Recent Development of the QuasiPDF Approach to Calculate Parton Physics in Lattice QCD

Yong Zhao
Massachusetts Institute of Technology 03/26/2019

The XVIth annual workshop on Soft-Collinear Effective Theory University of California, San Diego, 25-28, Mar. 2019

Outline

- Quasi-PDF approach
- Physical picture and factorization formula
- Systematic procedure to calculate parton distributions
- Quasi-TMDPDF
- Relation of the quasi-TMDPDF and physical TMDPDF
- Collins-Soper Kernel from lattice QCD

So far our knowledge of the PDFs mostly comes from the analysis of high-energy scattering data

Unpolarized PDF

NNPDF 3.1, EPJ C77 (2017)
Gluon PDF is key to the Standard Model predictions at LHC.

TMD PDF
Existing global analyses of TMDPDFs or TMD fragmentation functions rely on the modeling of their nonperturbative evolution.

- Kang, Prokudin, Sun and Yuan, PRD93 (2016);
- Bacchetta et al., JHEP1706 (2017);
- Bertone, Scimemi and Vladimirov, arXiv:1902.08474.

The most definite experimental finding so far is the sign change of the Sivers function in SIDIS and Drell-Yan processes.

COMPASS Phys.Rev.Lett. 119 (2017) 12002

Lattice QCD calculation of PDFs?

PDF:

$$
\begin{array}{r}
q(x, \mu)=\int \frac{d b^{+}}{4 \pi} e^{-i \frac{1}{2} b^{+}\left(x P^{-}\right)}\langle P| \bar{\psi}\left(b^{+}\right) \frac{\gamma^{-}}{2} W\left[b^{+}, 0\right] \psi(0)|P\rangle \\
b^{ \pm}=t \mp z
\end{array}
$$

- Minkowski space, real time;
- Defined on the light-cone which depends on the real time.

Lattice QCD:

$$
t=i \tau, \quad e^{i S} \rightarrow e^{-S}, \quad\langle O\rangle=\int D \psi D \bar{\psi} D A O(x) e^{-S}
$$

- Euclidean space, imaginary time;
- General difficulty of analytically continuing to real time.

Light-cone PDFs not directly accessible from the lattice!

A novel approach to calculate light-cone PDFs

- Large-Momentum Effective Theory: • Ji, PRL110 (2013);
- X. Ji, J.-H. Zhang, and Y.Z., PRL111 (2013);
- Ji, SCPMA57 (2014).

PDF $q(x)$:
Cannot be calculated on the lattice

Quasi-PDF $\tilde{q}\left(x, P^{z}\right)$:
Directly calculable on the lattice

A novel approach to calculate light-cone PDFs

- Large-Momentum Effective Theory: • Ji, PRL110 (2013);
- X. Ji, J.-H. Zhang, and Y.Z., PRL111 (2013);
- Ji, SCPMA57 (2014).

PDF $q(x)$:
Cannot be calculated on the lattice

Quasi-PDF $\tilde{q}\left(x, P^{z}\right)$:
Directly calculable on the lattice

A novel approach to calculate light-cone PDFs

- Large-Momentum Effective Theory: • Ji, PRL110 (2013);
- Large-Momentum Effective Theory: • x. Ji, J.-H. Zhang, and Y.Z., PRL111 (2013);
- Ji, SCPMA57 (2014).

PDF $q(x)$:
Cannot be calculated on the lattice

Calculating the quasi-PDF at hadron momentum P^{2} is equivalent to boosting it.

A novel approach to calculate light-cone PDFs
 $\lim \tilde{q}\left(x, P^{z}\right)=?$
 $P^{z} \rightarrow \infty$

Instead of taking $P^{z} \rightarrow \infty$ limit, one can perform an expansion for large but finite P^{z} :

$$
\begin{aligned}
\tilde{q}\left(x, P^{z}\right) & =C\left(x, P^{z}\right) \otimes q(x)+O\left(1 /\left(P^{z}\right)^{2}\right) \\
& \text { x. Xiong, x. Ji, J.-H. Zhang and Y.Z., PRD90 (2014); }
\end{aligned}
$$

- $\tilde{q}\left(x, P^{z}\right)$ and $q(x)$ have the same infrared physics (nonperturbative), but different ultraviolet (UV) physics (perturbative);
- Therefore, the matching coefficient $C\left(x, P^{z}\right)$ is perturbative, which controls the logarithmic dependences on P^{z}.

