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Outline

Motivating SCET without modes

Old ideas from a new perspective

Rapidity divergences and integration ambiguities

Using ambiguities to sum rapidity logs

Defining overlap subtraction at subleading powers
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Recall: Endpoint DIS

In [Manohar, hep-ph/0309176] SCET
was used to study DIS in the x → 1
limit

In Target Rest Frame, need 2 modes
( us ) , ( n )

In the Breit Frame, need 3 modes
( n̄ ) , ( us ) , ( n )
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Recall: Endpoint DIS

In [Manohar, hep-ph/0309176] SCET
was used to study DIS in the x → 1
limit

In Target Rest Frame, need 2 modes
( us ) , ( n )

In the Breit Frame, need 3 modes
( n̄ ) , ( us ) , ( n )

Boost invariance says 2 modes is

sufficient in all frames!

Matt Inglis-Whalen (U of T) Rapidity Logs and Overlap Subtractions March 25th 2019 3 / 20



Jet Rest Frame

In Jet Rest Frame, also need 2 modes
( n̄ ) , ( us )

Mode classification of incoming/outgoing states is frame-dependent

Each collimated jet of particles is soft in its own frame → QCD
[Bauer et al, 0809.1099.pdf], [Freedman and Luke, 1107.5823]
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A Frame-Independent Formalism [Goerke and Luke, 1711.09136]

Sectors are defined based purely on
invariant mass
2 sectors: p2

n � Q2 , p2
n̄ � Q2

2pn · pn̄ ∼ Q2

Each sector gets its own copy of QCD

Sectors are only coupled via the hard
current, with expansion in inverse
powers of the matching scale

J µ
QCD = e−iq·x ψ̄γµψ →

∑
i

C i
2

Q [i ]O
(i)
2

[ψ̄nW n] γµ [W †
n̄ψn̄]
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Mode-Free Features

No λ-scaling

No explicit softs/ultrasofts/other modes
→ No distinction between SCETI/SCETII at the matching scale
→ Further factorization of scales � Q happens later

at low scale matching (Factorization = matching)

Structure of SCET at subleading powers is simpler
(no NLP collinear-soft interactions)
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Subtlety: Overcounting

Just like the zero-bin subtraction of [Manohar and Stewart hep-ph/0605001],

n+n̄ sectors double-count some low energy degrees of freedom.

E.g. 2p · pn � Q2 and 2p · pn̄ � Q2 → Overlap subtraction

In + In̄ - Is

Overlap prescription we use is similar to the LO QCD factorization of [Feige and
Schwartz 1403.6472 ] or the soft subtraction of [Idilbi and Mehen hep-ph/0702022]

〈pf |O(0)
2 |pi 〉subtracted =

〈pf |O(0)
2 |pi 〉

1
Nc

Tr〈0|W †
n Wn̄|0〉

=
〈pn

f |χ̄n|pn
i 〉γ

µ〈pn̄
f |χn̄|pn̄

i 〉
1
Nc

Tr〈0|W †
n Wn̄|0〉
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SCETII and RRG without Explicit Softs?

Usual description of SCETII processes
is n/n̄/s lying on same hyperbola.

Ambiguous separation of modes
necessitates rapidity cutoffs to
distinguish between modes
[Chiu et al. 1202.0814 ]

Independence of cutoffs gives Rapidity
Renormalization Group

How does this arise in a formalism without explicit softs?
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Hidden Scheme Dependence

Take O2 renormalization with gluon mass IR regulator. Well-known that
individual diagrams are unregulated, but well-defined in the sum
[Chiu et al, 0901.1332 ]

(In ∼
∫

dk−

k−
(1− k−

p−1
)(1−ε)) + (In̄ ∼

∫
dk+

k+ (1− k+

p+
2

)(1−ε)) - (Is ∼
∫

dk−

k−
)

Each graph is individually rapidity divergent.
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Hidden Scheme Dependence

Take O2 renormalization with gluon mass IR regulator. Well-known that
individual diagrams are unregulated, but well-defined in the sum
[Chiu et al, 0901.1332 ]

(In ∼
∫

dk−

k−
(1− k−

p−1
)(1−ε)) + (In̄ ∼

∫
dk+

k+ (1− k+

p+
2

)(1−ε)) - (Is ∼
∫

dk−

k−
)

Each graph is individually rapidity divergent.
→ To get the usual result, do integrals in the same order

