Towards an extraction of $\alpha_{\mathrm{s}}\left(\mathrm{m}_{\mathrm{z}}\right)$ from $\mathrm{e}^{+} \mathrm{e}^{-}$ angularities

Jim Talbert (DESY)
with G. Bell, C. Lee, Y. Makris, and H. Prager
hep-ph/1808.07867
\& work-in-progress

25 March 2019 || SCET, UCSD || San Diego, CA, USA

Outline

[p] The global picture of $\alpha_{\mathrm{s}}\left(\mathrm{m}_{\mathrm{z}}\right)$

SCET and the global picture of α_{s}

- Many groups have utilized high-precision event-shape results to extract a value for α_{s}. However, the value of α_{s} is highly correlated to non-perturbative physics.

C-parameter versus Thrust Tail Global Fit

see A. Hoang, 2015 workshop on precision α_{s}

- 2015 C-parameter result ~4 σ away from lattice QCD / world average...
- What can break the degeneracy between \mathcal{A} and α_{s} ?

Visualizing disentanglement

- Thinking observable-by-observable, 'disentangling' \mathcal{A} and $\alpha_{\text {s }}$ looks like a series of uncertainty ellipses with minimal overlap:

- The semi-major axis of an ellipse drawn in the $\mathcal{A}-\alpha_{\mathrm{s}}$ plane can be generically written as:

- The slope of this line is Q-dependent for all event shapes, and also depends on multiplicative coefficients c (e.g. c $=2$ for thrust). Can we gain analytic control over char an entire class of observables?

Why $\mathrm{e}^{+} \mathrm{e}^{-}$angularities?

$\mathrm{e}^{+} \mathrm{e}^{-}$angularities in SCET

- Angularities can be defined in terms of the of the rapidity and p_{T} of a final state particle ' i ', with respect to the thrust axis:

IR safe for $a \in\{-\infty, 2\}!$

$$
\begin{array}{ll}
\tau_{a}=\frac{1}{Q} \sum_{i}\left|\mathbf{p}_{\perp}^{i}\right| e^{-\left|\eta_{i}\right|(1-a)} & \begin{array}{l}
\text { a }=0<->~ ' T h r u s t ' \\
\text { a }
\end{array}=1 \text { <-> 'Jet Broadening' }
\end{array}
$$

- An all-order dijet factorization theorem for the observable is easily derived in SCET:

$$
d \sigma \sim H \cdot \mathcal{J} \otimes \mathcal{J} \otimes \mathcal{S} \quad \stackrel{\text { RGE }}{\longleftrightarrow} \quad \frac{d H\left(Q^{2}, \mu\right)}{d \ln \mu}=\left[2 \Gamma_{\text {cusp }} \ln \left(\frac{Q^{2}}{\mu^{2}}\right)+4 \gamma_{H}\left(\alpha_{s}\right)\right] H\left(Q^{2}, \mu\right)
$$

- Evolving all scales to/from their 'natural' settings, one arrives at the resummed cross section:

$$
\begin{array}{rlll}
\frac{\sigma_{\text {sing }}\left(\tau_{a}\right)}{\sigma_{0}}= & e^{K\left(\mu, \mu_{H}, \mu_{J}, \mu_{S}\right)}\left(\frac{\mu_{H}}{Q}\right)^{\omega_{H}\left(\mu_{\mu} \mu_{H}\right)}\left(\frac{\mu_{J}^{2-a}}{Q^{2-a} \tau_{a}}\right)^{2 \omega_{J}\left(\mu, \mu_{J}\right)}\left(\frac{\mu_{S}}{Q \tau_{a}}\right)^{\omega_{S}\left(\mu, \mu_{S}\right)} H\left(Q^{2}, \mu_{H}\right) & \mathcal{F}(\Omega)=\frac{e^{\gamma_{E} \Omega}}{\Gamma(-\Omega)} \\
& \times \widetilde{J}\left(\partial_{\Omega}+\ln \frac{\mu_{J}^{2-a}}{Q^{2-a} \tau_{a}}, \mu_{J}\right)^{2} \widetilde{S}\left(\partial_{\Omega}+\ln \frac{\mu_{S}}{Q \tau_{a}}, \mu_{S}\right) \times\left\{\begin{array}{lll}
\frac{1}{\tau_{a} \mathcal{F}(\Omega)} & \sigma=\frac{d \sigma}{d \tau_{a}} & \mathcal{G}(\Omega)=\frac{e^{\gamma_{E} \Omega}}{\Gamma(1-\Omega)} \\
\mathcal{G}(\Omega) & \sigma=\sigma_{c} &
\end{array}\right.
\end{array}
$$

