon polarization and parton orbital 

angular momentum 
• TMDPDFs, GPDs 
• ……
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Bi(x, ⃗b T, μ,
ζ
ν2

) = lim
ϵ→0,τ→0

Zi
B(bT, μ, ν, ϵ, τ, xP−)

Bunsub
i (x, ⃗b T, ϵ, τ, xP−)

S0
i (bT, ϵ, τ)

Si(bT, μ, ν) = lim
ϵ→0,τ→0

Zi
S(bT, μ, ν, ϵ, τ)Si(bT, ϵ, τ)

f̃ TMD
i (x, ⃗b T, μ, P̃z) ∼ ∑

j
∫

1

−1

dy
|y |

CTMD
ij (x, y, μ, P̃z, ζ̃(x, P̃z))

× exp [ 1
2

γ j
ζ(μ, bT)ln

ζ̃(x, P̃z)
ζ ]f TMD

j (y, ⃗b T, μ, ζ)

b⊥

x

z

L

y

L

b⊥

x

-z

L

y

L