The quasi-PDF factorization

- Spatial correlator in a highly boosted hadron:

- Operator product expansion at small distance:

$$
\tilde{O}(z, \mu)=Z_{j_{1}}^{-1} Z_{j_{2}}^{-1} e^{\delta m|z|} \tilde{O}(z, \epsilon)
$$

δm renormalizes linear divergence in Wilson line self energy (under lattice regularization). Yong Zhao, SCET 2019, San Diego

Factorization formula

- Operator product expansion (for the non-singlet case):

$$
\begin{aligned}
\tilde{O}(z, \mu) & =\sum_{n=0} C_{n}\left(\mu^{2} z^{2}\right) \frac{(-i z)^{n}}{n!} \hat{z}_{\mu_{1}} \cdots \hat{z}_{\mu_{n}} O^{z \mu_{1} \cdots \mu_{n}}+\text { higher twist } \\
O^{\mu_{0} \mu_{1} \cdots \mu_{n}}(\mu) & \left.=Z_{n+1}^{-1}(\epsilon, \mu)\left[\bar{\psi} \gamma^{\left\{\mu_{0}\right.} i \overleftrightarrow{D}^{\mu_{1}} \cdots i \overleftrightarrow{D}_{\mu_{n}}^{\mu_{n}}\right\}-\text { traces }\right]
\end{aligned}
$$

$$
a_{n+1}(\mu)=\int_{-1}^{1} d y y^{n} q(y, \mu)
$$

$$
\langle P| \tilde{O}(z, \mu)|P\rangle=2 \sum_{n=0} C_{n}\left(\mu^{2} z^{2}\right) \frac{(-i z)^{n}}{n!} a_{n+1}(\mu)\left[\left(P^{z}\right)^{n+1}-O\left(\frac{M^{2}}{P_{z}^{2}}\right)\right]+O\left(z^{2} \Lambda_{\mathrm{QCD}}^{2}\right)
$$

$$
C\left(\frac{x}{y}, \frac{\mu}{y P^{z}}\right) \equiv \int \frac{d\left(y z P^{2}\right)}{2 \pi} e^{i \frac{i}{y}\left(y z P^{2}\right)} \sum_{n=0} C_{n}\left(\frac{\mu^{2}}{y^{2} P_{z}^{2}}\left(y z P^{z}\right)^{2}\right) \frac{\left(-i y z P^{z}\right)^{n}}{n!}
$$

$$
\tilde{q}\left(x, P^{z}, \mu\right)=\int \frac{d z}{4 \pi} e^{i x P^{z} z}\langle P| \tilde{O}(z, \mu)|P\rangle=\int_{-1}^{1} \frac{d y}{|y|} C\left(\frac{x}{y}, \frac{\mu}{y P^{z}}\right) q(y, \mu)+O\left(\frac{M^{2}}{P_{z}^{2}}, \frac{\Lambda_{\mathrm{QCD}}^{2}}{x^{2} P_{z}^{2}}\right)
$$

[^0]- T. Izubuchi, X. Ji, L. Jin, I. Stewart, and Y.Z., PRD98 (2018).

Systematic procedure of calculating the PDFs

\author{

1. Simulation of the quasi PDF in lattice QCD
 $$
\tilde{q}\left(x, P^{z}, \mu\right)=\int \frac{d y}{|y|} C\left(\frac{x}{y}, \frac{\mu}{y P^{z}}\right) q(y, \mu)+O\left(\frac{M^{2}}{P_{z}^{2}}, \frac{\Lambda_{\mathrm{QCD}}^{2}}{x^{2} P_{z}^{2}}\right)
$$

}

Systematic procedure of calculating the PDFs

$$
\tilde{q}\left(x, P^{z}, \mu\right)=\int \frac{d y}{|y|} C\left(\frac{x}{y}, \frac{\mu}{y P^{z}}\right) q(y, \mu)+O\left(\frac{M^{2}}{P_{z}^{2}}, \frac{\Lambda_{\mathrm{QCD}}^{2}}{x^{2} P_{z}^{2}}\right)
$$

2. Renormalization of the lattice quasi PDF, and then taking the continuum limit

Nonperturbative renormalization on the lattice:

- I. Stewart and Y.Z., PRD97 (2018);
- J.-W. Chen, Y.Z. et al., LP3 Collaboration, PRD97 (2018).
- Constantinou and Panagopoulos, PRD96 (2017); C. Alexandrou et al., ETM Collaboration, NPB923 (2017).

Systematic procedure of calculating the PDFs

- O Nachtmann, NPB63 (1973);
- J.W. Chen et al. (LP3), NPB911 (2016).

3. Subtraction of power corrections

\uparrow

$$
\left.\tilde{q}\left(x, P^{z}, \mu\right)=\int \frac{d y}{|y|} C\left(\frac{x}{y}, \frac{\mu}{y P^{z}}\right) q(y, \mu)-O\left(\frac{M^{2}}{P_{z}^{2}}, \frac{\Lambda_{\mathrm{QCD}}^{2}}{x^{2} P_{z}^{2}}\right)\right)
$$

Renormalon contribution to the power correction:
Braun, Vladimirov, and Zhang, PRD99 (2019).