(In ∼
∫

dk−

k−
(1− k−

p−1
)(1−ε)) + (In̄ ∼

∫ p+
2 dk−

M2 (1− p+
2 k−

M2 )−1) - (Is ∼
∫

dk−

k−
)

∼ 2
ε2 +

3−2 log Q2

µ2

ε
− log2 M2

µ2 + 2 log Q2

µ2 log M2

µ2 − 3 log M2

µ2

Careful! Adding 3 infinite quantities isn’t well-defined.
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Scheme Dependence in Detail

〈pf |O(0)
2 |pi〉subtracted =

〈pnf |χ̄n|pni 〉γµ〈pn̄f |χn̄|pn̄i 〉
1
Nc

Tr〈0|W †n Wn̄|0〉

In ∼
∫ p−1

0
dk−

−k− (1− k−

p−1
)1−ε

In̄ ∼ A +
∫∞

0

p+
2 d`−

M2
1

1−
p+

2
`−

M2

Isub ∼
∫∞

0
dq−

−q−
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Scheme Dependence in Detail - Rescaling

〈pf |O(0)
2 |pi〉subtracted =

〈pnf |χ̄n|pni 〉γµ〈pn̄f |χn̄|pn̄i 〉
1
Nc

Tr〈0|W †n Wn̄|0〉

In ∼
∫ p−1

0
dk−

−k− (1− k−

p−1
)1−ε

p+
2 d`

−

In̄ ∼ A +
∫∞

0

p+
2 d`−

M2
1

1−
p+

2
`−

M2

Isub ∼
∫∞

0
dq−

−q−

=
∫ 1

0
dx
−x (1− x)1−ε

→ ζ2y
= A +

∫∞
0

ζ2dx
M2

1

1− ζ2x

M2

=
∫∞

0
dx
−x

The only scale in the calculation, ζ, is arbitrary!
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Hidden Scheme Dependence

In + In̄ − Isub = αsCF

4π

[
2
ε2 +

3−2 log ζ2

µ2

ε
− log2 M2

µ2 + 2 log ζ2

µ2 log M2

µ2 − 3 log M2

µ2

]
Previous calculations find log Q2

µ2 but, here we find log ζ2

µ2

Interpretation: rapidity logarithms are related to
scheme dependence of overlap subtraction

Matching from QCD then fixes the scheme parameter ζ:

C2(µ, ζ) = 1 +
αsCF

4π

(
− log

Q2

µ2
+ 3 log

Q2

µ2
+ 2 log

Q2

ζ2
log

M2

µ2

)
Matching at hard scale Q fixes ζ = Q
(required if no IR dependence in matching condition)
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Scheme Dependence with a Delta Regulator

Can formalize scheme dependence with δ-regulator [Chiu et al. 0901.1332]

n− sector : 1
−k−+i0+ → 1

−k−−δn+i0+

n̄− sector : 1
−k++i0+ → 1

−k+−δn̄+i0+

Subtraction : 1
−k−+i0+ → 1

−k−−δsub+i0+

C2(µ, ν) = 1 +
αsCF

4π

(
− log

Q2

µ2
+ 3 log

Q2

µ2
+ 2 log

δnδn̄
δ2
sub

log
M2

µ2

)
Direction of {δn, δn̄, δsub} → 0 determines scheme:

δnδn̄
δ2
sub

= Q2

ν2
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Scheme freedom at µ ∼ M

After running from µ = Q down to µ = M , the scheme parameter ν
becomes free. To see this, match from SCET with ν = Q onto SCET with
ν arbitrary.

〈p2|O2(µ,Q) |p1〉 ∼ − log2 M2

µ2 + 2 log Q2

µ2 log M2

µ2 − 3 log M2

µ2

〈p2|O2(µ, ν) |p1〉 ∼ − log2 M2

µ2 + 2 log ν2

µ2 log M2

µ2 − 3 log M2

µ2

Cscheme matching ∼ log Q2

ν2 log M2

µ2

All logs are minimized in Csm by taking µ = M and ν = Q. Building up
many of these small matching procedures gives the renormalization group!
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Resummation using Scheme Parameter

Interpret previous O2 loops as massive form factor calculation
F (Q2,M2) = 〈p1| JµQCD |p2〉