- This predicts the singular component of the cross section. One must then match to QCD:

$$
\frac{\sigma_{c}\left(\tau_{a}\right)}{\sigma_{0}}-\frac{\sigma_{\mathrm{c}, \operatorname{sing}}\left(\tau_{a}\right)}{\sigma_{0}}=r_{c}\left(\tau_{a}\right)=\theta\left(\tau_{a}\right)\left\{\frac{\alpha_{s}(Q)}{2 \pi} r_{c}^{1}\left(\tau_{a}\right)+\left(\frac{\alpha_{s}(Q)}{2 \pi}\right)^{2} r_{c}^{2}\left(\tau_{a}\right)\right\}+\ldots
$$

- Additionally, a treatment of non-perturbative effects is critical in $e^{+} e^{-}->$hadrons...

Non-pert. effects: parametric power

- When dominant power corrections come from the soft function, NP effects can be parameterized into a shape function $f_{\text {mod }}$:

$$
\begin{aligned}
S(k, \mu)=\int d k^{\prime} S_{\mathrm{PT}}\left(k-k^{\prime}, \mu\right) f_{\mathrm{mod}}\left(k^{\prime}-2 \bar{\Delta}_{a}\right) \quad f_{\mathrm{mod}}(k)=\frac{1}{\lambda}\left[\sum_{n=0}^{\infty} b_{n} f_{n}\left(\frac{k}{\lambda}\right)\right]^{2} \\
\lambda \text { constrained by first moment of the shape function } \\
\text { complete orthonormal basis }
\end{aligned}
$$

- Convolution with $f_{\text {mod }}$ reproduces leading NP distribution shift, derived from an OPE:

$$
\frac{d \sigma}{d \tau_{a}}\left(\tau_{a}\right) \underset{\mathrm{NP}}{\longrightarrow} \frac{d \sigma}{d \tau_{a}}\left(\tau_{a}-c_{\tau_{a}} \frac{\mathcal{A}}{Q}\right) \quad c_{\tau_{a}}=\frac{2}{1-a} \quad \mathcal{A}=\frac{1}{N_{C}} \operatorname{Tr}\langle 0| \bar{Y}_{\bar{n}}^{\dagger} Y_{n}^{\dagger} \mathcal{E}_{T}(0) Y_{n} \bar{Y}_{\bar{n}}|0\rangle
$$

Note: this is only valid in the tail region!

- Varying \mathbf{Q} between 35 and 207 GeV generates same ditterence as varying a $\in\{-2.0,0.5\}$ (6)!!!

Recent progress: NLL' to NNLL'

softserve.hepforge.org

- Two-loop soft anomalous dimensions and singular constants provided by SoftSERVE
- Two-loop jet anomalous dimension obtained from consistency relations
- Two-loop singular jet constants extracted from EVENT2
- Matching to QCD at $O\left(\alpha_{s}{ }^{2}\right)$ extracted from EVENT2
- Includes set of H,J,S, \& non-sing. profile scales, tuned for a-dependence, and varied with a random scan over parameters
- Non-perturbative effects accounted for by convolution with renormalon-subtracted shape function

Data and fit method

The (only) dataset

Generalized event shape and energy flow studies in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation at $\sqrt{s}=91.2-208.0 \mathrm{GeV}$

JHEP 10 (2011) 143

Received: May 12, 2009
Revised: May 3, 2011
Accepted: August 24, 2011
Published: October 31, 2011
Also see thesis by Pratima Jindal, Panjab
University, Chandigarh

- Data for $a=\{-1.0,-0.75 .-0.5,-0.25,0.0,0.25,0.5,0.75\}$ at 91.2 and 197 GeV
- Total number of bins $=($ bins per a) $\times($ number of $a)=25 \times 7=175$ bins $@ \mathrm{Q}=91.2 \mathrm{GeV}$
- Compare to 404 bins included in 2015 C-Parameter fit (across all Q considered)...
- Early theory predictions look good against the data, but what does this translate to for $\boldsymbol{\mathcal { A }}$ and α_{s} ?