Systematic procedure of calculating the PDFs

$$
\tilde{q}\left(x, P^{z}, \mu\right)=\int \frac{d y}{|y|} C\left(\frac{x}{y}, \frac{\mu}{y P^{z} z} q(y, \mu)+O\left(\frac{M^{2}}{P_{z}}, \frac{\Lambda_{\mathrm{QCD}}^{2}}{x^{2} P_{z}^{2}}\right)\right.
$$

- Matching for the quasi-PDF:
- X. Xiong, X. Ji, J.-H. Zhang and Y.Z., PRD90 (2014);
- I. Stewart and Y.Z., PRD97 (2018);
- Y.-S. Liu, Y.Z. et al. (LP3), arXiv:1807.06566;
- T. Izubuchi, X. Ji, L. Jin, I. Stewart, and Y.Z., PRD98 (2018);

4. Matching to the PDF.

- Y.-S. Liu, Y.Z. et al., arXiv:1810.10879;
- Y.Z., Int.J.Mod.Phys. A33 (2019);

Systematic procedure of calculating the PDFs

$$
\tilde{q}\left(x, P^{z}, \mu\right)=\int \frac{d y}{|y|} C\left(\frac{x}{y}, \frac{\mu}{y P^{z}}\right) q(y, \mu)+O\left(\frac{M^{2}}{P_{z}^{2}}, \frac{\Lambda_{\mathrm{QCD}}^{2}}{x^{2} P_{z}^{2}}\right)
$$

- Matching for the quasi-PDF:
- X. Xiong, X. Ji, J.-H. Zhang and Y.Z., PRD90 (2014);
- I. Stewart and Y.Z., PRD97 (2018);
- Y.-S. Liu, Y.Z. et al. (LP3), arXiv:1807.06566;
- T. Izubuchi, X. Ji, L. Jin, I. Stewart, and Y.Z., PRD98 (2018);

4. Matching to the PDF.

- Y.-S. Liu, Y.Z. et al., arXiv:1810.10879;
- Y.Z., Int.J.Mod.Phys. A33 (2019);

Lattice calculation of the iso-vector PDF $u(x)-d(x)$

1. . Nucleon momentum, from 1.4 GeV to 3.0 GeV;

- Pion mass, from 310 MeV to 135 MeV (physical point).

Lin et al., PRD91 (2015)

Lattice renormalization:

- X. Ji, J.-H. Zhang, and Y.Z., PRL120 (2018);

Perturbative matching:

- I. Stewart and Y.Z., PRD97 (2018);
- Y.-S. Liu, Y.Z. et al. (LP3), arXiv:1807.06566;
- T. Izubuchi, X. Ji, L. Jin, I. Stewart, and Y.Z., PRD98 (2018);
- Y.-S. Liu, Y.Z. et al. (LP3), arXiv:1810.10879.

Improved Fourier transform:

- H.-W. Lin et al. (LP3), PRD98 (2018).

Lattice calculation of the iso-vector
 PDF $u(x)-d(x)$

2014

Lin et al., PRD91 (2015)

1. . Nucleon momentum, from 1.4 GeV to 3.0 GeV;

- Pion mass, from 310 MeV to 135 MeV (physical point).

J.W. Chen, Y.Z. et al. (LP3), arXiv:1803.04393.

Lattice calculation of the iso-vector PDFs

H.W. Lin, Y.Z., et al. (LP3), Phys.Rev.Lett. 121 (2018).

Similar improvements also achieved by ETMC collaboration, PRL121 (2018), PRD98 (2018).

Y.-S. Liu, Y.Z., et al. (LP3), arXiv:1810.05043.

The first case of PDFs where lattice calculation outperforms experiments!

Outline

- Quasi-PDF approach
- Physical picture and factorization formula
- Systematic procedure to calculate parton distributions
- Quasi-TMDPDF
- Relation of the quasi-TMDPDF and physical TMDPDF
- Collins-Soper Kernel from lattice QCD

TIVIDID CS

- TMDPDF factorization for Drell-Yan:
- Collins, Soper and Sterman, NPB250 (1985); Collins, 2011;
- Becher and Neubert, EPJC71 (2011);
- Echevarria, Idilbi and Scimemi, JHEP07 (2012), PLB26 (2013);
- Chiu, Jain, Neil and Rothstein, JHEP05 (2012), PRL108 (2012);
- Li, Neil and Zhu, arXiv: 1604.00392.

