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Why e+e- angularities? 

Data and fit method

Preliminary results

[p] The global picture of 𝛼s(mZ)
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 SCET and the global picture of 𝛼s

Many groups have utilized high-precision event-shape results to extract a value for 𝛼s.  However, 
the value of 𝛼s is highly correlated to non-perturbative physics.  

hep-ph/1006.3080 (AFHMS)
hep-ph/1501.04111 (HKMS)

hep-ph/0803.0342 (BS)

What can break the degeneracy between A and 𝛼s?
2015 C-parameter result ~4𝜎 away from lattice QCD / world average… 

2018 world average:   
.1181 +- .0011 
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Workshop on High Precision Alpha_s Measurements, Oct 12 - 13, 2015 

Strong Coupling Determination 

C-parameter versus Thrust Tail Global Fit  

Very good agreement at N3LL + O(αs
3) with renormalon subtraction. 

A

Note recent N3LO + NNLL jet rate 
extraction:  Verbytskyi et al., 1902.08158

Workshop on High Precision Alpha_s Measurements, Oct 12 - 13, 2015 

Size of Non-Perturbartive Effects 

Monte-Carlo estimate vs. fits of non-perturbative powercorrection: 

• Simultaneous fit of power corrections and 
the strong coupling. 

• Sizeable power correction and strong 
coupling smaller than world average. 

• Power corrections taken from difference 
MCparton level - MChadron level 

•   Small power correction and strong 
generically larger than world average. 

• Problem: MCparton level  is only LO/LL 
description:                                     
MCparton level - MChadron level is LO/LL ! 

• Should not be used in event shape 
averages. 
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Thinking observable-by-observable, ’disentangling’ A and 𝛼s looks like a series of uncertainty 
ellipses with minimal overlap: 

The semi-major axis of an ellipse drawn in the A-𝛼s plane can be generically written as:

Visualizing disentanglement

A

𝛼s

Varying slopes = 
smaller overlap.

The slope of this line is Q-dependent for all event shapes, and also depends on multiplicative 
coefficients c (e.g. c = 2 for thrust).  Can we gain analytic control over c for an entire class of 
observables?

A

𝛼s

Agreement area 
is still large, 
uncertain.

Brief Article

The Author

March 19, 2019
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Why e+e-  angularities? 
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 e+e- angularities in SCET
Angularities can be defined in terms of the of the rapidity and pT of a final state particle ‘i’, with 
respect to the thrust axis:

hep-ph/0303051

An all-order dijet factorization theorem for the observable is easily derived in SCET:

Evolving all scales to/from their ‘natural’ settings, one arrives at the resummed cross section:

SCET Talk Workbook

JT

March 19, 2015
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RGE
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This predicts the singular component of the cross section.  One must then match to QCD:

Additionally, a treatment of non-perturbative effects is critical in e+e- -> hadrons…
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This formula immediately gives us c2
J̃

as soon as we determine c(2) (which, we recall from
Eq. (3.6), is in momentum space), whose extraction from EVENT2 will be described in the
next subsection.

3.2 Two-loop jet function constant

The program EVENT2 [74, 75] gives numerical results for partonic QCD observables in e+e≠

collisions to O(–2
s). Using the method described by Hoang and Kluth [76], we can extract

the singular constant c(2) in Eq. (3.6), and thus the unknown jet function constant c2
J̃

via
Eq. (3.7). For pedagogical purposes, we will give our own description of this method in the
language of continuous distributions, which we find more intuitive to understand, rather
than the language of discrete bins, which we encourage the reader to study in [76], as in
practice one implements the discrete method.

The integrated (cumulative) angularity distribution in full QCD has a fixed-order ex-
pansion of the form:
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,

to O(–2
s). The cnm coe�cients should agree with the SCET prediction in Eq. (3.4) for the

singular terms. The rn
c functions are the nonsingular remainders that vanish as ·a æ 0 and

which are not predicted by the leading power expansion in SCET. Since SCET predicts
the singular coe�cients correctly, the di�erence of the QCD and SCET results is simply
given by these remainders:
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which we will use in the next subsection to obtain the nonsingular remainder functions rn
c

from the di�erence of the EVENT2 output and the SCET prediction. To do this, however,
we must know all the cnm coe�cients in Eq. (3.8), including the constants in c20 © c(2) in
Eq. (3.7). But we do not yet know c2

J̃
.

In the limit of zero bin size, EVENT2 is generating an approximation to the di�erential
distribution, which takes the form:

1
‡0

d‡

d·a
= A ”(·a) + [B(·a)]+ + r(·a) , (3.10)

where A is the constant coe�cient of the delta function, B is a singular function, turned into
an integrable plus-distribution, and r = drc/d·a is nonsingular, that is, directly integrable

– 16 –

+ …

order perturbative contributions and more sophisticated treatment of non-perturbative
e�ects now available, we think that the time is ripe for an updated comparison. In particu-
lar, our setup in Eq. (1.4) allows for a clear separation of perturbative and non-perturbative
e�ects, which is not possible with Monte Carlo hadronization models that were tuned to
LEP data and which entered many of the theory comparisons in [48]. We can therefore
rigorously assess the impact of the non-perturbative corrections in our framework.

This paper is organized as follows: In Section 2 we collect the formulae required for
the resummation of Sudakov corrections in the two-jet region, which includes the new two-
loop ingredients from the soft function calculation in [43, 44]. In order to achieve NNLLÕ

accuracy, one in addition needs to obtain the corresponding two-loop jet function terms,
which we determine from a fit to the EVENT2 generator in Section 3. In this section we also
perform the matching of the resummed distribution to the fixed-order O(–2

s) prediction.
Then, in Section 4, we discuss our implementation of non-perturbative e�ects and we
present the final expressions of our analysis after renormalon subtraction. We further
discuss our scale choices in Section 5, and compare our results to the L3 data in Section 6.
Finally, we conclude and give an outlook about a future –s determination from a fit to the
angularity distributions in Section 7. Some technical details of our analysis are discussed
in the Appendix.

2 NNLL

Õ
resummation

The formalism for factoring and resumming dijet event shapes within a SCETI factorization
framework is well developed and documented in many places (see, e.g., [33, 35, 50]) and will
not be re-derived here. Below we will simply display the final results of these analyses and
collect the required ingredients to achieve the NNLLÕ resummation we desire. The precise
prescriptions for which parts of Eq. (1.4) are needed to which order in –s will be given in
Table 6 in Sec. 4.3. In particular, to reach NNLLÕ accuracy, we need to know the heretofore
unknown two-loop jet and soft anomalous dimensions “1

J,S and finite terms of the two-loop
jet and soft functions c2

J,S (in a notation we shall define below). These have recently been
determined or can be obtained from results in [43, 44] and the EVENT2 simulations we
report in this paper. The rest of this section details what these ingredients are and how
they enter the final cross sections that we use to predict the angularity distributions.

2.1 Resummed cross section

The analytic forms for the resummed di�erential or integrated cross sections in ·a, derived
in standard references like [34, 35], are given by
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‡0

= eK(µ,µH ,µJ ,µS)
3

µH

Q

4ÊH(µ,µH)3 µ2≠a
J

Q2≠a·a

42ÊJ (µ,µJ )3 µS

Q·a

4ÊS(µ,µS)
H(Q2, µH)

◊ ÂJ
1
ˆ�+ln µ2≠a

J

Q2≠a·a
, µJ

22 ÂS
1
ˆ�+ln µS

Q·a
, µS

2
◊

Y
]

[

1
·a

F(�) ‡ = d‡
d·a

G(�) ‡ = ‡c

, (2.1)

– 6 –

where the two cases are for ‡ being the di�erential or integrated distributions in Eq. (1.5),
and with the two functions F , G given by

F(�) = e“E�

�(≠�) , G(�) = e“E�

�(1 ≠ �) . (2.2)

The Born cross-section
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Q4(v2

e + a2
e)(v2

f + a2
f )

(Q2 ≠ m2
Z)2

6
(2.3)

contains a sum over massless quark flavours f = {u, d, s, c, b} with Qf being the charge of
the associated flavour in units of the electronic charge e, and vf and af are the vector and
axial charges of the flavour:

vf = 1
2 sin ◊W cos ◊W

(T 3
f ≠ 2Qf sin2 ◊W ) , af = 1

2 sin ◊W cos ◊W
T 3

f . (2.4)

The jet and soft functions ÂJ, ÂS appearing in Eq. (2.1) are the Laplace transforms of Ja
n,n̄, Sa

from Eq. (1.2), with their arguments written in terms of the logarithms on which they
naturally depend (we suppress their indices to simplify the notation). The total evolution
kernels K, � accounting for the running of the hard function H and the jet and soft functions
ÂJ, ÂS are given by

K(µ, µH , µJ , µS) = KH(µ, µH) + 2KJ(µ, µJ) + KS(µ, µS) ,

� © �(µJ , µS) = 2ÊJ(µ, µJ) + ÊS(µ, µS) ,
(2.5)

constructed out of the individual evolution kernels
KF (µ, µF ) © ≠jF ŸF K�(µ, µF ) + K“F (µ, µF ) ,

ÊF (µ, µF ) © ≠ŸF ÷�(µ, µF ) ,
(2.6)

which are determined from the anomalous dimensions of the functions F = H, ÂJ, ÂS:

K�(µ, µF ) ©
⁄ µ

µF

dµÕ

µÕ �cusp[–s(µÕ)] ln µÕ

µF
, (2.7)
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µÕ �cusp[–s(µÕ)] , K“F (µ, µF ) ©
⁄ µ

µF

dµÕ

µÕ “F [–s(µÕ)] .

The coe�cients jF , ŸF in Eq. (2.6) are given by

jH = 1 , ŸH = 4 , (2.8)

jJ = 2 ≠ a , ŸJ = ≠ 2
1 ≠ a

,

jS = 1 , ŸS = 4
1 ≠ a

,

and RG invariance of the cross section Eq. (2.1) imposes two consistency relations on these
anomalous dimension coe�cients,

ŸH + 2jJŸJ + ŸS = 0 , (2.9)
2ŸJ + ŸS = 0 .
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a = 1 <-> `Jet Broadening’
a = 0 <-> `Thrust’

IR safe for a ∈ {-∞, 2}!

Figure 1. Angularity distributions at NNLLÕ + O(–2

s) accuracy, convolved with a renormalon-free
non-perturbative shape function, whose calculation is the subject of this paper. We display the
predictions for three values of a (for now without uncertainties), illustrating roughly where two-jet
and three-or-more-jet events lie in each ·a spectrum. For this illustration, the boundary is drawn
at the value of ·a for a four-particle state that is grouped into pairs of jets with opening angle 30¶.
As a becomes larger (smaller), the peak region is more (less) dominated by purely two-jet events.