BLUE: NNLL $+\mathbf{O}\left(\alpha_{s}{ }^{2}\right) \quad$ RED: $N N L L^{\prime}+O\left(\alpha_{s}{ }^{2}\right)+N P$

Fit goals and methodology

EARLY GOALS

1) Gauge the quality of the available data and resulting fits, given our best theory predictions and independent extraction codes...Do we need better data or better theory at the moment?
2) Determine if the expected benefit of using angularities (parametric NP behavior) is roughly observed.
3) Gauge whether our (early) results are consistent with prior SCET analyses...Still tension with PDG?

- We perform a $\chi^{2} /$ d.o.f. analysis, accounting for stat. + (correlated) syst. experimental uncertainties and theory uncertainties as determined by all relevant variations in 1808.07867.
- Correlations amongst data bins accounted for with Minimal Overlap Model.
- Experimental uncertainty ellipse determined via $\Delta \chi^{2}=1$, using central values of profile parameters. Correlation matrices (also for theory and total uncertainty) defined by:

$$
V_{i j}^{c o r r .} \equiv\left(\begin{array}{cc}
\sigma_{\alpha_{s}}^{2} & \sigma_{\alpha_{s}} \sigma_{\mathcal{A}} \rho_{\alpha \mathcal{A}} \\
\sigma_{\alpha_{s}} \sigma_{\mathcal{A}} \rho_{\alpha \mathcal{A}} & \sigma_{\mathcal{A}}^{2}
\end{array}\right) \quad V_{i j}^{\text {total }} \equiv V_{i j}^{\text {exp. }}+V_{i j}^{\text {theory }}
$$

- Theory predictions only include (for now) leading non-pert. shift: $\quad \frac{d \sigma}{d \tau_{a}}\left(\tau_{a}\right) \underset{\mathrm{NP}}{\longrightarrow} \frac{d \sigma}{d \tau_{a}}\left(\tau_{a}-c_{\tau_{a}} \frac{\mathcal{A}}{Q}\right)$
- Theory uncertainty ellipse determined as envelope of all best fit points, after 500 random draws of theory parameters in pre-defined ranges, found in 1808.07867.
- Fits performed for each angularity individually, and globally for all available a, once a fit window is chosen. We only use the $\mathrm{Q}=91.2 \mathrm{GeV}$ data in our fits.

Profiling a fit window

- How can we identify a region sensitive to \mathcal{A} and α_{s}, and for which our best theory curves are reliable? Look to the profiles!

- Profiles trace scale hierarchies through different regimes of a given distribution:

$$
\begin{array}{cl}
\text { Peak } & \mu_{H} \gg \mu_{J} \gg \mu_{S} \sim \Lambda_{Q C D} \\
\text { Tail } & \mu_{H} \gg \mu_{J} \gg \mu_{S} \gg \Lambda_{Q C D} \\
\text { Far Tail } & \mu_{H}=\mu_{J}=\mu_{S} \gg \Lambda_{Q C D}
\end{array}
$$

Tracks the peak
Turns off resummation
$\zeta t_{0}=\frac{n_{0}}{Q} 3^{a}$
$t_{2}=n_{2} \times 0.295^{1-0.637 a}$
$t_{1}=\frac{n_{1}}{Q} 3^{a} \quad t_{3}=n_{3} \tau_{a}^{\mathrm{sph}}$
Transitions between NP and
PT physics perturbation theory

- Our default fit window will be between \mathbf{t}_{1}, and \mathbf{t}_{2}, which roughly tracks the tail (former) and fartail (latter) of the distribution.* *

Preliminary results

Default fits: individual observables

- We perform fits at individual a, to see if we observe the NP shift (theory at NNLL' $\left.+O\left(\alpha_{s}^{2}\right)+N P\right)$:

Default fits: global analysis

- If we instead perform a fit to all available observables/bins simultaneously, we obtain:

- Compare the central results to 2015 C-parameter results in 1501.04111:

order	$\alpha_{s}\left(m_{Z}\right)($ with $\boldsymbol{A})$	$\alpha_{s}\left(m_{Z}\right)\left(\right.$ with $\left.\boldsymbol{A}\left(R_{\Delta}, \mu_{\Delta}\right)\right)$
NLL^{\prime}	$0.1071(60)(05)$	$0.1059(62)(05)$
$\mathrm{N}^{2} \mathrm{LL}^{\prime}$	$0.1102(32)(06)$	$0.1100(33)(06)$
$\mathrm{N}^{3} \mathrm{LL}^{\prime}($ full $)$	$0.1117(16)(06)$	$\mathbf{0 . 1 1 2 3 (1 4) (\mathbf { 0 6 })}$

order	$\boldsymbol{\mathcal { A }}[\mathrm{GeV}]$	$\boldsymbol{\mathcal { A }}\left(R_{\Delta}, \mu_{\Delta}\right)[\mathrm{GeV}]$
NLL^{\prime}	$0.533(154)(18)$	$0.582(134)(16)$
$\mathrm{N}^{2} \mathrm{LL}^{\prime}$	$0.443(119)(19)$	$0.457(83)(19)$
$\mathrm{N}^{3} \mathrm{LL}^{\prime}($ full $)$	$0.384(91)(20)$	$\mathbf{0 . 4 2 1 (\mathbf { 6 0 }) (\mathbf { 2 0 })}$

Default fits: convergence

- The improvement from NLL' to NNLL' accuracy makes a substantial difference in the uncertainty ellipses generated:

NNLL'

$$
\begin{aligned}
\left.\alpha_{s}\left(m_{Z}\right)\right|_{\mathrm{NNLL}} & =0.109 \pm 0.007_{\exp } \pm 0.007_{\mathrm{th}} \\
\left.\mathcal{A}\right|_{\mathrm{NNLL}^{\prime}} & =0.36 \pm 0.37_{\exp } \pm 0.19_{\mathrm{th}} \quad(\mathrm{GeV})
\end{aligned}
$$

NLL'

$$
\begin{aligned}
\left.\alpha_{s}\left(m_{Z}\right)\right|_{\mathrm{NLL}} & =0.108 \pm 0.007_{\exp } \pm 0.02_{\mathrm{th}} \\
\left.\mathcal{A}\right|_{\mathrm{NLL}} & =0.45 \pm 0.34_{\mathrm{exp}} \pm 0.60_{\mathrm{th}} \quad(\mathrm{GeV})
\end{aligned}
$$

Fit windows - a major systematic

- Taking more of the peak leads to smaller experimental ellipses, whereas taking more of the far tail leads to larger experimental ellipses:

- But both effects will clearly generate different central values for \mathcal{A} and $\alpha_{\text {s.. }}$
- This effect was already noted before, cf. Fig. 17 in 1006.3080. But can we really justify not taking more of the far-tail data? Would a significant tension survive if not?

Projections: better data

- Compare the relative theory vs. experimental ellipses in 2010 thrust paper to our own:
2019 N 2 LL' Angularities ($\mathrm{a}=0$)
($\mathrm{Q}=91.2 \mathrm{GeV}$)

Note the difference in the y-axis!

$$
\left.V_{i j}^{\exp }\right|_{\mathrm{a}=0} ^{2019} \simeq\left(\begin{array}{cc}
1.01 \cdot 10^{-4} & -5.50 \cdot 10^{-3} \mathrm{GeV} \\
-5.50 \cdot 10^{-3} \mathrm{GeV} & 3.10 \cdot 10^{-1} \mathrm{GeV}^{2}
\end{array}\right)
$$

- Measurements at more c.o.m energies Q, for each angularity a, are clearly welcome!