For a review of different schemes, see:

- Ebert, Stewart and Y.Z., arXiv:1901.03685 (Appendix B).

$$
\begin{aligned}
\frac{d \sigma}{d Q d Y d^{2} q_{T}} & =\sum_{i j} H_{i j}(Q, \mu) \int d^{2} b_{T} e^{i \vec{b}_{T} \cdot \vec{q}_{T}} B_{i}\left(x_{a}, \vec{b}_{T}, \mu, \frac{\zeta_{a}}{\nu^{2}}\right) B_{j}\left(x_{b}, \vec{b}_{T}, \mu, \frac{\zeta_{b}}{\nu^{2}}\right) S_{i j}\left(b_{T}, \mu, \nu\right) \\
& =\sum_{i j} H_{i j}(Q, \mu) \int d^{2} b_{T} e^{i \vec{b}_{T} \cdot \vec{q}_{T} f_{i}^{\mathrm{TMD}}\left(x_{a}, \vec{b}_{T}, \mu, \zeta_{a}\right) f_{j}^{\mathrm{TMD}}\left(x_{b}, \vec{b}_{T}, \mu, \zeta_{b}\right)} \\
\begin{array}{l}
i j=q \bar{q} \text { for DY } \\
i j=g g \text { for H }
\end{array} & f_{i}^{\mathrm{TMD}}\left(x, \vec{b}_{T}, \mu, \zeta\right)=B_{i}\left(x, \vec{b}_{T}, \mu, \frac{\zeta}{\nu^{2}}\right) \sqrt{S^{i}\left(b_{T}, \mu, \nu\right)}
\end{aligned}
$$

$\zeta:$ Collins-Soper Scale $\quad \zeta_{a} \zeta_{b}=Q^{4}$

Evolution of TMDPDFs

- Renormalization scale evolution:

$$
\mu \frac{d}{d \mu} f_{i}^{\mathrm{TMD}}\left(x, b_{T}, \mu, \zeta\right)=\gamma_{\mu}^{i}(\mu, \zeta) f_{i}^{\mathrm{TMD}}\left(x, b_{T}, \mu, \zeta\right)
$$

- Collins-Soper evolution:

$$
\zeta \frac{d}{d \zeta} f_{i}^{\mathrm{TMD}}\left(x, b_{T}, \mu, \zeta\right)=\frac{1}{2} \gamma_{\zeta}^{i}\left(\mu, b_{T}\right) f_{i}^{\mathrm{TMD}}\left(x, b_{T}, \mu, \zeta\right)
$$

$\gamma_{\zeta}\left(\mu, b_{T}\right)$: Collins-Soper kernel, nonperturbative when $b_{T} \sim \Lambda_{Q C D}{ }^{-1}$.

- Solution to evolution equations:

$$
f_{i}^{\mathrm{TMD}}\left(x, \vec{b}_{T}, \mu, \zeta\right)=f_{i}^{\mathrm{TMD}}\left(x, \vec{b}_{T}, \mu_{0}, \zeta_{0}\right) \exp \left[\int_{\mu_{0}}^{\mu} \frac{d \mu^{\prime}}{\mu^{\prime}} \gamma_{\mu}^{i}\left(\mu^{\prime}, \zeta_{0}\right)\right] \exp \left[\frac{1}{2} \gamma_{\zeta}^{i}\left(\mu, b_{T}\right) \ln \frac{\zeta}{\zeta_{0}}\right]
$$

- μ, ζ : factorization scales, $\mu \gg \Lambda_{Q C D}, \zeta \sim Q^{2}$;
- μ_{0}, ζ_{0} : initial or reference scales, measured in experiments or determined from lattice (~2 GeV).

Quasi-beam function

- Beam function:
ϵ : UV regulator τ : rapidity regulator

$$
B_{q}\left(x, \vec{b}_{T}, \epsilon, \tau, x P^{-}\right)=\left.\int \frac{d b^{+}}{4 \pi} e^{-i \frac{1}{2} b^{+}\left(x P^{-}\right)}\langle P| \bar{q}\left(b^{\mu}\right) W\left(b^{\mu}\right) \frac{\gamma^{-}}{2} W_{T}\left(-\infty \bar{n} ; \vec{b}_{T}, \overrightarrow{0}_{T}\right) W^{\dagger}(0) q(0)\right|_{\tau}|P\rangle
$$

- Quasi-beam function on lattice:

$$
\begin{aligned}
\tilde{B}_{q}\left(x, \vec{b}_{T}, a, L, P^{z}\right) & =\int \frac{d b^{z}}{2 \pi} e^{i b^{z}\left(x P^{z}\right)} \tilde{B}_{q}\left(b^{z}, \vec{b}_{T}, a, L, P^{z}\right) \\
& =\int \frac{d b^{z}}{2 \pi} e^{i b^{z}\left(x P^{z}\right)}\langle P| \bar{q}\left(b^{\mu}\right) W_{\hat{z}}\left(b^{\mu} ; L-b^{z}\right) \frac{\Gamma}{2} W_{T}\left(L \hat{z} ; \vec{b}_{T}, \overrightarrow{0}_{T}\right) W_{\hat{z}}^{\dagger}(0) q(0)|P\rangle
\end{aligned}
$$

Finite Wilson line length L due to the finite lattice volume.