=C2(µ,Q) 〈p1|O2(µ,Q) |p2〉
=C2(M ,Q)Csm(M , ν) 〈p1|O2(M , ν) |p2〉
=C2(M ,Q)[Csm( ν

Q
)D( ν

M
)]µ=M

Now everything looks similar to the factorization of F (M2,Q2)
by [Chiu et al. 1202.0814 ], where resummation is achieved through the
Rapidity Renormalization Group

Since dF (M2,Q2)
d log ν

= 0, can derive

d
d log ν

Csm =

(
− D−1 d

d log ν
D

)
Csm

= (−αsCF

π
log M2

µ2 )Csm = γνsmCsm

→ Reproduces the standard result
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More SCETII – Drell-Yan at Small QT

Same techniques can be applied to DY with Q2 � Q2
T � Λ2

QCD . Can
reproduce momentum space dQ2

T results of [Ebert and Tackmann, 1611.08610]

µ = Q
ν = Q

↓

µ = QT

ν free

QCD→SCET

SCET→PDFs

↑
Large log ν2

Q2
T

log
Q2

T

µ2 in matching
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Identifying Overcounting at Next-to-Leading Power

Easiest to study Q2
T/Q

2 corrections are the subleading contributions to the
cross-section from the multipole expansion, e.g.

δ(p−n + p−n̄ − Q−)→ δ(p−n − Q−) + p−n̄
d

dp−n
δ(p−n − Q−)→ O

(0)
2 + O

(2δ−)
2

I
(0)
n ∼

∫
dω−

ω−
(2− 2ω− + (ω−)2)

I
(2δ−)
n ∼ 0
I

(2δ+)
n ∼

∫
dω−

ω−
(−ω+)(2− 2ω− + (ω−)2)

I
(0)
n̄ ∼

∫
dω−

ω−
(2− 2ω+ + (ω+)2)

I
(2δ−)
n̄ ∼

∫
dω−

ω−
(−ω−)(2− 2ω+ + (ω+)2)

I
(2δ+)
n̄ ∼ 0

ω− ≡ k−

p−1
, ω+ ≡ Q2

T

ω−p−1 p+
2

Again, easy to see the double-counting
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Next-to-Leading Power Subtraction – Identification

Easiest to study Q2
T/Q

2 corrections are the subleading contributions to the
cross-section from the multipole expansion, e.g.

δ(p−n + p−n̄ − Q−)→ δ(p−n − Q−) + p−n̄
d

dp−n
δ(p−n − Q−)→ O

(0)
2 + O

(2δ−)
2

I
(0)
n ∼

∫
dω−

ω−
(2−2ω− + (ω−)2)

I
(2δ−)
n ∼ 0
I

(2δ+)
n ∼

∫
dω−

ω−
(−ω+)(2− 2ω− + (ω−)2)

I
(0)
n̄ ∼

∫
dω−

ω−
(2−2ω+ + (ω+)2)

I
(2δ−)
n̄ ∼

∫
dω−

ω−
(−ω−)(2− 2ω+ + (ω+)2)

I
(2δ+)
n̄ ∼ 0

ω− ≡ k−

p−1
, ω+ ≡ Q2

T

ω−p−1 p+
2

Isub ∼
∫

dω−

ω−
(2

Again, easy to see the double-counting
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Next-to-Leading Power Subtraction – Identification

Easiest to study Q2
T/Q

2 corrections are the subleading contributions to the
cross-section from the multipole expansion, e.g.

δ(p−n + p−n̄ − Q−)→ δ(p−n − Q−) + p−n̄
d

dp−n
δ(p−n − Q−)→ O

(0)
2 + O

(2δ−)
2

I
(0)
n ∼

∫
dω−

ω−
(2− 2ω− + (ω−)2)

I
(2δ−)
n ∼ 0
I

(2δ+)
n ∼

∫
dω−

ω−
(−ω+)(2−2ω− + (ω−)2)

I
(0)
n̄ ∼

∫
dω−

ω−
(2−2ω++(ω+)2)

I
(2δ−)
n̄ ∼

∫
dω−

ω−
(−ω−)(2− 2ω+ + (ω+)2)

I
(2δ+)
n̄ ∼ 0

ω− ≡ k−

p−1
, ω+ ≡ Q2

T

ω−p−1 p+
2

Isub ∼
∫

dω−

ω−
(2− 2ω+

Again, easy to see the double-counting
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Next-to-Leading Power Subtraction – Identification

Easiest to study Q2
T/Q

2 corrections are the subleading contributions to the
cross-section from the multipole expansion, e.g.