In the present work we analyze a class of event shapes known as angularities, which
are defined as [29]

·a = 1
Q

ÿ

i

|pi
‹| e≠|÷i|(1≠a) , (1.1)

where Q is the center-of-mass energy of the collision and the sum runs over all final-state
particles i with rapidity ÷i and transverse momentum pi

‹ with respect to the thrust axis.
The angularities depend on a continuous parameter a, and they include thrust (a = 0)
and total jet broadening (a = 1) as special cases. Whereas infrared safety requires that
a < 2, we restrict our attention to values of a Æ 0.5 in this work, since soft recoil e�ects
which complicate the resummation are known to become increasingly more important as
a æ 1 [30]. It is also possible to define ·a in Eq. (1.1) with respect to an axis other than
the thrust axis, such as the broadening axis or another soft-recoil-insensitive axis [31]. We
stick to the standard thrust-axis-based definition here, to coincide with the available data.
See [32] for a recent calculation with an alternative axis.

The phenomenological e�ect of varying a is to change the proportions of two-jet-like
events and three-or-more-jet-like events that populate the peak region of the ·a distribu-
tions (see Fig. 1). The relevant collinear scale that enters the factorization of angularity
distributions in the two-jet limit then varies accordingly with a, to properly reflect the
transverse size of the jets that are dominating each region of the distributions.

The resummation of Sudakov logarithms for the angularity distributions is based on
the factorization theorem [29, 33–35]

1
‡0

d‡

d·a
(·a) = H(Q2, µ)

⁄
dta

n dta
n̄ dks Ja

n(ta
n, µ) Ja

n̄(ta
n̄, µ) Sa(ks, µ) ”

1
·a ≠ ta

n + ta
n̄

Q2≠a
≠ ks

Q

2
,

(1.2)
which arises in the two-jet limit ·a æ 0. Here H is a hard function that contains the
virtual corrections to e+e≠ æ qq̄ scattering at center-of-mass energy Q (normalised to the
Born cross section ‡0); Ja

n,n̄ are quark jet functions that describe the collinear emissions
into the jet directions, and are functions of a variable ta

n,n̄ of mass dimension (2 ≠ a); and
Sa is a soft function that encodes the low-energetic cross talk between the two jets and

– 3 –

hep-ph/0801.4569
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 Non-pert. effects:  parametric power
When dominant power corrections come from the soft function, NP effects can be parameterized 
into a shape function fmod:

Varying Q between 35 and 207 GeV generates same difference as varying a ∈ {-2.0, 0.5} (~6)!!

Convolution with fmod reproduces leading NP distribution shift, derived from an OPE:

the domain of ·a considered. For angularities with a < 1, power corrections from the
collinear sector are suppressed with respect to those from the soft sector [23, 24]. The
non-perturbative e�ects can then be parameterized into a soft shape function fmod(k) that
is convolved with the perturbative distribution [38, 39, 50]:

S(k, µ) =
⁄

dkÕ SPT(k ≠ kÕ, µ) fmod(kÕ ≠ 2�a) , (4.1)

which ultimately leads to Eq. (1.4) for the cross section. Here SPT is the soft function
computed in perturbation theory, and �a is a gap parameter, which we will address in the
next subsection. The shape function fmod(k) is positive definite and normalized. We follow
previous approaches and expand the shape function in a complete set of orthonormal basis
functions [56]:

fmod(k) = 1
⁄

C Œÿ

n=0
bn fn

3
k

⁄

4D2

, (4.2)

where

fn(x) = 8

Û
2x3 (2n + 1)

3 e≠2x Pn
!
g(x)

"
, (4.3)

g(x) = 2
3

1
3 ≠ e≠4x

1
3 + 12x + 24x2 + 32x3

22
≠ 1 ,

and Pn are Legendre polynomials. The normalization of the shape function implies that
the coe�cients bn satisfy

qŒ
n=0 b2

n = 1. In practice, we only keep one term in the sum (4.2),
setting bn = 0 for n > 0 (cf. [16, 18, 81]). The parameter ⁄ is then constrained by the
first moment of the shape function as explained in the next subsection. More terms can in
principle be included in Eq. (4.2) if one wishes to study higher non-perturbative moments
beyond the first one.

This function, when convolved with the perturbative distribution from the previous
sections, reproduces the known shift in the tail region [43, 44, 82], which can be shown rig-
orously via an operator product expansion (OPE) [23] to be the dominant non-perturbative
e�ect,4

d‡

d·a
(·a) ≠æ

NP

d‡

d·a

1
·a ≠ c·a

�1
Q

2
. (4.4)

Here �1 is a universal non-perturbative parameter that is defined as a vacuum matrix
element of soft Wilson lines and a transverse energy-flow operator (for details, see [23]).
On the other hand, c·a is an exactly calculable observable-dependent coe�cient which, for
the angularities, is given by c·a = 2/(1 ≠ a) [23, 40, 41].5

4 In the peak region, the OPE does not apply and the full shape function f
mod

(k) is required to capture
the non-perturbative e�ects. Furthermore, the result in (4.4) is not only leading order in the OPE, it is
also subject to other corrections like finite hadron masses and perturbative renormalization e�ects on the
quantity �

1

, as described in [26].
5The expression for c·a diverges in the broadening limit a æ 1, where the SCET

I

factorization theo-
rem we use breaks down. A careful analysis revealed that the non-perturbative e�ects to the broadening
distributions are enhanced by a rapidity logarithm, cBT = ln Q/BT [24].

– 26 –
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is convolved with the perturbative distribution [38, 39, 50]:

S(k, µ) =
⁄

dkÕ SPT(k ≠ kÕ, µ) fmod(kÕ ≠ 2�a) , (4.1)

which ultimately leads to Eq. (1.4) for the cross section. Here SPT is the soft function
computed in perturbation theory, and �a is a gap parameter, which we will address in the
next subsection. The shape function fmod(k) is positive definite and normalized. We follow
previous approaches and expand the shape function in a complete set of orthonormal basis
functions [56]:

fmod(k) = 1
⁄

C Œÿ

n=0
bn fn

3
k

⁄

4D2

, (4.2)

where

fn(x) = 8

Û
2x3 (2n + 1)

3 e≠2x Pn
!
g(x)

"
, (4.3)

g(x) = 2
3

1
3 ≠ e≠4x

1
3 + 12x + 24x2 + 32x3
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≠ 1 ,

and Pn are Legendre polynomials. The normalization of the shape function implies that
the coe�cients bn satisfy

qŒ
n=0 b2

n = 1. In practice, we only keep one term in the sum (4.2),
setting bn = 0 for n > 0 (cf. [16, 18, 81]). The parameter ⁄ is then constrained by the
first moment of the shape function as explained in the next subsection. More terms can in
principle be included in Eq. (4.2) if one wishes to study higher non-perturbative moments
beyond the first one.

This function, when convolved with the perturbative distribution from the previous
sections, reproduces the known shift in the tail region [43, 44, 82], which can be shown rig-
orously via an operator product expansion (OPE) [23] to be the dominant non-perturbative
e�ect,4

d‡

d·a
(·a) ≠æ

NP

d‡

d·a

1
·a ≠ c·a

�1
Q

2
. (4.4)

Here �1 is a universal non-perturbative parameter that is defined as a vacuum matrix
element of soft Wilson lines and a transverse energy-flow operator (for details, see [23]).
On the other hand, c·a is an exactly calculable observable-dependent coe�cient which, for
the angularities, is given by c·a = 2/(1 ≠ a) [23, 40, 41].5

4 In the peak region, the OPE does not apply and the full shape function f
mod

(k) is required to capture
the non-perturbative e�ects. Furthermore, the result in (4.4) is not only leading order in the OPE, it is
also subject to other corrections like finite hadron masses and perturbative renormalization e�ects on the
quantity �

1

, as described in [26].
5The expression for c·a diverges in the broadening limit a æ 1, where the SCET

I

factorization theo-
rem we use breaks down. A careful analysis revealed that the non-perturbative e�ects to the broadening
distributions are enhanced by a rapidity logarithm, cBT = ln Q/BT [24].
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‘Gap’ parameter accounting for parton -> hadron acceptance

λ constrained by first moment of the shape function complete orthonormal basis

where α = e−η′

, as n → αn and n̄ → α−1n̄. (This is also known in SCET as type-III
reparametrization invariance [46].) The only change is in the operator ET (η):

U(Λ(η′))ET (η)U(Λ(η′))† = ET (η + η′) , (57)

which follows from the defining relation for the ET operators, Eq. (46). Thus, the argument of
the operator ET (η) in the shape function in Eq. (55) may be shifted to any value of rapidity,
ET (η) → ET (η + η′). At this stage, this does not yet allow us to perform the rapidity
integral of fe(η) inside the delta function. Thus we do not find that the leading power
correction simply shifts the argument of the perturbative event shape distributions, as the
delta function is a highly nonlinear function of the energy flow operator and sits sandwiched
between Wilson lines in the matrix element. If we do neglect correlations between these
operators, we derive a delta function for the shape function, and reproduce the shift in the
distribution, Eq. (52) [9, 44].

The boost property (57) of a single operator, however, gives a strong result when applied
to the first moment of an event shape distribution [14]. Taylor expanding the delta function
in Eq. (55) (which is valid if we integrate the distribution over a sufficiently large region
near the endpoint), we find

Se(e) = δ(e) − δ′(e)
1

Q

∫

dη fe(η)
1

NC

Tr ⟨0|Y
†
n̄Y

†
nET (η + η′)YnY n̄ |0⟩ + · · · . (58)

Recalling the boost properties of the Wilson lines and the energy flow operators ET (η), we
are free to choose any value for η′ in this expression. Then, choosing η′ = −η, we find that,
remarkably, we may take the matrix element of the ET operator out of the integral over η,
leaving the result

Se(e) = δ(e) − δ′(e)ce

A

Q
+ · · · , (59)

where the coefficient ce is given by the integral,

ce =

∫ ∞

−∞

dη fe(η), (60)

and the universal quantity A is

A =
1

NC

Tr ⟨0|Y
†
n̄Y †

nET (0)YnY n̄ |0⟩ . (61)

For the C-parameter and angularities τa, the integrals of the corresponding weight functions,

fC(η) =
3

cosh η
, fτa = e−|η|(1−a), (62)

over all rapidities give the coefficients,

cC = 3π, cτa =
2

1 − a
. (63)

When convoluted with the perturbative distribution, Se(e) reproduces the universality re-
lations of Eq. (51) for the first moments of the distributions. We have thus established
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Figure 1: Di↵erence distributions between central curves and curves evaluated with single variations

of either A (dashed, blue) or ↵s(mZ) (solid, red) at three values of a 2 {�1, �0.25, 0.5}. Q = 91.2

GeV in all three plots.

observable-dependent coe�cient. For the angularities, it is given by§

c⌧a =

Z
1

�1

d⌘ f⌧a(⌘) =
2

1 � a
. (4)

Hence, in any attempt to extract a value of the strong coupling by comparing data to theoretical
predictions, one is simultaneously sensitive to ↵s(mZ) and A. Indeed, the most precise extractions
employing analytic treatments of NP e↵ects [12,23] report values in an ↵s(mZ) � A plane (cf.
contribution from V.Mateu). Furthermore, the extracted values of ↵s(mZ) from these analyses are
consistently (and often dramatically) lower than the world average, which is currently dominated
by lattice-QCD calculations (cf. 0.1123 ± 0.0015 [23] to the world average 0.1181 ± 0.0011 [24]).
It can be shown that the event-shape extractions are driven to small values precisely due to NP
e↵ects, and so any elucidation of these discrepancies requires a disentangling of perturbative and
non-perturbative contributions.