Quasi-soft function

- Soft function:

$$
S_{q}\left(b_{T}, \epsilon, \tau\right)=\left.\frac{1}{N_{c}}\langle 0| \operatorname{Tr}\left[S_{n}^{\dagger}\left(\vec{b}_{T}\right) S_{\bar{n}}\left(\vec{b}_{T}\right) S_{T}\left(-\infty \bar{n} ; \vec{b}_{T}, \overrightarrow{0}_{T}\right) S_{\bar{n}}^{\dagger}\left(\overrightarrow{0}_{T}\right) S_{n}\left(\overrightarrow{0}_{T}\right) S_{T}^{\dagger}\left(-\infty n ; \vec{b}_{T}, \overrightarrow{0}_{T}\right)\right]\right|_{\tau}|0\rangle
$$

Cannot be related by Lorentz boost

- Quasi-soft function on lattice (naive definition):
$\tilde{S}_{q}\left(b_{T}, a, L\right)=\frac{1}{N_{c}}\langle 0| \operatorname{Tr}\left[S_{\hat{z}}^{\dagger}\left(\vec{b}_{T} ; L\right) S_{-\hat{z}}\left(\vec{b}_{T} ; L\right) S_{T}\left(L \hat{z} ; \vec{b}_{T}, \overrightarrow{0}_{T}\right) S_{-\hat{z}}^{\dagger}\left(\overrightarrow{0}_{T} ; L\right) S_{n}\left(\overrightarrow{0}_{T} ; L\right) S_{T}^{\dagger}\left(-L \hat{z} ; \vec{b}_{T}, \overrightarrow{0}_{T}\right)\right]|0\rangle$

Impact of finite-length Wilson lines

- Linear power divergence under lattice regularization $\sim L / a$
- Finite L regulates rapidity divergences:
- Light-like Wilson lines

$$
\begin{gathered}
g_{s} t^{a} n^{\mu} \frac{1-e^{i k^{+} L}}{k^{+}} \xrightarrow{L \rightarrow \infty} g_{s} t^{a} n^{\mu} \frac{1}{k^{+}} \\
I_{\mathrm{div}}=\int d k^{+} d k^{-} \frac{1}{\left(k^{+} k^{-}\right)^{1+\epsilon}} \longrightarrow \int d k^{+} d k^{-} \frac{1}{\left(k^{+} k^{-}\right)^{\epsilon}} \frac{1-e^{i k^{+} L}}{k^{+}} \frac{1-e^{i k^{-} L}}{k^{-}}
\end{gathered}
$$

- Space-like Wilson lines

$$
\tilde{I}_{\mathrm{div}}=\int d k_{0} d k_{z} \frac{1}{\left(k_{0}^{2}-k_{z}^{2}\right)^{\epsilon}} \frac{1}{k_{z}^{2}} \longrightarrow \int d k_{0} d k_{z} \frac{1}{\left(k_{0}^{2}-k_{z}^{2}\right)^{\epsilon}} \frac{1-e^{i k^{z} L}}{k^{z}} \frac{1-e^{-i k^{z} L}}{k^{z}}
$$

- By construction the L dependence has to be canceled out between the quasi-beam and soft functions.

Quasi-TMDPDF

- Quasi-TMDPDF in the MSbar scheme:

$$
\tilde{f}_{q}^{\mathrm{TMD}}\left(x, \vec{b}_{T}, \mu, P^{z}\right)=\int \frac{d b^{z}}{2 \pi} e^{i b^{z}\left(x P^{z}\right)} \tilde{Z}^{\prime}\left(b^{z}, \mu, \tilde{\mu}\right) \tilde{Z}_{\mathrm{UV}}\left(b^{z}, \mu, a\right) \frac{\tilde{B}_{q}\left(b^{z}, \vec{b}_{T}, a, L, P^{z}\right)}{\sqrt{\tilde{S}_{q}\left(b_{T}, a, L\right)}}
$$

- Schematic factorization formula:

$$
\begin{aligned}
& \tilde{f}_{i}^{\mathrm{TMD}}\left(x, \vec{b}_{T}, \mu, P^{z}\right) \sim \sum_{j} C_{i j}^{\mathrm{TMD}}\left(x, \mu, P^{z}\right) \exp \left[\frac{1}{2} \gamma_{\zeta}^{j}\left(\mu, b_{T}\right) \ln \frac{\left(2 x P^{z}\right)^{2}}{\zeta}\right] \\
& \times f_{j}^{\mathrm{TMD}}\left(x, \vec{b}_{T}, \mu, \zeta\right)+\mathcal{O}\left(\frac{b_{T}}{L}, \frac{1}{b_{T} P^{z}}, \frac{1}{P^{z} L}\right)
\end{aligned}
$$