δ(p−n + p−n̄ − Q−)→ δ(p−n − Q−) + p−n̄
d

dp−n
δ(p−n − Q−)→ O

(0)
2 + O

(2δ−)
2

I
(0)
n ∼

∫
dω−

ω−
(2−2ω−+(ω−)2)

I
(2δ−)
n ∼ 0
I

(2δ+)
n ∼

∫
dω−

ω−
(−ω+)(2− 2ω− + (ω−)2)

I
(0)
n̄ ∼

∫
dω−

ω−
(2− 2ω+ + (ω+)2)

I
(2δ−)
n̄ ∼

∫
dω−

ω−
(−ω−)(2−2ω+ + (ω+)2)

I
(2δ+)
n̄ ∼ 0

ω− ≡ k−

p−1
, ω+ ≡ Q2

T

ω−p−1 p+
2

Isub ∼
∫

dω−

ω−
(2− 2ω+ − 2ω−

Again, easy to see the double-counting
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Next-to-Leading Power Subtraction – Identification

Easiest to study Q2
T/Q

2 corrections are the subleading contributions to the
cross-section from the multipole expansion, e.g.

δ(p−n + p−n̄ − Q−)→ δ(p−n − Q−) + p−n̄
d

dp−n
δ(p−n − Q−)→ O

(0)
2 + O

(2δ−)
2

I
(0)
n ∼

∫
dω−

ω−
(2− 2ω− + (ω−)2)

I
(2δ−)
n ∼ 0
I

(2δ+)
n ∼

∫
dω−

ω−
(−ω+)(2−2ω−+(ω−)2)

I
(0)
n̄ ∼

∫
dω−

ω−
(2− 2ω+ + (ω+)2)

I
(2δ−)
n̄ ∼

∫
dω−

ω−
(−ω−)(2−2ω++(ω+)2)

I
(2δ+)
n̄ ∼ 0

ω− ≡ k−

p−1
, ω+ ≡ Q2

T

ω−p−1 p+
2

Isub ∼
∫

dω−

ω−
(2− 2ω+ − 2ω−

+2ω−ω+)

Again, easy to see the double-counting.

Matt Inglis-Whalen (U of T) Rapidity Logs and Overlap Subtractions March 25th 2019 17 / 20



Next-to-Leading Power Subtraction – Prescription

Isub ∼
∫

dω−

ω− (2 + 2ω−ω+ − 2ω+ − 2ω−)

〈p1p2|T{O(0)
2 (x)O

(0)†
2 (0)}|p1p2〉

1
Nc

Tr〈0|T{(1+
D2
T

Q2 )W †(x)W (x)W
†
(0)W (0)}|0〉

⊃
∫

dω−

ω− (2 + 2ω−ω+)

→ NLP subtraction of LP operators

〈p1p2|T{O(2δ+)
2 (x)O

(0)†
2 (0)}|p1p2〉

1
Nc

Tr〈0|T{W †(x)W (x)W
†
(0)W (0)}|0〉

⊃
∫

dω−

ω− (−2ω+)

〈p1p2|T{O(2δ−)
2 (x)O

(0)†
2 (0)}|p1p2〉

1
Nc

Tr〈0|T{W †(x)W (x)W
†
(0)W (0)}|0〉

⊃
∫

dω−

ω− (−2ω−)

→ LP subtraction of NLP operators
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Net Subleading Contribution

I
(0)
n + I

(2δ−)
n + I

(+2δ+)
n + I 0

n̄ + I
(2δ−)
n̄ + I

(+2δ+)
n̄ − Isub ∼ (1 +

Q2
T

Q2 ) log ζ2

Q2
T

Subtractions automatically tame all rapidity divergences

Rescaling of different integrals again gives a scheme dependent result

Subleading power subtractions required

Works in progress:

Other subleading power operators need to be included in calculation

As pointed out by [Ebert et al, 1812.08189], power-law divergences
need better regulator than δ or η. Still shopping.
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Conclusion

SCET without modes is useful to study
next-to-leading power calculations

In this formalism, rapidity logs are related to
ambiguities in summing diagrams

At low energies the choice of scheme becomes free,
allowing for resummation of rapidity logs

Overlap subtraction at subleading powers requires
additional denominator insertions
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