Our proposal is to perform a future extraction of both ↵s(mZ) and A along the lines of previous
SCET treatments, but at multiple values of the angularities a. The critical point is that the
leading NP shift in (3) is a-dependent. Therefore, an extraction at a single centre-of-mass energy
Q, but di↵erent values of a, will have a discriminating sensitivity to A and ↵s(mZ) in a similar
way as varying Q. For example, angularities for �2  a . 0.5 exhibit a factor of six variance
in the overall NP shift. This sensitivity is essentially equivalent to measurements made between
Q = 35 GeV and Q = 207 GeV, as analyzed for thrust e.g. in [12]. In Figure 1 we show the
di↵erence (d�/d⌧a)central �d�/d⌧a over the range 0.085  ⌧a  0.35 for a 2 {�1, �0.25, 0.5}, where
(d�/d⌧a)central is an (unmatched) NNLL0 resummed distribution evaluated at ↵s(mZ) = 0.1161
and A = 0.283 GeV. For (d�/d⌧a) we have varied 2A by ± 0.1 GeV and ↵s(mZ) by ± 0.001,
corresponding to the blue and red curves, respectively. These plots are analogous to Figure 10 in
[12], where the same variations were made but at di↵erent values of Q, rather than a. Indeed, we
find that varying a (Q) down (up) from high (low) values leads to an enhanced sensitivity of the
distributions to the relative e↵ects of A and ↵s(mZ) variation. We are therefore optimistic that
the a-dependence of the angularities can help to lift the degeneracies between ↵s(mZ) and A in
the two-parameter fits.

§The expression for c⌧a diverges in the limit a ! 1, where the SCETI factorization theorem we use breaks down.

A careful analysis revealed that the NP e↵ects to the broadening distributions are enhanced by a rapidity logarithm,

cBT = lnQ/BT [20].
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Figure 1: Di↵erence distributions between central curves and curves evaluated with single variations

of either A (dashed, blue) or ↵s(mZ) (solid, red) at three values of a 2 {�1, �0.25, 0.5}. Q = 91.2

GeV in all three plots.

observable-dependent coe�cient. For the angularities, it is given by§

c⌧a =

Z
1

�1

d⌘ f⌧a(⌘) =
2

1 � a
. (4)

Hence, in any attempt to extract a value of the strong coupling by comparing data to theoretical
predictions, one is simultaneously sensitive to ↵s(mZ) and A. Indeed, the most precise extractions
employing analytic treatments of NP e↵ects [12,23] report values in an ↵s(mZ) � A plane (cf.
contribution from V.Mateu). Furthermore, the extracted values of ↵s(mZ) from these analyses are
consistently (and often dramatically) lower than the world average, which is currently dominated
by lattice-QCD calculations (cf. 0.1123 ± 0.0015 [23] to the world average 0.1181 ± 0.0011 [24]).
It can be shown that the event-shape extractions are driven to small values precisely due to NP
e↵ects, and so any elucidation of these discrepancies requires a disentangling of perturbative and
non-perturbative contributions.

Our proposal is to perform a future extraction of both ↵s(mZ) and A along the lines of previous
SCET treatments, but at multiple values of the angularities a. The critical point is that the
leading NP shift in (3) is a-dependent. Therefore, an extraction at a single centre-of-mass energy
Q, but di↵erent values of a, will have a discriminating sensitivity to A and ↵s(mZ) in a similar
way as varying Q. For example, angularities for �2  a . 0.5 exhibit a factor of six variance
in the overall NP shift. This sensitivity is essentially equivalent to measurements made between
Q = 35 GeV and Q = 207 GeV, as analyzed for thrust e.g. in [12]. In Figure 1 we show the
di↵erence (d�/d⌧a)central �d�/d⌧a over the range 0.085  ⌧a  0.35 for a 2 {�1, �0.25, 0.5}, where
(d�/d⌧a)central is an (unmatched) NNLL0 resummed distribution evaluated at ↵s(mZ) = 0.1161
and A = 0.283 GeV. For (d�/d⌧a) we have varied 2A by ± 0.1 GeV and ↵s(mZ) by ± 0.001,
corresponding to the blue and red curves, respectively. These plots are analogous to Figure 10 in
[12], where the same variations were made but at di↵erent values of Q, rather than a. Indeed, we
find that varying a (Q) down (up) from high (low) values leads to an enhanced sensitivity of the
distributions to the relative e↵ects of A and ↵s(mZ) variation. We are therefore optimistic that
the a-dependence of the angularities can help to lift the degeneracies between ↵s(mZ) and A in
the two-parameter fits.

§The expression for c⌧a diverges in the limit a ! 1, where the SCETI factorization theorem we use breaks down.

A careful analysis revealed that the NP e↵ects to the broadening distributions are enhanced by a rapidity logarithm,

cBT = lnQ/BT [20].
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Figure 1: Di↵erence distributions between central curves and curves evaluated with single variations

of either A (dashed, blue) or ↵s(mZ) (solid, red) at three values of a 2 {�1, �0.25, 0.5}. Q = 91.2

GeV in all three plots.

observable-dependent coe�cient. For the angularities, it is given by§

c⌧a =

Z
1

�1

d⌘ f⌧a(⌘) =
2

1 � a
. (4)

Hence, in any attempt to extract a value of the strong coupling by comparing data to theoretical
predictions, one is simultaneously sensitive to ↵s(mZ) and A. Indeed, the most precise extractions
employing analytic treatments of NP e↵ects [12, 23] report values in an ↵s(mZ) � A plane (cf.
contribution from V.Mateu). Furthermore, the extracted values of ↵s(mZ) from these analyses are
consistently (and often dramatically) lower than the world average, which is currently dominated
by lattice-QCD calculations (cf. 0.1123 ± 0.0015 [23] to the world average 0.1181 ± 0.0011 [24]).
It can be shown that the event-shape extractions are driven to small values precisely due to NP
e↵ects, and so any elucidation of these discrepancies requires a disentangling of perturbative and
non-perturbative contributions.

Our proposal is to perform a future extraction of both ↵s(mZ) and A along the lines of previous
SCET treatments, but at multiple values of the angularities a. The critical point is that the
leading NP shift in (3) is a-dependent. Therefore, an extraction at a single centre-of-mass energy
Q, but di↵erent values of a, will have a discriminating sensitivity to A and ↵s(mZ) in a similar
way as varying Q. For example, angularities for �2  a . 0.5 exhibit a factor of six variance
in the overall NP shift. This sensitivity is essentially equivalent to measurements made between
Q = 35 GeV and Q = 207 GeV, as analyzed for thrust e.g. in [12]. In Figure 1 we show the
di↵erence (d�/d⌧a)central �d�/d⌧a over the range 0.085  ⌧a  0.35 for a 2 {�1, �0.25, 0.5}, where
(d�/d⌧a)central is an (unmatched) NNLL0 resummed distribution evaluated at ↵s(mZ) = 0.1161
and A = 0.283 GeV. For (d�/d⌧a) we have varied 2A by ± 0.1 GeV and ↵s(mZ) by ± 0.001,
corresponding to the blue and red curves, respectively. These plots are analogous to Figure 10
in [12], where the same variations were made but at di↵erent values of Q, rather than a. Indeed,
we find that varying a (Q) down (up) from high (low) values leads to an enhanced sensitivity of the
distributions to the relative e↵ects of A and ↵s(mZ) variation. We are therefore optimistic that
the a-dependence of the angularities can help to lift the degeneracies between ↵s(mZ) and A in
the two-parameter fits.

§The expression for c⌧a diverges in the limit a ! 1, where the SCETI factorization theorem we use breaks down.

A careful analysis revealed that the NP e↵ects to the broadening distributions are enhanced by a rapidity logarithm,

cBT = lnQ/BT [20].
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Recent progress:  NLL’ to NNLL’
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Figure 11. Integrated angularity distributions for four values of a = {≠1.0, ≠0.5, 0.0, 0.5} and
Q = mZ at NLL (green), NLLÕ+O(–s) (orange), NNLL+O(–s) (blue), and NNLLÕ+O(–2

s) (purple)
accuracy, with renormalon subtractions to the corresponding orders. The theoretical uncertainties
have been estimated with the band method (left) and the scan method (right) as discussed in
Sec. 5.2.
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Figure 11. Integrated angularity distributions for four values of a = {≠1.0, ≠0.5, 0.0, 0.5} and
Q = mZ at NLL (green), NLLÕ+O(–s) (orange), NNLL+O(–s) (blue), and NNLLÕ+O(–2

s) (purple)
accuracy, with renormalon subtractions to the corresponding orders. The theoretical uncertainties
have been estimated with the band method (left) and the scan method (right) as discussed in
Sec. 5.2.
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Figure 12. Di�erential angularity distributions for four values of a = {≠0.5, ≠0.25, 0.25, 0.5} and
Q = mZ in the central ·a region, resummed and matched to NLL (green), NLLÕ + O(–s) (orange),
NNLL+O(–s) (blue), and NNLLÕ + O(–2

s) (purple) accuracy, with renormalon subtractions to the
corresponding orders, and uncertainties estimated with the scan method.

use the MS coupling constant –s(mZ) = 0.11 and the non-perturbative shift parameter,
defined through Eq. (4.31), �1(R�, R�) = 0.4 GeV at R� = 1.5 GeV. These values are
chosen to be consistent with the central fit values from [21] for –s(mZ) (to two signficant
digits) and �1(R�, R�) (to one signficant digit) at NNLLÕ accuracy. Some discussion on
the phenomenological impact of choosing di�erent values for these input parameters will
be given in Sec. 7.