Hierarchy of scales: $\quad b^{z} \sim \frac{1}{P^{z}} \ll b_{T} \ll L, \quad b_{T} \sim \Lambda_{\mathrm{QCD}}^{-1}$

One-loop test

- Physical TMDPDF:

$$
\begin{aligned}
& f_{q}^{\mathrm{TMD}(1)}\left(x, \vec{b}_{T}, \epsilon, \zeta\right)=\frac{\alpha_{s} C_{F}}{2 \pi}\left[-\left(\frac{1}{\epsilon_{\mathrm{IR}}}+\mathbf{L}_{b}\right) \frac{1+x^{2}}{1-x}+(1-x)\right]_{+} \theta(x) \theta(1-x) \\
& b_{0}=2 e^{-\gamma_{E}} \\
& \mathbf{L}_{b}=\ln \frac{b_{T}^{2} \mu^{2}}{b_{0}^{2}} \\
& +\frac{\alpha_{s} C_{F}}{2 \pi} \delta(1-x)\left[\frac{1}{\epsilon_{\mathrm{UV}}^{2}}+\frac{1}{\epsilon_{\mathrm{UV}}}\left(\frac{3}{2}+\mathbf{L}_{\zeta}\right)+\frac{1}{2}-\frac{\pi^{2}}{12}\right] \\
& \mathbf{L}_{\zeta}=\ln \frac{\mu^{2}}{\zeta} \quad+\frac{\alpha_{s} C_{F}}{2 \pi} \delta(1-x)\left[-\frac{1}{2} \mathbf{L}_{b}^{2}+\frac{3}{2} \mathbf{L}_{b}+\mathbf{L}_{b} \mathbf{L}_{\zeta}\right] \\
& \text { - Ji, Jin, Yuan, Zhang and } \\
& \text { Y.Z., arXiv:1801.05930; } \\
& \text { - Naive quasi-TMDPDF: } \\
& \tilde{f}_{q}^{\mathrm{TMD}(1)}\left(x, \vec{b}_{T}, \epsilon, P^{z}\right)=\frac{\alpha_{s} C_{F}}{2 \pi}\left[-\left(\frac{1}{\epsilon_{\mathrm{IR}}}+\mathbf{L}_{b}\right) \frac{1+x^{2}}{1-x}+(1-x)\right]_{+} \begin{array}{c}
\text { ErXiv:1901.03685 } \\
\theta(x) \theta(1-x)
\end{array} \\
& \text { - Same collinear divergence; }
\end{aligned}
$$

- b_{T} dependences do not match even if one sets

$$
\zeta=2 x P^{z}
$$

$$
+\frac{\alpha_{s} C_{F}}{2 \pi} \delta(1-x)\left[\frac{3}{2} \frac{1}{\epsilon_{\mathrm{UV}}}-\frac{1}{2} \ln ^{2} \frac{\mu^{2}}{\left(2 x P^{z}\right)^{2}}-\ln \frac{\mu^{2}}{\left(2 x P^{z}\right)^{2}}-\frac{3}{2}\right]
$$

- No perturbative matching when $b_{T} \sim \Lambda_{\mathrm{OCD}}^{-1}$
Yong Zhao, SCET 2019, San Diego

$$
+\frac{\alpha_{s} C_{F}}{2 \pi} \delta(1-x)\left[-\frac{1}{2} \mathbf{L}_{b}^{2}-\frac{5}{2} \mathbf{L}_{b}+\mathbf{L}_{b} \ln \frac{\mu^{2}}{\left(2 x P^{z}\right)^{2}}\right]
$$

One-loop test

- Physical TMDPDF:

$$
f_{q}^{\mathrm{TMD}(1)}\left(x, \vec{b}_{T}, \epsilon, \zeta\right)=\frac{\alpha_{s} C_{F}}{2 \pi}\left[-\left(\frac{1}{\epsilon_{\mathrm{IR}}}+\mathbf{L}_{b}\right) \frac{1+x^{2}}{1-x}+(1-x)\right]_{+} \theta(x) \theta(1-x)
$$

$$
b_{0}=2 e^{-\gamma_{E}}
$$

$\mathbf{L}_{b}=\ln \frac{b_{T}^{2} \mu^{2}}{b_{0}^{2}}$
$+\frac{\alpha_{s} C_{F}}{2 \pi} \delta(1-x)\left[\frac{1}{\epsilon_{\mathrm{UV}}^{2}}+\frac{1}{\epsilon_{\mathrm{UV}}}\left(\frac{3}{2}+\mathbf{L}_{\zeta}\right)+\frac{1}{2}-\frac{\pi^{2}}{12}\right]$
$\mathbf{L}_{\zeta}=\ln \frac{\mu^{2}}{\zeta}$

$$
+\frac{\alpha_{s} C_{F}}{2 \pi} \delta(1-x)\left[-\frac{1}{2} \mathbf{L}_{b}^{2}+\frac{3}{2} \mathbf{L}_{b}+\mathbf{\mathbf { L } _ { b }} \mathbf{L}_{\zeta}\right]
$$