Projections: more observables

- As are measurements at more values of a, for a given Q! Data across broad ranges in both promises intense probative power:

Summary and outlook

- Due to the parametric dependence of non-perturbative effects, angularity distributions offer a unique opportunity to break the degeneracy in two-dimensional $\mathcal{A}-\alpha_{\mathrm{S}}$ fits.
- Our recent improvement to NNLL' + O $\left(\alpha_{\mathrm{s}}{ }^{2}\right)+$ NP accuracy motivates such a fit.
- We have presented preliminary results using a simple correlation model. The central values we obtain from a global fit to all seven observables are:

$$
\begin{array}{rl|l}
\left.\alpha_{s}\left(m_{Z}\right)\right|_{\mathrm{NNLL}} & =0.109 \pm 0.007_{\exp } \pm 0.007_{\mathrm{th}} & \text { Preliminary! } \\
\left.\mathcal{A}\right|_{\mathrm{NNLL}} & =0.36 \pm 0.37_{\mathrm{exp}} \pm 0.19_{\mathrm{th}}(\mathrm{GeV})
\end{array}
$$

- These values are consistent with prior SCET extractions, but are still well below the world average...additionally, central values appear highly sensitive to the fit window chosen.
- Results do not yet include a complete non-perturbative treatment (WIP). We are also validating our results with a second, independent Python code. More theory improvements possible.
- Only one dataset exists. More data, at more values of \boldsymbol{Q} and \boldsymbol{a}, could permit an unambiguous disentangling of leading non-perturbative effects.
- Other statistical models/methods should also be explored.

Backup: renormalon expectations

- Although we have not yet performed extractions with fully shape- and renormalon-corrected theory curves, we have naive estimates of their effects from prior analyses:

order	$\alpha_{s}\left(m_{Z}\right)\left(\right.$ with $\left.\bar{\Omega}_{1}\right) \alpha_{s}\left(m_{Z}\right)\left(\right.$ with $\left.\Omega_{1}\left(R_{\Delta}, \mu_{\Delta}\right)\right)$	
NLL^{\prime}	$0.1071(60)(05)$	$0.1059(62)(05)$
$\mathrm{N}^{2} \mathrm{LL}^{\prime}$	$0.1102(32)(06)$	$0.1100(33)(06)$
$\mathrm{N}^{3} \mathrm{LL}^{\prime}$ (full)	$0.1117(16)(06)$	$\mathbf{0 . 1 1 2 3 (1 4) (\mathbf { 0 6 })}$

order	$\bar{\Omega}_{1}[\mathrm{GeV}]$	$\Omega_{1}\left(R_{\Delta}, \mu_{\Delta}\right)[\mathrm{GeV}]$
NLL^{\prime}	$0.533(154)(18)$	$0.582(134)(16)$
$\mathrm{N}^{2} \mathrm{LL}^{\prime}$	$0.443(119)(19)$	$0.457(83)(19)$
$\mathrm{N}^{3} \mathrm{LL}^{\prime}$ (full)	$0.384(91)(20)$	$\mathbf{0 . 4 2 1 (6 0) (\mathbf { 2 0 })}$

Backup: the PDG table on α_{s}

To be included in the PDG average, a fit must:

- be published in a peer-reviewed journal...
- include $O\left(\alpha_{s}{ }^{3}\right)$ fixed-order perturbative results...
- include `reliable' error estimates, including NP effects...

2018 PDG world average:
 .1181 +- . 0011

Thrust at $\mathrm{N}^{3} \mathrm{LL}$ with Power Corrections and a Precision Global Fit for $\alpha_{s}\left(m_{Z}\right)$
Riccardo Abbate, ${ }^{1}$ Michael Fickinger, ${ }^{2}$ André H. Hoang, ${ }^{3}$ Vicent Mateu, ${ }^{3}$ and Iain W. Stewart ${ }^{1}$
hep-ph/1006.3080

$$
\begin{aligned}
\alpha_{s}\left(m_{Z}\right) & =0.1135 \pm(0.0002)_{\exp } \\
& \pm(0.0005)_{\mathrm{hadr}} \pm(0.0009)_{\mathrm{pert}}
\end{aligned}
$$

A Precise Determination of α_{s} from the C-parameter Distribution
André H. Hoang, ${ }^{1,2}$ Daniel W. Kolodrubetz, ${ }^{3}$ Vicent Mateu, ${ }^{1}$ and Iain W. Stewart ${ }^{3}$
hep-ph/1501.04111

$$
\begin{aligned}
\alpha_{s}\left(m_{Z}\right) & =0.1123 \pm 0.0002_{\mathrm{exp}} \\
& \pm 0.0007_{\mathrm{hadr}} \pm 0.0014_{\mathrm{pert}}
\end{aligned}
$$