We first show in Fig. 11 our predictions for the integrated distributions ‡c(·a) given
by Eqs. (4.40) and (4.41) for four values of a at Q = mZ up to NNLLÕ + O(–2

s) accuracy,
including renormalon subtractions. At the same time we compare the two methods dis-
cussed in Sec. 5.2 to estimate the overall uncertainties of our analysis. The band method
has been applied in the left panel and the scan method in the right panel. One clearly
observes that moving to primed accuracies not only dramatically reduces the scale uncer-
tainties, but that also the variations converge across the entire spectra as we move to higher
accuracies. One also sees that the two methods that have been applied to estimate the
theory uncertainties are consistent with one another, given the parameter ranges and vari-
ations chosen. However, when computing di�erential distributions by taking the derivative
of Eq. (4.40), we notice a slight improvement in numerical stability when using the scan
method. This is partially due to the envelope of the many (64) variations smoothing out
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s) (purple) accuracy, with renormalon subtractions to the
corresponding orders, and uncertainties estimated with the scan method.

use the MS coupling constant –s(mZ) = 0.11 and the non-perturbative shift parameter,
defined through Eq. (4.31), �1(R�, R�) = 0.4 GeV at R� = 1.5 GeV. These values are
chosen to be consistent with the central fit values from [21] for –s(mZ) (to two signficant
digits) and �1(R�, R�) (to one signficant digit) at NNLLÕ accuracy. Some discussion on
the phenomenological impact of choosing di�erent values for these input parameters will
be given in Sec. 7.

We first show in Fig. 11 our predictions for the integrated distributions ‡c(·a) given
by Eqs. (4.40) and (4.41) for four values of a at Q = mZ up to NNLLÕ + O(–2

s) accuracy,
including renormalon subtractions. At the same time we compare the two methods dis-
cussed in Sec. 5.2 to estimate the overall uncertainties of our analysis. The band method
has been applied in the left panel and the scan method in the right panel. One clearly
observes that moving to primed accuracies not only dramatically reduces the scale uncer-
tainties, but that also the variations converge across the entire spectra as we move to higher
accuracies. One also sees that the two methods that have been applied to estimate the
theory uncertainties are consistent with one another, given the parameter ranges and vari-
ations chosen. However, when computing di�erential distributions by taking the derivative
of Eq. (4.40), we notice a slight improvement in numerical stability when using the scan
method. This is partially due to the envelope of the many (64) variations smoothing out
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Figure 13. Di�erential angularity distributions for a = ≠0.5 and a = 0.25 at Q = mZ over the
entire ·a domain. The distributions correspond to NLLÕ + O(–s) (orange) and NNLLÕ + O(–2

s)
(purple) accuracy with renormalon subtractions, and they are either obtained as the derivative
of the integrated distributions (left) or directly resummed as di�erential distributions (right). As
expected from the analysis in [35], the former show a bit better convergence than the latter.

wiggles coming from derivatives of profile functions µi(·a), especially in transition regions.
Fig. 12 illustrates this convergence of the di�erential distribution (multiplied by ·a) in the
central ·a domain for four values of the angularity parameter a. For this reason, and to
allow for a more direct comparison of our results to those of [16, 18, 21], we implement
theory uncertainties as obtained with the scan method in the following.

In order to demonstrate the improvement in precision that we achieve for the di�er-
ential distributions in moving from NLLÕ + O(–s) [34] to NNLLÕ + O(–2

s) accuracy, we
present our (renormalon-subtracted) predictions for a = {≠0.5, 0.25} and Q = mZ across
the entire ·a domain in Fig. 13. This figure also illustrates the di�erences between tak-
ing the derivative of the integrated distributions (which we call d‡c/d·a here) in the left
panel, and directly evaluating the resummed (“naïve”) di�erential distributions (which we
call d‡n/d·a here) in the right panel. We see that the former give better convergence and
that they better preserve the total integral under the distributions. These issues with the
naïve distributions were extensively discussed in [35]. In fact, as shown there, at unprimed
orders the naïve formulas do not even preserve the correct order of accuracy, and even the
primed orders su�er from the illustrated mismatch with the total integral under the curve.
These issues can be remedied by supplementing the naïve formula with additional terms
that both preserve accuracy (at unprimed orders) and maintain agreement with the total
integral under the curve (at any order). See [32, 35] for such strategies, and [91] for a beau-
tiful mathematical solution to this problem. Here, for simplicity, we have not implemented
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 The (only) dataset 

Data for a = {-1.0, -0.75. -0.5, -0.25, 0.0, 0.25, 0.5, 0.75} at 91.2 and 197 GeV

Total number of bins = (bins per a) x (number of a) = 25 x 7 = 175 bins @ Q = 91.2 GeV

Early theory predictions look good against the data, but what does this translate to for A and 𝛼s?

Compare to 404 bins included in 2015 C-Parameter fit (across all Q considered)…
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) = 0.4 GeV. Overlaid is the experimental data from [51].
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Fit goals and methodology 

EARLY GOALS 
1) Gauge the quality of the available data and resulting fits, given our best theory predictions and 

independent extraction codes…Do we need better data or better theory at the moment? 
2) Determine if the expected benefit of using angularities (parametric NP behavior) is roughly 

observed. 
3) Gauge whether our (early) results are consistent with prior SCET analyses…Still tension with PDG?

hep-ph/1006.3080
hep-ph/1501.04111

Fits performed for each angularity individually, and globally for all available a, once a fit window 
is chosen.  We only use the Q = 91.2 GeV data in our fits.

Correlations amongst data bins accounted for with Minimal Overlap Model.

Experimental uncertainty ellipse determined via Δ𝝌2=1, using central values of profile 
parameters.  Correlation matrices (also for theory and total uncertainty) defined by:

Theory uncertainty ellipse determined as envelope of all best fit points, after 500 random draws 
of theory parameters in pre-defined ranges, found in 1808.07867.

We perform a 𝝌2/d.o.f. analysis, accounting for stat. + (correlated) syst. experimental 
uncertainties and theory uncertainties as determined by all relevant variations in 1808.07867.

Theory predictions only include (for now) leading non-pert. shift:
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Profiling a fit window
How can we identify a region sensitive to A and 𝛼s, and for which our best theory curves are 
reliable?  Look to the profiles!

Our default fit window will be between t1’ and t2, which roughly tracks the tail (former) and far-
tail (latter) of the distribution.* *

hep-ph/1808.07867

Tracks the peak

Reverts to fixed-order 
perturbation theory

Turns off resummation

Transitions between NP and 
PT physics

ensures that the scales µH,J,S meet at ·a = · sph
a . We actually want the scales to merge a

bit before · sph
a , so that there is a non-vanishing region where the predicted distributions

are purely fixed order.
We have designed a set of profile functions (see, e.g. [18, 56, 87, 88]) that fulfill all of

the criteria discussed above while smoothly interpolating between the various regions. The
precise form of our profiles depends on a running scale defined by

µrun(·a) =

Y
__________]

__________[

µ0 ·a Æ t0

’
1
·a; {t0, µ0, 0}, {t1, 0, r

· sph

a
µH}

2
t0 Æ ·a Æ t1

r

· sph

a
µH·a t1 Æ ·a Æ t2

’
1
·a; {t2, 0, r

· sph

a
µH}, {t3, µH , 0}

2
t2 Æ ·a Æ t3

µH ·a Ø t3

. (5.4)

The function ’ ensures that µrun and its first derivative are smooth. Specifically, we adopt
the functional form from [16], which connects a straight line in the region ·a < t0 with
slope r0 and intercept y0 with another straight line in the region ·a > t1 with slope r1 and
intercept y1 via

’ (·a; {t0, y0, r0}, {t1, y1, r1}) =

Y
]

[
a + r0(·a ≠ t0) + c(·a ≠ t0)2 ·a Æ t

0

+t
1

2

A + r1(·a ≠ t1) + C(·a ≠ t1)2 ·a Ø t
0

+t
1

2
, (5.5)

where the coe�cients of the polynomials are determined by continuity of the function and
its first derivative:

a = y0 + r0t0 , A = y1 + r1t1 , (5.6)

c = 2 A ≠ a

(t0 ≠ t1)2 + 3r0 + r1
2(t0 ≠ t1) , C = 2 a ≠ A

(t0 ≠ t1)2 + 3r1 + r0
2(t1 ≠ t0) .

The parameters ti control the transitions between the non-perturbative, resummation, and
fixed-order regions of the distributions, and can be varied as well as part of the estimation
of the theoretical uncertainties. We will set these parameters to

t0 = n0
Q

3a, t2 = n2 ◊ 0.2951≠0.637 a , (5.7)

t1 = n1
Q

3a, t3 = n3 · sph
a ,

with coe�cients ni that we can adjust. The design of profile functions is somewhat of an art.
The chosen a-dependence of t0,1,2 in Eq. (5.7) is based on some empirical observations about
the theory distributions ultimately predicted. The first two, t0,1, control the transition
between the non-perturbative and resummation regions, and we have chosen them to track
the location of the peak of the di�erential ·a distributions. Very roughly, this location
scales like 3a. The parameter t2 was determined as a numerical approximation to the
point where singular and nonsingular contributions become equal in magnitude, since the
resummation should be turned o� once the latter become as sizable as the former. The
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minimized, finding

µnat
H = Q, µnat

J = Q·1/(2≠a)
a , µnat

S = Q·a . (5.1)

In the tail region, where the resummation is critical, we want to evaluate the distributions
near these scales. However, we ultimately predict the distributions over a domain of ·a

that can be roughly broken into three regions where the comparative scalings di�er (see,
e.g. [18]):

• Peak Region: µH ∫ µJ ∫ µS ≥ �QCD ,

• Tail Region: µH ∫ µJ ∫ µS ∫ �QCD ,

• Far-tail Region: µH = µJ = µS ∫ �QCD .

In the peak region the soft scale is non-perturbative, and it is here that the full model
shape function described in Sec. 4 becomes necessary for making reliable predictions. In
this region we will adjust the scales to plateau at a constant value just above �QCD. On
the other hand, the scales are well separated in the tail region where the resummation
is most important. We want to minimize the logarithms in the resummed distributions,
and hence the scalings are close to the natural values in Eq. (5.1). Finally, our predictions
should match onto fixed-order perturbation theory in the far-tail region. The resummations
should therefore be switched o�, and the scales should merge at µH,J,S ≥ Q.