- Bent quasi-soft function:

$$
\tilde{f}_{q}^{\mathrm{TMD}(1)}\left(x, \vec{b}_{T}, \epsilon, P^{z}\right)=\frac{\alpha_{s} C_{F}}{2 \pi}\left[-\left(\frac{1}{\epsilon_{\mathrm{IR}}}+\mathbf{L}_{b}\right) \frac{1+x^{2}}{1-x}+(1-x)\right]_{+} \theta(x) \theta(1-x)
$$

$$
+\frac{\alpha_{s} C_{F}}{2 \pi} \delta(1-x)\left[\frac{3}{2} \frac{1}{\epsilon_{\mathrm{UV}}}-\frac{1}{2} \ln ^{2} \frac{\mu^{2}}{\left(2 x P^{z}\right)^{2}}-\ln \frac{\mu^{2}}{\left(2 x P^{z}\right)^{2}}-\frac{3}{2}\right]
$$

$$
+\frac{\alpha_{s} C_{F}}{2 \pi} \delta(1-x)\left[-\frac{1}{2} \mathbf{L}_{b}^{2}+\frac{3}{2} \mathbf{L}_{b}+\mathbf{L}_{b} \ln \frac{\mu^{2}}{\left(2 x P^{z}\right)^{2}}\right]
$$

Correct relation between quasiTMDPDF and TMDPDF

Ebert, Stewart and Y.Z., PRD99 (2019), arXiv:1901.03685.

- Factorization formula (for the non-singlet case):
$\tilde{f}_{\mathrm{ns}}^{\mathrm{TMD}}\left(x, \vec{b}_{T}, \mu, P^{z}\right)=C_{\mathrm{ns}}^{\mathrm{TMD}}\left(\mu, x P^{z}\right) g_{q}^{S}\left(b_{T}, \mu\right) \exp \left[\frac{1}{2} \gamma_{\zeta}^{q}\left(\mu, b_{T}\right) \ln \frac{\left(2 x P^{z}\right)^{2}}{\zeta}\right] f_{\mathrm{ns}}^{\mathrm{TMD}}\left(x, \vec{b}_{T}, \mu, \zeta\right)$

$$
C_{\mathrm{nS}}^{\mathrm{TMD}}\left(\mu, x P^{z}\right)=1+\frac{\alpha_{s} C_{F}}{2 \pi}\left[-\frac{1}{2} \ln ^{2} \frac{\left(2 x P^{z}\right)^{2}}{\mu^{2}}+\ln \frac{\left(2 x P^{z}\right)^{2}}{\mu^{2}}-2+\frac{\pi^{2}}{12}\right] \quad \begin{aligned}
& g_{q}^{S_{\text {naive }}}\left(b_{T}, \mu\right)=1+\frac{\alpha_{s} C_{F}}{2 \pi} \mathbf{L}_{b}+O\left(\alpha_{s}^{2}\right) \\
& g_{q}^{S_{\text {bent }}}\left(b_{T}, \mu\right)=1+O\left(\alpha_{s}^{2}\right)
\end{aligned}
$$

- $g^{s_{i}}$ does not depend on the external state or quark flavor, but can be different between quark and gluon;
- For the bent quasi-soft function, $g^{s_{i}}$ needs to be checked at higher loop orders;
- One can form ratios of TMDPDFs to cancel out $g^{s_{i}}$.

Collins-Soper kernel from lattice

- Proposal to calculate $\gamma_{\zeta}\left(\mu, b_{T}\right)$ with Lattice QCD

Ebert, Stewart and Y.Z., PRD99 (2019).
$\gamma_{\zeta}^{q}\left(\mu, b_{T}\right)=\frac{1}{\ln \left(P_{1}^{z} / P_{2}^{z}\right)} \ln \frac{C_{\mathrm{ns}}^{\mathrm{TMD}}\left(\mu, x P_{2}^{z}\right) \tilde{f}_{\mathrm{ns}}^{\mathrm{TMD}}\left(x, \vec{b}_{T}, \mu, P_{1}^{z}\right)}{C_{\mathrm{ns}}^{\mathrm{TMD}}\left(\mu, x P_{1}^{z}\right) \tilde{f}_{\mathrm{ns}}^{\mathrm{TMD}}\left(x, \vec{b}_{T}, \mu, P_{2}^{z}\right)}$

