A LITTLE ABOUT HADRONS WITH TWO HEAVY b QUARKS: (i) FINITE DIQUARK SIZE EFFECTS, (ii) DETECTING THESE HADRONS

$b b q \cdot b b \bar{q} \bar{q}$
SCET 2019 UCSD
Mark Wise, Caltech

OUTLINE

Finite Diquark Size Effects

Discovery of Hadrons With two b quarks

The Direct Coupling of Light Quarks to Heavy Di-quarks
Haipeng An (Tsinghua U., Beijing \& Perimeter Inst. Theor. Phys.), Mark B. Wise Published in Phys.Lett. B788 (2019) 131-136

A Few References

[1] J. Carlson, L. Heller and J. A. Tjon, Phys. Rev. D 37, 774 (1988).
[2] A. V. Manohar and M. B. Wise, Nucl. Phys. B 399, 17 (1993).
[3] A. Francis, R. J. Hudspith, R. Lewis and K. Maltman, Phys. Rev. Lett. 118, 142001 (2017) [arXiv:1607.05214 [hep-lat]]; EPJ Web Conf. 175, 05023 (2018) [arXiv:1711.03380 [hep-lat]].
[4] E. J. Eichten and C. Quigg, Phys. Rev. Lett. 119, no. 20, 202002 (2017) [arXiv:1707.09575 [hep-ph]].
[5] M. Karliner and J. L. Rosner, Phys. Rev. Lett. 119, no. 20, 202001 (2017) [arXiv:1707.07666 [hep-ph]].
[6] G. K. C. Cheung et al. [Hadron Spectrum Collaboration], JHEP 1711, 033 (2017) [arXiv:1709.01417 [hep-lat]].
[6] T. Gershon and A. Poluektov, JHEP 1901, 019 (2019) [arXiv:1810.06657 [hep-ph]].

Finite Diquark Size Effects

Baryons and tetraquarks with two very heavy quarks Q have a large negative contribution to mass from Coulomb binding energy in anti-triplet channel

$$
V(r)=-\frac{2}{3} \frac{\alpha_{s}\left(m_{Q} \mathrm{v}_{\mathrm{rel}}\right)}{r} \quad \begin{aligned}
& \text { Explanation of suppression of attraction in large } N_{c} \\
& \text { At end of talk if time }
\end{aligned}
$$

Ground state tetraquarks with very heavy quarks decay weakly
$T_{Q Q \bar{q} \bar{q}} \rightarrow M_{Q \bar{q}}+M_{Q \bar{q}}$ or $\Xi_{Q Q q}+\bar{B}_{\bar{q} \bar{q} \bar{q}}$ forbidden
Effective theory with heavy diquark (spin 1 ground state) spin symmetry,

$$
\begin{aligned}
& m_{Q}>m_{Q} \mathrm{v}_{\mathrm{rel}}>m_{Q} \mathrm{v}_{\mathrm{rel}}^{2} \gg \Lambda_{Q C D} \\
& \mathscr{L}=\Phi_{\mathrm{v}}^{\dagger} i \mathrm{v}^{\mu} D_{\mu} \Phi_{\mathrm{v}}-\frac{1}{4} G^{A \mu \nu} G_{\mu \nu}^{A}+\sum_{q} \bar{q}\left(i \gamma^{\mu} D_{\mu}-m_{q}\right) q+\ldots
\end{aligned}
$$

Match from full QCD to this effective theory in one step, relative velocity not very small.

In ellipsis terms suppressed by inverse powers of heavy quark mass including those that depend on size of diquark.

Compute coefficient of local operator in ellipsis that gives leading coupling of light quarks to diquark and coefficient arises from finite size of diquark.