Getting the scales to merge near µH,J,S ≥ Q in the far-tail region will require µJ,S to
rise faster with ·a than the natural scales in Eq. (5.1), since the physical maximum value
of ·a is less than 1. We will achieve this below by defining a smooth function to transition
between the resummation and fixed-order regions. But the transition can be made less
sudden by increasing the rate of change of µJ,S even in the resummation region. Such an
increased slope was used for the C-parameter and thrust distributions in [16]. For thrust,
i.e. a = 0, the authors used the central values

µS = rsµH·0 , µJ = (µHµS)1/2 , (5.2)

with rs = 2 in the resummation region. We will follow this strategy here and give a physical
interpretation to the slope parameter rs. The maximal value for thrust is ·0 = 1/2, which
is achieved for a perfectly spherically symmetric distribution of particles in the final state.
The slope rs = 2 thus ensures that µJ,S merge with µH at this maximum value · sph

0 ,
instead of at ·a = 1 as the natural scales Eq. (5.1) do. For arbitrary a, the angularity of
the spherically symmetric configuration is

· sph
a = 1

4fi

⁄ 2fi

0
d„

⁄ 1

≠1
d cos ◊ sina ◊(1 ≠ |cos ◊|)1≠a = 1

2 ≠ a
2

2F1
1
1, ≠a

2 ; 3 ≠ a

2 ; ≠1
2

, (5.3)

which ranges from · sph
≠1 ¥ 0.356 to · sph

1/2 ¥ 0.616 for the values of a we consider in this work.
These may be compared to the maximum values of a three- and four-particle configuration
in Fig. 20 in App. D. We will then choose a default slope rs = 1/· sph

a in Eq. (5.2) that
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Peak
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In the tail region, where the resummation is critical, we want to evaluate the distributions
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this region we will adjust the scales to plateau at a constant value just above �QCD. On
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Profiles trace scale hierarchies through different 
regimes of a given distribution:
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Figure 10. Profile functions implemented in our resummation, shown for a = {≠1.0, ≠0.5, 0.0, 0.5}
and Q = mZ . Left: Band method. Right: Scan method. Each set of profiles µH,J,S actually has a
di�erent absolute vertical scale set by µH = eHQ, which has been rescaled for this illustration to
eH = 1. Also, for each individual set of scales, it is the case that µS < µJ , although the overall
bands from the scan overlap.
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 Default fits: individual observables 
We perform fits at individual a, to see if we observe the NP shift (theory at NNLL’ + O(𝛼s

2) + NP):

Preliminary!
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 Default fits: global analysis 
If we instead perform a fit to all available observables/bins simultaneously, we obtain:

Compare the central results to 2015 C-parameter results in 1501.04111: 11

order ↵s(mZ) (with ⌦
1

) ↵s(mZ) (with ⌦
1

(R
�

, µ
�

))

NLL0 0.1071(60)(05) 0.1059(62)(05)

N2LL0 0.1102(32)(06) 0.1100(33)(06)

N3LL0 (full) 0.1117(16)(06) 0.1123(14)(06)

TABLE IV. Central values for ↵s(mZ) at various orders with
theory uncertainties from the parameter scan (first value
in parentheses), and experimental and hadronic uncertainty
added in quadrature (second value in parentheses). The bold
N3LL0 value is our final result.

B. Perturbative Uncertainty from the Scan

To examine the robustness of our method of determin-
ing the perturbative uncertainty by the random scan, we
consider the convergence and overlap of the results at
di↵erent perturbative orders. Fig. 5 shows the spread of
best-fit values at NLL0, N2LL0 and N3LL0. The left panel,
Fig. 5(a), shows results from fits performed in the Rgap
scheme, which implements a renormalon subtraction for
⌦

1

, and the right-panel, Fig. 5(b), shows results in the
MS scheme without renormalon subtractions. Each point
in the plot represents the outcome of a single fit, and dif-
ferent colors correspond to di↵erent orders in perturba-
tion theory. Not unexpectedly, fits in the Rgap scheme
show generally smaller theory uncertainties.

In order to estimate correlations induced by theoreti-
cal uncertainties, each ellipse in the ↵s-2⌦1

plane is con-
structed following the procedure discussed in Sec. IV.
Each theory ellipse constructed in this manner is inter-
preted as an estimate for the 1-� theoretical uncertainty
ellipse for each individual parameter (39% confidence for
the two parameters), and is represented by a dashed el-
lipse in Fig. 5. The solid lines represent the combined
(theoretical plus experimental) standard uncertainty el-
lipses at 39% confidence for two parameters, obtained
by adding the theoretical and experimental error matri-
ces from the individual ellipses, where the experimental
ellipse corresponds to ��2 = 1. Fig. 5 clearly shows
a substantial reduction of the perturbative uncertainties
when increasing the resummation accuracy, and given
that they are 39% confidence regions for two parameters,
also show good overlap between the results at di↵erent
orders.

The results for ↵s(mZ) and ⌦
1

from the theory scan at
di↵erent perturbative orders are collected in Tabs IV and
V. Central values here are determined from the average
of the maximal and minimal values of the theory scan,
and are very close to the central values obtained when
running with our default parameters. The quoted per-
turbative uncertainties are one-parameter uncertainties.

In Tab. III above we also present ↵s(mZ) results with
no power corrections and either using resummation or
fixed-order perturbative results. Without power correc-
tions there is no fit for ⌦

1

, so we take the central value
to be the average of the maximum and minimum value
of ↵s(mZ) that comes from our parameter scan. Our

order ⌦
1

[GeV] ⌦
1

(R
�

, µ
�

) [GeV]

NLL0 0.533(154)(18) 0.582(134)(16)

N2LL0 0.443(119)(19) 0.457(83)(19)

N3LL0 (full) 0.384(91)(20) 0.421(60)(20)

TABLE V. Central values for ⌦
1

at the reference scales
R

�

= µ
�

= 2GeV and for ⌦
1

and at various orders. The
parentheses show theory uncertainties from the parameter
scan, and experimental and hadronic uncertainty added in
quadrature, respectively. The bold N3LL0 value is our final
result.

estimate of the uncertainty is given by the di↵erence be-
tween our result and the maximum fit value. For the
fixed order case, since there is only one renormalization
scale, we know that the uncertainties from our parame-

ter variation for eH , s
eC
2

, ✏low
2

and ✏low
3

are uncorrelated.
So, we take the fit value for ↵s(mZ) with the default
parameters as our result and add the uncertainties from
variations of these parameter in quadrature to give the
total uncertainty.
An additional attractive result of our fits is that the ex-

perimental data is better described when increasing the
order of the resummation and fixed-order terms. This
can be seen by looking at the minimal �2/dof values
for the best-fit points, which are shown in Fig. 5. In
Figs. 5(c) and 5(d) we show the distribution of �2

min

/dof
values for the various ↵s(mZ) best-fit points. Figure 5(c)
displays the results in the Rgap scheme, whereas Fig. 5(d)
shows the results in the MS scheme. In both cases we
find that the �2

min

values systematically decrease with
increasing perturbative order. The highest-order analy-
sis in the MS scheme leads to �2

min

/dof values around
unity and thus providing an adequate description of the
whole dataset, however one also observes that account-
ing for the renormalon subtraction in the Rgap scheme
leads to a substantially improved theoretical description
having �2

min

/dof values below unity essentially for all
points in the random scan. Computing the average of
the �2

min

values we find at N3LL0 order for the Rgap
and MS schemes 0.988 and 1.004, respectively (where the
spread of values is smaller in the Rgap scheme). Likewise
for N2LL0 we find 1.00 and 1.02, and for NLL0 we find
1.09 and 1.14. These results show the excellent descrip-
tion of the experimental data for various center-of-mass
energies. They also validate the smaller theoretical un-
certainties obtained for ↵s and ⌦

1

at N2LL0 and N3LL0

orders in the Rgap scheme.

C. Experimental Fit Uncertainty

Next we discuss in more detail the experimental un-
certainty in ↵s(mZ) and the hadronization parameter ⌦

1

as well as the combination with the perturbative uncer-
tainty done to obtain the total uncertainty.
Results are depicted in Fig. 6 for our highest order

A A A A
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 Default fits: convergence 
The improvement from NLL’ to NNLL’ accuracy makes a substantial difference in the uncertainty 
ellipses generated:

Preliminary!
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Fit windows — a major systematic
Taking more of the peak leads to smaller experimental ellipses, whereas taking more of the far 
tail leads to larger experimental ellipses:

But both effects will clearly generate different central values for A and 𝛼s…

This effect was already noted before, cf. Fig. 17 in 1006.3080.  But can we really justify not 
taking more of the far-tail data?  Would a significant tension survive if not?

Preliminary!
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Projections:  better data
Compare the relative theory vs. experimental ellipses in 2010 thrust paper to our own:

Preliminary!

Measurements at more c.o.m energies Q, for each angularity a, are clearly welcome!

2010 N3LL’ Thrust 
(Q ∈ {35 - 207} GeV)
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FIG. 15: Experimental 1-sigma standard error ellipse (red
solid) in the αs-2Ω1 plane. The larger ellipse shows the total
uncertainty including theory errors (blue dashed). The fit is
at N3LL′ order in the R-gap scheme for Ω1 using the central
values of the correlation matrix given in Eq. (64). The center
of the ellipse are the central values of our final result given in
Eq. (68).

where the correlation coefficient is significant and reads

ραΩ = −0.9176(60) . (65)

The numbers in the parentheses represent the variance
from the theory scan. From Eq. (64) it is straightforward
to extract the experimental error for αs and Ω1 and the
error due to variations of Ω1 and αs, respectively:

σexp
αs

= σαs

√
1− ρ2αΩ = 0.0002 ,

σexp
Ω1

= σΩ1

√
1− ρ2αΩ = 0.009 GeV ,

σΩ1
αs

= σαs |ραΩ| = 0.0005 ,

σαs
Ω1

= σΩ1 |ραΩ| = 0.020 GeV . (66)

For αs, the error due to Ω1 variations is the dominant
part of the hadronization uncertainty. The blue dashed
ellipse in Fig. 15 shows the total error in our final result
quoted in Eq. (68) below.
The correlation exhibited by the red solid error ellipse

in Fig. 15 is indicated by the line describing the semima-
jor axis

Ω1

41.5GeV
= 0.1213− αs(mZ) . (67)

Note that extrapolating this correlation to the extreme
case where we neglect the nonperturbative corrections
(Ω1 = 0) gives αs(mZ) → 0.1213. This value is con-
sistent with the fits in Refs. [22, 25] shown in Tab. I,
which are dominated by Q = mZ where the Monte Carlo
hadronization uncertainties are smallest.

!"#"""$ !"#"""% "#"""% "#"""$

!

"
FXVS

QV
+

H-
H

W'
Q*

"

+

%

M+
V+

V%

∆

!"#"$ !"#"% "#"% "#"$

&*H9*!

"

#
FXVS

QV

W'
Q%
"

/

$

M/
V/
V$

+H
H-

∆

FIG. 16: Variations of the best fit values for α(mZ) and Ω1

from up (dark shaded blue) and down (light shaded green)
variations for the theory parameters with respect to the de-
fault values and in the ranges given in Tab. III. For the varia-
tion of the moment Ω2 we use Ω2/Ω

2
1 = 1.18+0.32

−0.18 as explained
in the text.