$$
=\frac{1}{\ln \left(P_{1}^{z} / P_{2}^{z}\right)} \ln \frac{C_{\mathrm{ns}}^{\mathrm{TMD}}\left(\mu, x P_{2}^{z}\right) \int d b^{z} e^{i b^{z} x P_{1}^{z}} \tilde{Z}^{\prime}\left(b^{z}, \mu, \tilde{\mu}\right) \tilde{Z}_{\mathrm{UV}}\left(b^{z}, \tilde{\mu}, a\right) \tilde{B}_{\mathrm{ns}}\left(b^{z}, \vec{b}_{T}, a, L, P_{1}^{z}\right)}{C_{\mathrm{nS}}^{\mathrm{TMD}}\left(\mu, x P_{2}^{z}\right) \int d b^{z} e^{i b^{z} x P_{2}^{z} \tilde{Z}^{\prime}\left(b^{z}, \mu, \tilde{\mu}\right) \tilde{Z}_{\mathrm{UV}}\left(b^{z}, \tilde{\mu}, a\right) \tilde{B}_{\mathrm{ns}}\left(b^{z}, \vec{b}_{T}, a, L, P_{2}^{z}\right)}, \frac{x^{2}}{}}
$$

- g^{S} as well as the quasi-soft function gets canceled in the ratio;
- The quasi-beam function includes a linear power divergence that depends on b^{z} / a, which needs to be nonperturbatively renormalized by $\tilde{Z}_{\mathrm{UV}}\left(b^{z}, \tilde{\mu}, a\right)$ before the Fourier transform.

Summary and Outlook

In 5~10 years, expect:

- Lattice calculation of quark PDFs to be within 10% accuracy or even better;
- Determination of sea quark distributions to be better than experiments;
- Reaching smaller x region with larger nucleon momentum;
- Lattice calculation of gluon PDFs;

Renormalization: Zhang et al., arXiv:1808.10824; Li et al., PRL122 (2019);
Perturbative matching: Wang et al., EPJC78 (2018), JHEP1805 (2018);
First lattice attempt: Fan et al., PRL121 (2018).

- Lattice calculation of gluon spin and parton orbital angular momentum (OAM);
- Lattice calculation of GPDs; (XQCD), PRL118 (2017).
- Method to calculate canonical OAM: Y.Z., Liu and Yang, PRD93 (2016)

Perturbative matching: Liu, Y.Z. et al., arXiv:1902.00307.

- Lattice calculation of transverse structures such the TMDPDFs.

The next frontier of QCD

Electron-Ion Collider!

- Highly Polarized Beams
- Large Kinematic Range
- High Intensity Beams

3-D tomography of the nucleon:

- More precise PDFs
- Sea quark distributions
- Gluonic structure of nucleon and nuclei
- Small-x physics
- Gluon polarization and parton orbital angular momentum
- TMDPDFs, GPDs

A. Accardi et al., Eur.Phys.J. A52 (2016) no.9, 268.
-

$$
\begin{aligned}
B_{i}\left(x, \vec{b}_{T}, \mu, \frac{\zeta}{\nu^{2}}\right) & =\lim _{\epsilon \rightarrow 0, \tau \rightarrow 0} Z_{B}^{i}\left(b_{T}, \mu, \nu, \epsilon, \tau, x P^{-}\right) \frac{B_{i}^{\mathrm{unsub}}\left(x, \vec{b}_{T}, \epsilon, \tau, x P^{-}\right)}{S_{i}^{0}\left(b_{T}, \epsilon, \tau\right)} \\
S^{i}\left(b_{T}, \mu, \nu\right) & =\lim _{\epsilon \rightarrow 0, \tau \rightarrow 0} Z_{S}^{i}\left(b_{T}, \mu, \nu, \epsilon, \tau\right) S^{i}\left(b_{T}, \epsilon, \tau\right) \\
\tilde{f}_{i}^{\mathrm{TMD}}\left(x, \vec{b}_{T}, \mu, \tilde{P}^{z}\right) & \sim \sum_{j} \int_{-1}^{1} \frac{d y}{|y|} C_{i j}^{\mathrm{TMD}}\left(x, y, \mu, \tilde{P}^{z}, \tilde{\zeta}\left(x, \tilde{P}^{z}\right)\right)
\end{aligned}
$$

$$
\times \exp \left[\frac{1}{2} \gamma_{\zeta}^{j}\left(\mu, b_{T}\right) \ln \frac{\tilde{\zeta}\left(x, \tilde{P}^{z}\right)}{\zeta}\right] f_{j}^{\mathrm{TMD}}\left(y, \vec{b}_{T}, \mu, \zeta\right)
$$

[^0]: - Y.-Q. Ma and J. Qiu, PRD98 (2018), PRL 120 (2018);