Compute elastic light quark diquark scattering amplitude at tree level

Neglect effects suppressed by heavy quark mass in spinors
Three momentum transfer of light quark \mathbf{k}. Expand in \mathbf{k}. Leading term diquark charge

$$
\begin{aligned}
& \mathcal{A} \simeq \frac{g^{2}}{2 k^{2}}\left(2 m_{Q_{1}}+2 m_{Q_{2}}\right) \bar{u}\left(k_{f}\right) T_{\beta^{\prime} \beta}^{A} \gamma^{0} u\left(k_{i}\right)\left(-T^{A}\right)_{\alpha \alpha^{\prime}} \times \\
& \int \frac{d^{3} p}{(2 \pi)^{3}}\left(\tilde{\phi}^{*}\left(\mathbf{p}-\frac{m_{Q_{2}}}{m_{Q_{1}}+m_{Q_{2}}} \mathbf{k}\right)+\tilde{\phi}^{*}\left(\mathbf{p}+\frac{m_{Q_{1}}}{m_{Q_{1}}+m_{Q_{2}}} \mathbf{k}\right)\right) \tilde{\phi}(\mathbf{p})
\end{aligned}
$$

Linear term vanishes because s-wave wave functions

Linear term vanishes because s-wave wave functions

$$
\mathscr{A}_{2} \simeq \frac{g^{2}}{2}\left(2 m_{Q_{1}}+2 m_{Q_{2}}\right) \bar{u}\left(k_{f}\right) T_{\beta^{\prime} \beta}^{A} \gamma^{0} u\left(k_{i}\right)\left(-T^{A}\right)_{\alpha \alpha^{\prime}}\left(-\frac{\left\langle r^{2}\right\rangle}{6}\right) \frac{m_{Q_{1}}^{2}+m_{Q_{2}}^{2}}{\left(m_{Q_{1}}+m_{Q_{2}}\right)^{2}},
$$

Identify operator. Include anomalous dimension scaling

$$
\begin{aligned}
\Delta L & =\left(\frac{\pi \alpha_{s}\left(m_{Q} \mathrm{v}_{\mathrm{rel}}\right)\left\langle r^{2}\right\rangle}{18}\right)\left(\frac{m_{Q_{2}}^{2}+m_{Q_{1}}^{2}}{\left(m_{Q_{1}}+m_{Q_{2}}\right)^{2}}\right)\left[\frac{\alpha_{s}\left(m_{Q} v\right)}{\alpha_{s}(\mu)}\right]^{\left(\frac{-\frac{9}{2}+\frac{2}{\frac{3}{n}} n_{q}}{11-\frac{2}{3} n_{q}}\right)} O_{-}(\mu) \\
O_{-} & =\left(\Phi_{\mathrm{v} \alpha}^{\dagger} \Phi_{\mathrm{v} \alpha}\right) \sum_{q}\left(\bar{q}_{\beta} \gamma^{\mu} \mathrm{v}_{\mu} q_{\beta}\right)-3\left(\Phi_{\mathrm{v} \alpha}^{\dagger} \Phi_{\mathrm{v} \beta}\right) \sum_{q}\left(\bar{q}_{\alpha} \gamma^{\mu} \mathrm{v}_{\mu} q_{\beta}\right) .
\end{aligned}
$$

Make familiar quark model estimate of matrix element in baryon case $\Xi_{b b q} \sim \Phi q$
Get light quark wave function at origin from B meson decay constant
Neglect anomalous scaling

$$
\Delta m_{\Xi_{b b q}} \sim\left(\frac{\pi \alpha_{s}\left(m_{b} \mathrm{v}_{\mathrm{rel}}\right)\left\langle r^{2}\right\rangle}{54}\right) f_{B}^{2} m_{B}
$$

Estimate mass shift due to diquark finite size $\quad \Delta m_{\Xi_{b b q}}=\left(\frac{\pi \alpha_{s}\left(m_{b} \mathrm{~V}_{\text {rel }}\right)\left\langle r^{2}\right\rangle}{54}\right) f_{B}^{2} m_{B}$
Cornell potential $\quad V_{\Phi_{b b}}(r)=-\frac{2}{3}\left(\frac{0.3}{r}\right)+\frac{1}{2}\left(0.2 \mathrm{GeV}^{2}\right) r$

Implies radius

$$
\left\langle r^{2}\right\rangle=3.2 \mathrm{GeV}^{-2}
$$

Mass shift of about 10 MeV due to finite diquark size. Probably ok to neglect such effects.

Detecting Hadrons with two b quarks at the LHC

Baryon with two heavy charm quarks discovered at LHCb in 2017 using mode $\Xi_{c c}^{++} \rightarrow \Lambda_{c}^{+} K^{-} \pi^{+} \pi^{+}$

Harder to detect baryons with two heavy bottom quarks using exclusive modes
For example suppose use $\quad \Xi_{b b u} \rightarrow B^{-} \Lambda_{c}^{+}$. Branching ratio guess $\sim 10^{-3}$

$$
\operatorname{Br}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right) \sim 10^{-3} \quad \operatorname{Br}\left(B^{-} \rightarrow J / \psi K^{-}\right) \sim 10^{-3} \quad B r\left(J / \psi \rightarrow \mu^{+} \mu^{-}\right) \sim 10^{-1}
$$

Idea of Gershon and Poluektov

PV bbx

IP

$$
\operatorname{Br}\left(\bar{B}_{c} \rightarrow J / \psi \pi^{-} \rightarrow \mu^{+} \mu^{-} \pi^{-}\right) \simeq 2 \times 10^{-4} .
$$

$$
H=\frac{4 G_{F}}{\sqrt{2}} V_{c s}^{*} V_{c b}\left[C_{1} O_{1}+C_{2} O_{2}\right]
$$

$$
\begin{gathered}
O_{1}=\left[\bar{c}_{\alpha} \gamma^{\mu} P_{L} b_{\alpha}\right]\left[\bar{s}_{\beta} \gamma_{\mu} P_{L} c_{\beta}\right] \quad O_{2}=\left[\bar{c}_{\beta} \gamma^{\mu} P_{L} b_{\alpha}\right]\left[\bar{s}_{\alpha} \gamma_{\mu} P_{L} c_{\beta}\right] \\
\mathcal{M}\left(\Phi_{b b}(\mathbf{0}, \gamma) \rightarrow \bar{B}_{c}(\mathbf{k})+c\left(\mathbf{p}_{c}, \alpha\right)+s\left(\mathbf{p}_{s}, \beta\right)\right),
\end{gathered}
$$

$$
\begin{gathered}
\frac{d \Gamma\left(\Xi_{b b q} \rightarrow \bar{B}_{c}^{(*)}(k)+X_{c, s, q}\right)}{d k} \simeq\left(\frac{G_{F}^{2}}{3 \pi^{3}}\right)\left(C_{1}-C_{2}\right)^{2}\left|V_{c b} V_{c s}\right|^{2}\left|\mathcal{I}\left(m_{b} k /\left(m_{b}+m_{c}\right)\right)\right|^{2} \\
\times k^{2} \frac{\left(m_{\Phi_{b b}}^{2}+m_{\bar{B}_{c}}^{2}-m_{c}^{2}-2 m_{\Phi_{b b}} E_{\bar{B}_{c}}(k)\right)^{2}}{\left(m_{\Phi_{b b}}^{2}+m_{\bar{B}_{c}}^{2}-2 m_{\Phi_{b b}} E_{\bar{B}_{c}}(k)\right)} \\
\mathcal{I}(k)=\int \frac{d^{3} p}{(2 \pi)^{3}} \tilde{\psi}_{\bar{B}_{c}}^{*}(|\mathbf{p}+\mathbf{k}|) \\
\tilde{\psi}_{\Phi_{b b}}(p)=4 \pi \int d r r^{2} \psi_{\bar{B}_{c}}^{*}(r) \psi_{\Phi_{b b}}(r) \frac{\sin (k r)}{k r} .
\end{gathered}
$$

$$
\begin{aligned}
\mathscr{M} & \sim \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{\sqrt{E_{\bar{B}_{c}}(k) m_{\Phi_{b b}}}}{\sqrt{E_{c}(|\mathbf{p}+\mathbf{k}|) E_{b}(p)}} \tilde{\psi}_{\bar{B}_{c}}^{*}\left(\left|\mathbf{p}+\frac{m_{b}}{m_{b}+m_{c}} \mathbf{k}\right|\right) \tilde{\psi}_{\Phi_{b b}}(p) \\
& \times\left[\bar{u}^{(s)}\left(\mathbf{p}_{\mathbf{s}}\right) \gamma^{\mu} P_{L} \nu^{(c)}(\mathbf{p}+\mathbf{k})\right]\left[\bar{u}^{(c)}\left(\mathbf{p}_{\mathbf{c}}\right) \gamma_{\mu} P_{L} u^{(b)}(\mathbf{p})\right] .
\end{aligned}
$$

Wavefunctions restrict arguments to be small compared with heavy quark masses

$$
\begin{array}{r}
\left|\mathbf{p}+\frac{m_{b}}{m_{b}+m_{c}} \mathbf{k}\right| \ll m_{c} \quad \begin{array}{r}
\mathbf{p}+\mathbf{k} \rightarrow\left(m_{c} /\left(m_{b}+m_{c}\right)\right) \mathbf{k} \text { in } E_{c} \text { and } v^{(c)} \\
E_{c}\left(\left(m_{c} /\left(m_{b}+m_{c}\right)\right) k\right)=\left(m_{c} /\left(m_{c}+m_{b}\right)\right) E_{\bar{B}_{c}}(k)
\end{array} \\
\mathscr{M} \sim \mathscr{F}\left(\frac{m_{b}}{m_{b}+m_{c}} k\right)\left[\bar{u}^{(s)}\left(\mathbf{p}_{\mathbf{s}}\right) \gamma^{\mu} P_{L} v^{(c)}\left(\frac{m_{c}}{m_{b}+m_{c}} \mathbf{k}\right)\right] \sqrt{2}\left[\bar{u}^{(c)}\left(\mathbf{p}_{\mathbf{c}}\right) \gamma_{\mu} P_{L} u^{(b)}(\mathbf{0})\right]
\end{array}
$$

Suppose sample of $10^{8} \quad \Xi_{b b q}$ and $T_{b b \bar{q} \bar{q}}$
Then about $10^{6} \quad \bar{B}_{c} \quad$ that don't point back to interaction point
About 100 end up in final state $J / \psi \pi^{-} \rightarrow \mu^{-} \mu^{+} \pi^{-}$

Tetraquarks with two heavy quarks in large $\mathbf{N}_{\mathbf{c}}$

Quarkonium interpolating field (just keep track of color)
$Q_{1 \alpha} \bar{Q}_{2 \alpha}$
Short distance potential $\quad V(r)=-\left(\frac{N_{c}^{2}-1}{2 N_{c}}\right) \frac{\alpha_{s}}{r} \rightarrow-\frac{\hat{\alpha}_{s}}{r}$

$$
\hat{\alpha}_{s}=N_{c} \alpha_{s}
$$

Tetraquark interpolating field

$$
Q_{1 \alpha} Q_{2 \beta} \bar{q}_{1 \alpha} \bar{q}_{2 \beta}-Q_{1 \alpha} Q_{2 \beta} \bar{q}_{1 \beta} \bar{q}_{2 \alpha}
$$

Short distance potential between heavy quarks

$$
V(r)=-\left(\frac{N_{c}+1}{2 N_{c}}\right) \frac{\alpha_{s}}{r} \rightarrow 0 \frac{{\hat{\alpha_{s}}}_{s}}{r}
$$

In large N_{c} limit $3 \times \overline{3} \rightarrow 1$ attractive channel but $3 \times 3 \rightarrow \overline{3}$ is not