Individual Theory Scan Errors

It is a useful exercise to have a closer look at the size of
the theory uncertainties caused by the variation of each
of the theory parameters we vary in our fit procedure
in order to assess the dominant sources of theory errors.
In Fig. 16 two bar charts are shown for the variation of
the best fit values for αs(mZ) and Ω1(R∆, µ∆) at N3LL′

order in the R-gap scheme with our default theory pa-
rameters. The bars show individual up-down variations
of each of the theory parameters in the ranges given in
Tab. III. The changes of the best fit values related to
up variations of the theory parameters are given in dark
blue and those related to down variations are given in
light green.

We see that the dominant theory uncertainties are re-
lated to variations of the profile functions (n1, t2, eJ , eH)
and the renormalization scale parameter (ns) for the non-
singular partonic distribution dσ̂ns/dτ . The uncertain-
ties related to the numerical errors of the perturbative
constants (s2, s3, j3) as well as the numerical errors in the
extraction of the nonsingular distribution for small τ val-
ues, (ϵ2, ϵ3) are – with the exception of s2 – much smaller
and do not play an important role. The theory error re-
lated to the unknown 4-loop contribution to the cusp
anomalous dimension is negligible. Adding quadratically
the symmetrized individual errors shown in Fig. 16 for
each parameter, we find 0.0006 for αs and 0.029 for Ω1.
This is about 2/3 of the theoretical uncertainty we have
obtained by the theory parameter scan, and it demon-
strates that the theory parameter scan represents a more
conservative method to estimate the theory error.

In Fig. 16 we have also shown the variation of the
best fit values for αs(mZ) and Ω1(R∆, µ∆) due to vari-
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Projections:  more observables
As are measurements at more values of a, for a given Q!  Data across broad ranges in both 
promises intense probative power: 
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Summary and outlook
Due to the parametric dependence of non-perturbative effects, angularity distributions offer 
a unique opportunity to break the degeneracy in two-dimensional A - 𝛼s fits.

Our recent improvement to NNLL’ + O(𝛼s2) + NP accuracy motivates such a fit.

Only one dataset exists.  More data, at more values of Q and a, could permit an unambiguous 
disentangling of leading non-perturbative effects.

We have presented preliminary results using a simple correlation model.  The central values we 
obtain from a global fit to all seven observables are:

These values are consistent with prior SCET extractions, but are still well below the world 
average…additionally, central values appear highly sensitive to the fit window chosen.

Results do not yet include a complete non-perturbative treatment (WIP).  We are also validating 
our results with a second, independent Python code.  More theory improvements possible.

Other statistical models/methods should also be explored.

Preliminary!
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Backup:  renormalon expectations
Although we have not yet performed extractions with fully shape- and renormalon-corrected 
theory curves, we have naive estimates of their effects from prior analyses:

11

order ↵s(mZ) (with ⌦
1

) ↵s(mZ) (with ⌦
1

(R
�

, µ
�

))

NLL0 0.1071(60)(05) 0.1059(62)(05)

N2LL0 0.1102(32)(06) 0.1100(33)(06)

N3LL0 (full) 0.1117(16)(06) 0.1123(14)(06)

TABLE IV. Central values for ↵s(mZ) at various orders with
theory uncertainties from the parameter scan (first value
in parentheses), and experimental and hadronic uncertainty
added in quadrature (second value in parentheses). The bold
N3LL0 value is our final result.

B. Perturbative Uncertainty from the Scan

To examine the robustness of our method of determin-
ing the perturbative uncertainty by the random scan, we
consider the convergence and overlap of the results at
di↵erent perturbative orders. Fig. 5 shows the spread of
best-fit values at NLL0, N2LL0 and N3LL0. The left panel,
Fig. 5(a), shows results from fits performed in the Rgap
scheme, which implements a renormalon subtraction for
⌦

1

, and the right-panel, Fig. 5(b), shows results in the
MS scheme without renormalon subtractions. Each point
in the plot represents the outcome of a single fit, and dif-
ferent colors correspond to di↵erent orders in perturba-
tion theory. Not unexpectedly, fits in the Rgap scheme
show generally smaller theory uncertainties.

In order to estimate correlations induced by theoreti-
cal uncertainties, each ellipse in the ↵s-2⌦1

plane is con-
structed following the procedure discussed in Sec. IV.
Each theory ellipse constructed in this manner is inter-
preted as an estimate for the 1-� theoretical uncertainty
ellipse for each individual parameter (39% confidence for
the two parameters), and is represented by a dashed el-
lipse in Fig. 5. The solid lines represent the combined
(theoretical plus experimental) standard uncertainty el-
lipses at 39% confidence for two parameters, obtained
by adding the theoretical and experimental error matri-
ces from the individual ellipses, where the experimental
ellipse corresponds to ��2 = 1. Fig. 5 clearly shows
a substantial reduction of the perturbative uncertainties
when increasing the resummation accuracy, and given
that they are 39% confidence regions for two parameters,
also show good overlap between the results at di↵erent
orders.

The results for ↵s(mZ) and ⌦
1

from the theory scan at
di↵erent perturbative orders are collected in Tabs IV and
V. Central values here are determined from the average
of the maximal and minimal values of the theory scan,
and are very close to the central values obtained when
running with our default parameters. The quoted per-
turbative uncertainties are one-parameter uncertainties.

In Tab. III above we also present ↵s(mZ) results with
no power corrections and either using resummation or
fixed-order perturbative results. Without power correc-
tions there is no fit for ⌦

1

, so we take the central value
to be the average of the maximum and minimum value
of ↵s(mZ) that comes from our parameter scan. Our

order ⌦
1

[GeV] ⌦
1

(R
�

, µ
�

) [GeV]

NLL0 0.533(154)(18) 0.582(134)(16)

N2LL0 0.443(119)(19) 0.457(83)(19)

N3LL0 (full) 0.384(91)(20) 0.421(60)(20)

TABLE V. Central values for ⌦
1

at the reference scales
R

�

= µ
�

= 2GeV and for ⌦
1

and at various orders. The
parentheses show theory uncertainties from the parameter
scan, and experimental and hadronic uncertainty added in
quadrature, respectively. The bold N3LL0 value is our final
result.

estimate of the uncertainty is given by the di↵erence be-
tween our result and the maximum fit value. For the
fixed order case, since there is only one renormalization
scale, we know that the uncertainties from our parame-

ter variation for eH , s
eC
2

, ✏low
2

and ✏low
3

are uncorrelated.
So, we take the fit value for ↵s(mZ) with the default
parameters as our result and add the uncertainties from
variations of these parameter in quadrature to give the
total uncertainty.
An additional attractive result of our fits is that the ex-

perimental data is better described when increasing the
order of the resummation and fixed-order terms. This
can be seen by looking at the minimal �2/dof values
for the best-fit points, which are shown in Fig. 5. In
Figs. 5(c) and 5(d) we show the distribution of �2

min

/dof
values for the various ↵s(mZ) best-fit points. Figure 5(c)
displays the results in the Rgap scheme, whereas Fig. 5(d)
shows the results in the MS scheme. In both cases we
find that the �2

min

values systematically decrease with
increasing perturbative order. The highest-order analy-
sis in the MS scheme leads to �2

min

/dof values around
unity and thus providing an adequate description of the
whole dataset, however one also observes that account-
ing for the renormalon subtraction in the Rgap scheme
leads to a substantially improved theoretical description
having �2

min

/dof values below unity essentially for all
points in the random scan. Computing the average of
the �2

min

values we find at N3LL0 order for the Rgap
and MS schemes 0.988 and 1.004, respectively (where the
spread of values is smaller in the Rgap scheme). Likewise
for N2LL0 we find 1.00 and 1.02, and for NLL0 we find
1.09 and 1.14. These results show the excellent descrip-
tion of the experimental data for various center-of-mass
energies. They also validate the smaller theoretical un-
certainties obtained for ↵s and ⌦

1

at N2LL0 and N3LL0

orders in the Rgap scheme.

C. Experimental Fit Uncertainty

Next we discuss in more detail the experimental un-
certainty in ↵s(mZ) and the hadronization parameter ⌦

1

as well as the combination with the perturbative uncer-
tainty done to obtain the total uncertainty.
Results are depicted in Fig. 6 for our highest order

10

Below error bars & ! " perturbative error
All errors: Αs!mZ" $ 0.1123 ! 0.0015O!Αs3" fixed%order

0.1317 ! 0.0052

& '3LL' summation
0.1219 ! 0.0028

& Power Correction
0.1117 ! 0.0016

& R%scheme
0.1123 ! 0.0014

& hadron mass effects
0.1119 ! 0.0013

0.110

0.115

0.120

0.125
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Αs!mZ"

Αs!mZ" from global C%parameter tail fits

FIG. 4. The evolution of the value of ↵s(mZ) adding components of the calculation. An additional ⇠ 8% uncertainty from not
including power corrections is not included in the left two points.

by ⇠ 50%. Due to this smaller perturbative uncertainty
it becomes clear that the theoretical cross section has
a di↵erent slope than the data, which can be seen, for
example, at Q = mZ for 0.27 < C < 0.35. This leads
to the increase in the �2/dof for the “N3LL0 no power
corr.” fit, and makes it quite obvious that power correc-
tions are needed. When the power correction parameter
⌦

1

is included in the fit, shown by the third entry in
Tab. III and the result just to the right of the vertical
dashed line in Fig. 4, the �2/dof becomes 1.004 and this
issue is resolved. Furthermore, a reduction by ⇠ 50%
is achieved for the perturbative uncertainty in ↵s(mZ).
This reduction makes sense since some of the perturba-
tive uncertainty of the cross section is now absorbed in
⌦

1

, and a much better fit is achieved for any of the vari-
ations associated to estimating higher order corrections.
The addition of ⌦

1

also caused the fit value of ↵s(mZ) to
drop by another 8%, consistent with our expectations for
the impact of power corrections and the estimate made in
Ref. [12]. Note that the error bars of the first two purely
perturbative determinations, shown at the left hand side
of the vertical thick dashed line in Fig. 4 and the last two
entries in Tab. III, do not include the ⇠ 8% uncertainties
associated with the lack of power corrections.

The remaining corrections we consider are the use of
the R-scheme for ⌦

1

which includes the renormalon sub-
tractions, and the inclusion of the log-resummation ef-
fects associated to the hadron mass e↵ects. Both of these
corrections have a fairly small impact on the determi-
nation of ↵s(mZ), shifting the central value by +0.5%
and � 0.3% respectively. Since adding the � 0.3% shift
from the hadron mass corrections in quadrature with the
' 1.2% perturbative uncertainty does not change the
overall uncertainty we will use the R-scheme determi-

↵s(mZ) �2/dof

N3LL0 + hadron 0.1119(13)(06) 0.991

N3LL0 with ⌦
1

(R,µ) 0.1123(14)(06) 0.988

N3LL0 with ⌦
1

0.1117(16)(06) 1.004

N3LL0 no power corr. 0.1219(28)(02) 2.091

O(↵3

s) fixed order

no power corr.
0.1317(52)(03) 1.486

TABLE III. Comparison of C-parameter tail fit results for
analyses when we add various components of the theoreti-
cal result (from the bottom to top). The first parentheses
gives the theory uncertainty, and the second is the experi-
mental and hadronic uncertainties added in quadrature for
the first three rows, and experimental uncertainty for the last
two rows.

nation for our main result. This avoids the need to fully
discuss the extra fit parameter ✓(R

�

, µ
�

) that appears
when hadron masses are included. Further discussion
of the experimental uncertainties and the perturbative
uncertainty from the random scan are given below in
Secs. VB and VD, and a more detailed discussion of
the impact of hadron-mass resummation is given below
in Sec. VE.

The values of ⌦
1

obtained from the fits discussed above
can be directly compared to the ⌦

1

power correction ob-
tained from the thrust distribution. Values for ⌦

1

from
the C-parameter fits are given below in Secs. VB and VD
and the comparison with thrust is considered in Sec. VII.
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Backup:  the PDG table on 𝛼s
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Thrust at N3LL with Power Corrections and a Precision Global Fit for αs(mZ)
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We give a factorization formula for the e+e− thrust distribution dσ/dτ with τ = 1 − T based
on soft-collinear effective theory. The result is applicable for all τ , i.e. in the peak, tail, and far-
tail regions. The formula includes O(α3

s) fixed-order QCD results, resummation of singular partonic
αj
s ln

k(τ )/τ terms with N3LL accuracy, hadronization effects from fitting a universal nonperturbative
soft function defined in field theory, bottom quark mass effects, QED corrections, and the dominant
top mass dependent terms from the axial anomaly. We do not rely on Monte Carlo generators
to determine nonperturbative effects since they are not compatible with higher order perturbative
analyses. Instead our treatment is based on fitting nonperturbative matrix elements in field theory,
which are moments Ωi of a nonperturbative soft function. We present a global analysis of all available
thrust data measured at center-of-mass energies Q = 35 to 207 GeV in the tail region, where a two
parameter fit to αs(mZ) and the first moment Ω1 suffices. We use a short distance scheme to
define Ω1, called the R-gap scheme, thus ensuring that the perturbative dσ/dτ does not suffer
from an O(ΛQCD) renormalon ambiguity. We find αs(mZ) = 0.1135± (0.0002)expt ± (0.0005)hadr ±
(0.0009)pert, with χ2/dof = 0.91, where the displayed 1-sigma errors are the total experimental
error, the hadronization uncertainty, and the perturbative theory uncertainty, respectively. The
hadronization uncertainty in αs is significantly decreased compared to earlier analyses by our two
parameter fit, which determines Ω1 = 0.323GeV with 16% uncertainty.

I. INTRODUCTION

A traditional method for testing the theory of strong
interactions (QCD) at high-precision is the analysis of
jet cross sections at e+ e− colliders. Event shape distri-
butions play a special role as they have been extensively
measured with small experimental uncertainties at LEP
and earlier e+ e− colliders, and are theoretically clean
and accessible to high-order perturbative computations.
They have been frequently used to make precise determi-
nations of the strong coupling αs, see e.g. Ref. [1] for a
review. One of the most frequently studied event shape
variables is thrust [2],

T = max
t̂

∑
i |t̂ · p⃗i|∑
i |p⃗i|

, (1)

where the sum i is over all final-state hadrons with mo-
menta p⃗i. The unit vector t̂ that maximizes the right-
hand side (RHS) of Eq. (1) defines the thrust axis. We
will use the more convenient variable τ = 1 − T . For
the production of a pair of massless quarks at tree level
dσ/dτ ∝ δ(τ), so the measured distribution for τ > 0
involves gluon radiation and is sensitive to the value of
αs. The thrust value of an event measures how much it
resembles two jets. For τ values close to zero the event
has two narrow, pencil-like, back-to-back jets, carrying
about half the center-of-mass (c.m.) energy into each of
the two hemispheres defined by the plane orthogonal to
t̂. For τ close to the multijet endpoint 1/2, the event has
an isotropic multi-particle final state containing a large
number of low-energy jets.

On the theoretical side, for τ < 1/3 the dynamics
is governed by three different scales. The hard scale
µH ≃ Q is set by the e+e− c.m. energy Q. The jet
scale, µJ ≃ Q

√
τ is the typical momentum transverse to

t̂ of the particles within each of the two hemispheres, or
the jet invariant mass scale if all energetic particles in a
hemisphere are grouped into a jet. There is also uniform
soft radiation with energy µS ≃ Qτ , called the soft scale.
The physical description of the thrust distribution can
be divided into three regions,

peak region: τ ∼ 2ΛQCD/Q ,

tail region: 2ΛQCD/Q ≪ τ ! 1/3 , (2)

far-tail region: 1/3 ! τ ≤ 1/2 .

In the peak region the hard, jet, and soft scales are
Q,
√
QΛQCD, and ΛQCD, and the distribution shows a

strongly peaked maximum. Theoretically, since τ ≪ 1
one needs to sum large (double) logarithms, (αj

s ln
kτ)/τ ,

and account for the fact that µS ≃ ΛQCD, so dσ/dτ is
affected at leading order by a nonperturbative distribu-
tion. We call this distribution the nonperturbative soft
function. The tail region is populated predominantly by
broader dijets and 3-jet events. Here the three scales
are still well separated and one still needs to sum loga-
rithms, but now µS ≫ ΛQCD, so soft radiation can be
described by perturbation theory and a series of power
correction parameters Ωi. Finally, the far-tail region is
populated by multijet events. Here the distinction of
the three scales becomes meaningless, and accurate pre-
dictions can be made with fixed-order perturbation the-
ory supplemented with power corrections. The transition

hep-ph/1006.3080
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ations of the second soft function moment parameter
Ω2. Our default choice for the parametrization of the
soft function Smod

τ uses c0 = 1 and cn>0 = 0 with
∆̄(R∆, µ∆) = 0.05 GeV. In this case λ is the only vari-
able parameter of the soft model function Smod

τ , and Ω2

is predetermined by Eq. (57) with c2 = 0. As explained
in Sec. IV we modify Ω2 by setting c2 to nonzero val-
ues. It is instructive to discuss the Ω2 values one should
consider. From the Cauchy-Schwarz inequality one can
show that Ω2/Ω2

1 ≥ 1, giving a strict lower bound on
Ω2. This bound can only be reached if Smod

τ is a delta-
function. Moreover, if Smod

τ is positive definite, vanishing
at k = 0, has a width of order ΛQCD, has its maximum at
a k value of order ΛQCD, and has an exponential fall-off
for large k, then one finds Ω2/Ω2

1 < 1.5. We therefore
adopt the range 1 ≤ Ω2/Ω2

1 ≤ 1.5 as a conservative Ω2

variation to carry out an error estimate. For our default
parametrization we have Ω2/Ω2

1 = 1.18 and changing c2
between ±0.5 gives a variation of Ω2/Ω2

1 between 1.05
and 1.35. We find that the best fit values for αs and Ω1

are smooth linear functions of Ω2/Ω2
1 which allows for a

straightforward extrapolation to the conservative range
between 1.0 and 1.5. The results for the variations of the
best fit values for αs(mZ) and Ω1 for Ω2/Ω2

1 = 1.18+0.32
−0.18

read (δαs(mZ))Ω2 =+0.00017
−0.00013 and (δΩ1)Ω2 =+0.011

−0.015 and
are also shown in Fig. 16. The symmetrized version of
these errors are included in our final results. For our final
results for αs(mZ) we add the uncertainties from Ω1 and
the one from Ω2 quadratically giving the total hadroniza-
tion error. For Ω1(R∆, µ∆) we quote the error due to Ω2

separately.

Final Results

As our final result for αs(mZ) and Ω1(R∆, µ∆), obtained
at N3LL′ order in the R-gap scheme for Ω1, including
bottom quark mass and QED corrections we obtain

αs(mZ) = 0.1135 ± (0.0002)exp

± (0.0005)hadr ± (0.0009)pert,

Ω1(R∆, µ∆) = 0.323 ± (0.009)exp ± (0.013)Ω2

± (0.020)αs(mZ) ± (0.045)pert GeV, (68)

where R∆ = µ∆ = 2 GeV and we quote individual 1-
sigma errors for each parameter. Eq. (68) is the main
result of this work. In Fig. 15 (blue dashed line) and
Fig. 11a (thick dark red line) we have displayed the cor-
responding combined total (experimental+theoretical)
standard error ellipse. To obtain the combined ellipse we
take the theory uncertainties given in Tabs. IV and V to-
gether with the Ω2 uncertainties, adding them in quadra-
ture. The central values in Eq. (68) are determined by
the average of the respective maximal and minimal val-
ues of the theory scan, and are very close to the central
values obtained when running with our default theory
parameters. The fit has χ2/dof = 0.91 with a variation
of ±0.03 for the displayed scan points. Having added the

theory scan and Ω2 uncertainties reduces the correlation
coefficient in Eq. (65) to ρtotalαΩ = −0.212. As a compar-
ison we have also shown in Fig. 11b the combined total
(experimental+theoretical) error ellipse at N3LL′ in the
MS scheme for Ω̄1 where the O(ΛQCD) renormalon is not
subtracted.
Since our treatment of the correlation of the system-

atic experimental errors is based on the minimal over-
lap model, it is instructive to also examine the results
treating all the systematic experimental errors as uncor-
related. At N3LL′ order in the R-gap scheme the re-
sults that are analogous to Eqs. (68) read αs(mZ) =
0.1141 ± (0.0002)exp ± (0.0005)hadr ± (0.0010)pert and
Ω1(R∆, µ∆) = 0.303±(0.006)exp±(0.013)Ω2±(0.022)αs±
(0.055)pert GeV with a combined correlation coefficient of
ρtotalαΩ = −0.180. The results are compatible with the re-
sults of Eqs. (68) and indicate that the ignorance of the
exact correlation of the systematic experimental errors
does not crucially affect the outcome of the fit.

Data Set Choice

We now address the question to which extent the results
of Eqs. (68) depend on the thrust ranges contained in the
global data set used for the fits. Our default global data
set accounts for all experimental thrust bins for Q ≥ 35
in the intervals [τmin, τmax] = [6/Q, 0.33]. (See Sec. VI
for more details.) This default global data set is the
outcome of a compromise that (i) keeps the τ interval
large to increase statistics, (ii) sets τmin sufficiently large
such that the impact of the soft function moments Ωi

with i ≥ 2 is small and (iii) takes τmax sufficiently low
to exclude the far-tail region where the missing order
αsΛQCD/Q corrections potentially become important.
In Fig. 17 the best fits and the respective experimen-

tal 39% and 68% CL error ellipses for the default values
of the theory parameters given in Tab. III are shown for
global data sets based on different τ intervals. The re-
sults for the various τ intervals are each given in different
colors. The results for our default global data set is given
in red color, and the subscript “strict” for some intervals
means that bins are included in the data set if more than
half their range is contained within the interval. For in-
tervals without a subscript the criterion for selecting bins
close to the boundaries of the τ interval is less strict and
generically, if the τmin and τmax values fall in such bins,
these bins are included. The numbers in superscript for
each of the τ intervals given in the figure refers to the to-
tal number of bins contained in the global data set. We
observe that the main effect on the outcome of the fit
is related to the choice of τmin and to the total number
of bins. Interestingly all error ellipses have very similar
correlation and are lined up approximately along the line

Ω1

50.2GeV
= 0.1200− αs(mZ) . (69)

Lowering τmin increases the dependence on Ω2 and leads
to smaller αs and larger Ω1 values. On the other hand,
increasing τmin leads to a smaller data set and to larger
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We present a global fit for ↵s(mZ), analyzing the available C-parameter data measured at
center-of-mass energies between Q = 35 and 207GeV. The experimental data is compared to a
N3LL0 + O(↵3

s) + ⌦
1

theoretical prediction (up to the missing four-loop cusp anomalous dimen-
sion), which includes power corrections coming from a field theoretical nonperturbative soft func-
tion. The dominant hadronic parameter is its first moment ⌦

1

, which is defined in a scheme which
eliminates the O(⇤

QCD

) renormalon ambiguity. The resummation region plays a dominant role
in the C-parameter spectrum, and in this region a fit for ↵s(mZ) and ⌦

1

is su�cient. We find
↵s(mZ) = 0.1123 ± 0.0015 and ⌦

1

= 0.421 ± 0.063GeV with �2/dof = 0.988 for 404 bins of data.
These results agree with the prediction of universality for ⌦

1

between thrust and C-parameter within
1-�.

I. INTRODUCTION

In order to study Quantum Chromodynamics (QCD)
accurately in the high-energy regime, it is useful to ex-
ploit the wealth of data from previous e+ e� colliders
such as LEP. Here the final states coming from the under-
lying partons created in the collisions appear as boosted
and collimated groups of hadrons known as jets. Event
shapes have proven to be very successful to study these
collisions quantitatively. They combine the energy and
momenta of all of the measured hadrons into an infrared-
and collinear-safe parameter which describes the geomet-
ric properties of the whole event by a single variable dis-
tribution. Due to their global nature event shapes have
nice theoretical properties, making it possible to obtain
very accurate theoretical predictions using QCD. Most
e+e� event shape variables quantify how well the event
resembles the situation of two narrow back-to-back jets,
called dijets, by vanishing in this limit. Because the dijet
limit involves restrictions that only allow collinear and
soft degrees of freedom for the final-state radiation, such
QCD predictions involve a number of theoretical aspects
that go beyond the calculation of higher-order pertur-
bative loop corrections. These include factorization, to
systematically account for perturbative and nonpertur-
bative contributions, and the resummation of large log-
arithmic corrections by renormalization group evolution.
Comparisons of predictions for event shapes with experi-
mental data thus provide non-trivial tests of the dynam-
ics of QCD.

Due to the high sensitivity of event shapes to jets
induced by gluon radiation they are an excellent tool
to measure the strong coupling ↵s. For more inclusive
hadronic cross sections (like e+e� ! hadrons) the ↵s

dependence is subleading because it only occurs in cor-
rections to a leading order term, while for event shapes
the ↵s dependence is a leading-order e↵ect. For this rea-
son, the study of event shapes for determining ↵s has
a long history in the literature (see the review [1] and
the workshop proceedings [2]), including recent analyses

which include higher-order resummation and corrections
up to O(↵3

s) [3–12].
Several previous high-precision studies which deter-

mine ↵s(mZ) [4, 5, 9–11] focus on the event shape called
thrust [13],

⌧ = 1� T = min
~n

 
1�

P
i |~n · ~pi|P
j |~pj |

!
, (1)

where ~n is called the thrust axis and it follows from the
above equation that 0  ⌧  1/2. Another event shape,
known as C-parameter [14, 15], can be written as:

C =
3

2

P
i,j |~pi||~pj | sin2 ✓ij
(
P

i |~pi|)2
, (2)

where ✓ij gives the angle between particles i and j. It
is straightforward to show that 0  C  1. In a pre-
vious paper [12] we computed the C-parameter distribu-
tion with a resummation of large logarithms at N3LL0

accuracy, including fixed-order terms up to O(↵3

s) and
hadronization e↵ects using a field-theoretic nonperturba-
tive soft function. These results were achieved by using
the Soft Collinear E↵ective Theory (SCET) [16–20]. Our
results for C are valid in all three of the peak, tail, and
far-tail regions of the distribution, and are the most ac-
curate predictions available in the literature, having a
perturbative uncertainty of ' 3% at Q = mZ for the re-
gion relevant for ↵s(mZ) and ⌦

1

fits. The same accuracy
was previously achieved for thrust, where the remaining
perturbative uncertainty in the ⌧ distribution is ' 2% in
this region [9]. In this paper we make use of these new
C-parameter theoretical results [12] to carry out a global
fit to all available data, comparing the results with the
analogous global fit for thrust [9] where appropriate.
Since both ⌧ and C vanish in the dijet limit, it is worth-

while to contrast them in order to anticipate di↵erences
that will appear in the analysis. Di↵erences between C
and ⌧ include the following:
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FIG. 9. Global fit results for di↵erent choices of
dataset, using our best theory setup at N3LL0 with
power corrections in the Rgap scheme. Consider-
ing the central values from left to right, the datasets
read [C

min

, C
max

]
# of bins

: [ 29/Q, 0.7 ]
371

, [ 22/Q, 0.75 ]
453

,
[ 23/Q, 0.7 ]

417

, [ 0.24, 0.75 ]
403

, [ 24/Q, 0.7 ]
409

, [ 25/Q, 0.7 ]
404

(default), [ 25/Q, 0.6 ]
322

, [ 25/Q, 0.75 ]
430

, [ 27/Q, 0.7 ]
386

,
[ 25/Q, 0.65 ]

349

, [ 22/Q, 0.7 ]
427

. We accept bins which are
at least 50% inside these fit regions. The ellipses correspond
to total 1-� uncertainties (experimental + theory) for two
variables (↵s and ⌦

1

), which are suitable for a direct compar-
ison of the outcome of two-parameter fits. The center of the
ellipses are also shown.

correlation and are lined up approximately along the line

⌦
1

41.26GeV
= 0.1221� ↵s(mZ) . (33)

As expected, the results of our fits depend only weakly on
the C range and the size of the global datasets, as shown
in Fig. 9. The size and tilt of the total uncertainty el-
lipses is very similar for all datasets (with the exception of
[ 22/Q, 0.7 ], which clearly includes too much peak data).
Since the centers and the sizes of the uncertainty ellipses
are fully statistically compatible at the 1-� level, this
indicates that our theory uncertainty estimate at N3LL0

really reflects the accuracy at which we are capable of de-
scribing the di↵erent regions of the spectrum. Therefore
a possible additional uncertainty that one could consider
due to the arbitrariness of the dataset choice is actually
already represented in our final uncertainty estimates.

G. Final Results

As our final result for ↵s(mZ) and ⌦
1

, obtained at
N3LL0 order in the Rgap scheme for ⌦

1

(R
�

, µ
�

), we get

↵s(mZ) = 0.1123 ± 0.0002
exp

(34)

FIG. 10. C-parameter distribution at N3LL0 order for Q =
mZ showing the fit result for the values for ↵s(mZ) and ⌦

1

.
The blue band corresponds to the theory uncertainty as de-
scribed in Sec. VB. Experimental data is also shown.

± 0.0007
hadr

± 0.0014
pert

,

⌦
1

(R
�

, µ
�

) = 0.421 ± 0.007
exp

± 0.019↵s(mZ)
± 0.060

pert

GeV,

where R
�

= µ
�

= 2 GeV and we quote individual 1-�
uncertainties for each parameter. Here �2/dof = 0.99.
Equation (34) is the main result of this work.

Equation (34) accounts for the e↵ect of hadron mass
running through an additional (essentially negligible) un-
certainty. Also, it neglects QED and finite bottom-mass
corrections, which were found to be small e↵ects in the
corresponding thrust analysis in Ref. [9].

Given that we treat the correlation of the system-
atic experimental uncertainties in the minimal overlap
model, it is useful to examine the results obtained when
assuming that all systematic experimental uncertain-
ties are uncorrelated. At N3LL0 order in the Rgap
scheme the results that are analogous to Eq. (34) read
↵s(mZ) = 0.1123±0.0002

exp

±0.0007
hadr

±0.0012
pert

and
⌦

1

(R
�

, µ
�

) = 0.412 ± 0.007
exp

±0.022↵s
±0.061

pert

GeV
with a combined correlation coe�cient of ⇢total↵⌦ =
� 0.091. The results are compatible with Eq. (34), in-
dicating that the ignorance of the precise correlation of
the systematic experimental uncertainties barely a↵ects
the outcome of the fit.

In Fig. 10 we show the theoretical fit for the
C-parameter distribution in the tail region, at a center-
of-mass energy corresponding to the Z-pole. We use the
best-fit values given in Eq. (34). The band corresponds to
the perturbative uncertainty as determined by the scan.
The fit result is shown in comparison with experimental
data from DELPHI, ALEPH, OPAL, L3 and SLD. Good
agreement is observed for this spectrum, as well as for
spectra at other center of mass values.
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Figure 9.2: Summary of determinations of αs(M2
Z) from the six sub-fields

discussed in the text. The yellow (light shaded) bands and dashed lines indicate the
pre-average values of each sub-field. The dotted line and grey (dark shaded) band
represent the final world average value of αs(M2

Z).

below, it may be worth mentioning that the collider results listed above average to a
value of αs(M2

Z) = 0.1172 ± 0.0059.

So far, only one analysis is available which involves the determination of αs from
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2018 PDG world average:   
.1181 +- .0011 

be published in a peer-reviewed journal…
include O(𝛼s

3) fixed-order perturbative results…
include `reliable’ error estimates, including NP effects…

To be included in the PDG average, a fit must:


