Rapidity Logs and Overlap Subtractions in SCET

Matthew Inglis-Whalen

In collaboration with Michael Luke, Aris Spourdalakis, and Jyotirmoy Roy

SCET 2019 - San Diego

Outline

Motivating SCET without modes

Old ideas from a new perspective

- Rapidity divergences and integration ambiguities
- Using ambiguities to sum rapidity logs

Defining overlap subtraction at subleading powers

Recall: Endpoint DIS

In [Manohar, hep-ph/0309176] SCET was used to study DIS in the $x \rightarrow 1$ limit

In Target Rest Frame, need 2 modes

$$
(\text { us }),(n)
$$

In the Breit Frame, need 3 modes

$$
(\bar{n}),(\text { us }),(n)
$$

Recall: Endpoint DIS

In [Manohar, hep-ph/0309176] SCET was used to study DIS in the $x \rightarrow 1$ limit

In Target Rest Frame, need 2 modes

$$
(\text { us }),(n)
$$

In the Breit Frame, need 3 modes

$$
(\bar{n}),(\text { us }),(n)
$$

Boost invariance says 2 modes is
sufficient in all frames!

Jet Rest Frame

In Jet Rest Frame, also need 2 modes (\bar{n}), (us)

- Mode classification of incoming/outgoing states is frame-dependent
- Each collimated jet of particles is soft in its own frame \rightarrow QCD [Bauer et al, 0809.1099.pdf], [Freedman and Luke, 1107.5823]

A Frame-Independent Formalism

Sectors are defined based purely on invariant mass
2 sectors: $p_{n}^{2} \ll Q^{2}, p_{\bar{n}}^{2} \ll Q^{2}$

$$
2 p_{n} \cdot p_{\bar{n}} \sim Q^{2}
$$

Each sector gets its own copy of QCD
Sectors are only coupled via the hard current, with expansion in inverse powers of the matching scale $\mathcal{J}_{\mathrm{QCD}}^{\mu}=e^{-i q \cdot x} \bar{\psi} \gamma^{\mu} \psi \rightarrow \sum_{i} \frac{C_{2}^{i}}{Q^{[J}} O_{2}^{(i)}$

$\left[\bar{\psi}_{n} \bar{W}_{n}\right] \quad \gamma^{\mu} \quad\left[W_{\bar{n}}^{\dagger} \psi_{\bar{n}}\right]$

Mode-Free Features

No λ-scaling
No explicit softs/ultrasofts/other modes
\rightarrow No distinction between SCET $_{\text {I }} /$ SCET $_{\text {II }}$ at the matching scale
\rightarrow Further factorization of scales $\ll Q$ happens later
at low scale matching (Factorization $=$ matching)
Structure of SCET at subleading powers is simpler (no NLP collinear-soft interactions)

Subtlety: Overcounting

Just like the zero-bin subtraction of [Manohar and Stewart hep-ph/0605001], $n+\bar{n}$ sectors double-count some low energy degrees of freedom.
E.g. $2 p \cdot p_{n} \ll Q^{2}$ and $2 p \cdot p_{\bar{n}} \ll Q^{2} \rightarrow$ Overlap subtraction

Overlap prescription we use is similar to the LO QCD factorization of [Feige and Schwartz 1403.6472] or the soft subtraction of [Idilbi and Mehen hep-ph/0702022]

$$
\left\langle p_{f}\right| O_{2}^{(0)}\left|p_{i}\right\rangle_{\text {subtracted }}=\frac{\left\langle p_{f}\right| O_{2}^{(0)}\left|p_{i}\right\rangle}{\frac{1}{N_{c}} \operatorname{Tr}\langle 0| W_{n}^{\dagger} W_{\bar{n}}|0\rangle}=\frac{\left\langle p_{f}^{n}\right| \bar{\chi}_{n}\left|p_{i}^{n}\right\rangle \gamma^{\mu}\left\langle p_{f}^{\bar{n}}\right| \chi_{\bar{n}}\left|p_{i}^{\bar{n}}\right\rangle}{\frac{1}{N_{c}} \operatorname{Tr}\langle 0| W_{n}^{\dagger} W_{\bar{n}}|0\rangle}
$$

SCET II $^{\text {and }}$ RRG without Explicit Softs?

Usual description of SCET ${ }_{\text {II }}$ processes is $n / \bar{n} / s$ lying on same hyperbola.

Ambiguous separation of modes necessitates rapidity cutoffs to
 distinguish between modes [Chiu et al. 1202.0814]

Independence of cutoffs gives Rapidity Renormalization Group

How does this arise in a formalism without explicit softs?

Hidden Scheme Dependence

Take O_{2} renormalization with gluon mass IR regulator. Well-known that individual diagrams are unregulated, but well-defined in the sum [Chiu et al, 0901.1332]

$\left(I_{n} \sim \int \frac{d k^{-}}{k^{-}}\left(1-\frac{k^{-}}{p_{1}^{-}}\right)^{(1-\epsilon)}\right)+\left(I_{\bar{n}} \sim \int \frac{d k^{+}}{k^{+}}\left(1-\frac{k^{+}}{p_{2}^{+}}\right)^{(1-\epsilon)}\right)-\left(I_{s} \sim \int \frac{d k^{-}}{k^{-}}\right)$
Each graph is individually rapidity divergent.

Hidden Scheme Dependence

Take O_{2} renormalization with gluon mass IR regulator. Well-known that individual diagrams are unregulated, but well-defined in the sum [Chiu et al, 0901.1332]

$\left(I_{n} \sim \int \frac{d k^{-}}{k^{-}}\left(1-\frac{k^{-}}{p_{1}^{-}}\right)^{(1-\epsilon)}\right)+\left(I_{\bar{n}} \sim \int \frac{d k^{+}}{k^{+}}\left(1-\frac{k^{+}}{p_{2}^{+}}\right)^{(1-\epsilon)}\right)-\left(I_{s} \sim \int \frac{d k^{-}}{k^{-}}\right)$
Each graph is individually rapidity divergent.
\rightarrow To get the usual result, do integrals in the same order

$$
\begin{gathered}
\left(I_{n} \sim \int \frac{d k^{-}}{k^{-}}\left(1-\frac{k^{-}}{p_{1}^{-}}\right)^{(1-\epsilon)}\right)+\left(I_{\bar{n}} \sim \int \frac{p_{2}^{+}-k^{-}}{M^{2}}\left(1-\frac{p_{2}^{+} k^{-}}{M^{2}}\right)^{-1}\right)-\left(I_{s} \sim \int \frac{d k^{-}}{k^{-}}\right) \\
\sim \frac{2}{\epsilon^{2}}+\frac{3-2 \log \frac{Q^{2}}{\mu^{2}}}{\epsilon}-\log ^{2} \frac{M^{2}}{\mu^{2}}+2 \log \frac{Q^{2}}{\mu^{2}} \log \frac{M^{2}}{\mu^{2}}-3 \log \frac{M^{2}}{\mu^{2}}
\end{gathered}
$$

Careful! Adding 3 infinite quantities isn't well-defined.

Scheme Dependence in Detail

$$
\left\langle p_{f}\right| O_{2}^{(0)}\left|p_{i}\right\rangle_{\text {subtracted }}=\frac{\left\langle p_{f}^{n}\right| \bar{\chi}_{n}\left|p_{i}^{n}\right\rangle \gamma^{\mu}\left\langle p_{f}^{\bar{f}}\right| \chi_{\bar{n}}\left|p_{i}^{\bar{n}}\right\rangle}{\frac{1}{N_{c}} \operatorname{Tr}\langle 0| W_{n}^{\dagger} W_{\bar{n}}|0\rangle}
$$

$$
I_{n} \sim \int_{0}^{p_{1}^{-}} \frac{d k^{-}}{-k^{-}}\left(1-\frac{k^{-}}{p_{1}^{-}}\right)^{1-\epsilon}
$$

$$
I_{\bar{n}} \sim A+\int_{0}^{\infty} \frac{p_{2}^{+} d \ell^{-}}{M^{2}} \frac{1}{1-\frac{p_{2}^{+} \ell^{-}}{M^{2}}}
$$

$$
I_{s u b} \sim \int_{0}^{\infty} \frac{d q^{-}}{-q^{-}}
$$

Scheme Dependence in Detail - Rescaling

$$
\left\langle p_{f}\right| O_{2}^{(0)}\left|p_{i}\right\rangle_{\text {subtracted }}=\frac{\left\langle p_{f}^{n}\right| \bar{\chi}_{n}\left|p_{i}^{n}\right\rangle \gamma^{\mu}\left\langle p_{f}^{\bar{n}}\right| \chi_{\bar{n}}\left|p_{i}^{\bar{n}}\right\rangle}{\frac{1}{N_{c}} \operatorname{Tr}\langle 0| W_{n}^{\dagger} W_{\bar{n}}|0\rangle}
$$

$$
I_{n} \sim \int_{0}^{p_{1}^{-}} \frac{d k^{-}}{-k^{-}}\left(1-\frac{k^{-}}{p_{1}^{-}}\right)^{1-\epsilon}=\int_{0}^{1} \frac{d x}{-x}(1-x)^{1-\epsilon}
$$

$$
I_{\bar{n}} \sim A+\int_{0}^{\infty} \frac{p_{2}^{+} d \ell^{-}}{M^{2}} \frac{p_{2}^{+} d \ell^{-}}{1-\frac{p_{2}^{+} \ell^{-}}{M^{2}}}=A+\zeta^{2} y . \infty \quad \frac{\zeta^{2} d x}{M^{2}} \frac{1}{1-\frac{\zeta^{2} x}{M^{2}}}
$$

$$
I_{s u b} \sim \int_{0}^{\infty} \frac{d q^{-}}{-q^{-}} \quad=\int_{0}^{\infty} \frac{d x}{-x}
$$

The only scale in the calculation, ζ, is arbitrary!

Hidden Scheme Dependence

$I_{n}+I_{\bar{n}}-I_{\text {sub }}=\frac{\alpha_{s} C_{F}}{4 \pi}\left[\frac{2}{\epsilon^{2}}+\frac{3-2 \log \frac{\zeta^{2}}{\mu^{2}}}{\epsilon}-\log ^{2} \frac{M^{2}}{\mu^{2}}+2 \log \frac{\zeta^{2}}{\mu^{2}} \log \frac{M^{2}}{\mu^{2}}-3 \log \frac{M^{2}}{\mu^{2}}\right]$
Previous calculations find $\log \frac{Q^{2}}{\mu^{2}}$ but, here we find $\log \frac{\zeta^{2}}{\mu^{2}}$
Interpretation: rapidity logarithms are related to

scheme dependence of overlap subtraction

Matching from QCD then fixes the scheme parameter ζ :

$$
C_{2}(\mu, \zeta)=1+\frac{\alpha_{s} C_{F}}{4 \pi}\left(-\log \frac{Q^{2}}{\mu^{2}}+3 \log \frac{Q^{2}}{\mu^{2}}+2 \log \frac{Q^{2}}{\zeta^{2}} \log \frac{M^{2}}{\mu^{2}}\right)
$$

Matching at hard scale Q fixes $\zeta=Q$ (required if no IR dependence in matching condition)

Scheme Dependence with a Delta Regulator

Can formalize scheme dependence with δ-regulator [Chiu et al. 0901.1332]
$\mathrm{n}-$ sector $: \frac{1}{-k^{-}+i 0^{+}} \rightarrow \frac{1}{-k^{-}-\delta_{n}+i 0^{+}}$
$\overline{\mathrm{n}}-$ sector $: \frac{1}{-k^{+}+i 0^{+}} \rightarrow \frac{1}{-k^{+}-\delta_{\bar{n}+i 0^{+}}}$
Subtraction $: \frac{1}{-k^{-}+i 0^{+}} \rightarrow \frac{1}{-k^{-}-\delta_{\text {sub }}+i 0^{+}}$

$$
C_{2}(\mu, \nu)=1+\frac{\alpha_{s} C_{F}}{4 \pi}\left(-\log \frac{Q^{2}}{\mu^{2}}+3 \log \frac{Q^{2}}{\mu^{2}}+2 \log \frac{\delta_{n} \delta_{\bar{n}}}{\delta_{\text {sub }}^{2}} \log \frac{M^{2}}{\mu^{2}}\right)
$$

Direction of $\left\{\delta_{n}, \delta_{\bar{n}}, \delta_{\text {sub }}\right\} \rightarrow 0$ determines scheme:

$$
\frac{\delta_{n} \delta_{\bar{n}}}{\delta_{s u b}^{2}}=\frac{Q^{2}}{\nu^{2}}
$$

Scheme freedom at $\mu \sim M$

After running from $\mu=Q$ down to $\mu=M$, the scheme parameter ν becomes free. To see this, match from SCET with $\nu=Q$ onto SCET with ν arbitrary.

$$
\left\langle p_{2}\right| O_{2}(\mu, Q)\left|p_{1}\right\rangle \sim-\log ^{2} \frac{M^{2}}{\mu^{2}}+2 \log \frac{Q^{2}}{\mu^{2}} \log \frac{M^{2}}{\mu^{2}}-3 \log \frac{M^{2}}{\mu^{2}}
$$

$$
\left\langle p_{2}\right| O_{2}(\mu, \nu)\left|p_{1}\right\rangle \sim-\log ^{2} \frac{M^{2}}{\mu^{2}}+2 \log \frac{\nu^{2}}{\mu^{2}} \log \frac{M^{2}}{\mu^{2}}-3 \log \frac{M^{2}}{\mu^{2}}
$$

$$
C_{\text {scheme matching }} \sim \log \frac{Q^{2}}{\nu^{2}} \log \frac{M^{2}}{\mu^{2}}
$$

All logs are minimized in $C_{s m}$ by taking $\mu=M$ and $\nu=Q$. Building up many of these small matching procedures gives the renormalization group!

Resummation using Scheme Parameter

Interpret previous O_{2} loops as massive form factor calculation

$$
\begin{aligned}
F\left(Q^{2}, M^{2}\right) & =\left\langle p_{1}\right| J_{Q C D}^{\mu}\left|p_{2}\right\rangle \\
& =C_{2}(\mu, Q)\left\langle p_{1}\right| O_{2}(\mu, Q)\left|p_{2}\right\rangle \\
& =C_{2}(M, Q) C_{s m}(M, \nu)\left\langle p_{1}\right| O_{2}(M, \nu)\left|p_{2}\right\rangle \\
& =C_{2}(M, Q)\left[C_{s m}\left(\frac{\nu}{Q}\right) D\left(\frac{\nu}{M}\right)\right]_{\mu=M}
\end{aligned}
$$

Now everything looks similar to the factorization of $F\left(M^{2}, Q^{2}\right)$ by [Chiu et al. 1202.0814], where resummation is achieved through the Rapidity Renormalization Group
Since $\frac{d F\left(M^{2}, Q^{2}\right)}{d \log \nu}=0$, can derive

$$
\begin{aligned}
\frac{d}{d \log \nu} C_{s m} & =\left(-D^{-1} \frac{d}{d \log \nu} D\right) C_{s m} \\
& =\left(-\frac{\alpha_{s} C_{F}}{\pi} \log \frac{M^{2}}{\mu^{2}}\right) C_{s m}=\gamma_{s m}^{\nu} C_{s m}
\end{aligned}
$$

\rightarrow Reproduces the standard result

More SCET $_{\text {II }}$ - Drell-Yan at Small Q_{T}

Same techniques can be applied to DY with $Q^{2} \gg Q_{T}^{2} \gg \Lambda_{Q C D}^{2}$. Can reproduce momentum space $d Q_{T}^{2}$ results of [Ebert and Tackmann, 1611.08610]

```
\mu=Q
\nu=Q
QCD }->\mathrm{ SCET
\(\mu=Q_{T} \quad\) SCET \(\rightarrow\) PDFs
\(\nu\) free
```


Large $\log \frac{\nu^{2}}{Q_{T}^{2}} \log \frac{Q_{T}^{2}}{\mu^{2}}$ in matching

Identifying Overcounting at Next-to-Leading Power

Easiest to study Q_{T}^{2} / Q^{2} corrections are the subleading contributions to the cross-section from the multipole expansion, e.g.
$\delta\left(p_{n}^{-}+p_{\bar{n}}^{-}-Q^{-}\right) \rightarrow \delta\left(p_{n}^{-}-Q^{-}\right)+p_{\bar{n}}^{-} \frac{d}{d p_{n}^{-}} \delta\left(p_{n}^{-}-Q^{-}\right) \rightarrow O_{2}^{(0)}+O_{2}^{\left(2 \delta^{-}\right)}$
$I_{n}^{(0)} \sim \int \frac{d \omega^{-}}{\omega^{-}}\left(2-2 \omega^{-}+\left(\omega^{-}\right)^{2}\right)$
$I_{n}^{\left(2 \delta^{-}\right)} \sim 0$

$$
\omega^{-} \equiv \frac{k^{-}}{p_{1}^{-}}, \omega^{+} \equiv \frac{Q_{T}^{2}}{\omega^{-} p_{1}^{-} p_{2}^{+}}
$$

$I_{n}^{\left(2 \delta^{+}\right)} \sim \int \frac{d \omega^{-}}{\omega^{-}}\left(-\omega^{+}\right)\left(2-2 \omega^{-}+\left(\omega^{-}\right)^{2}\right)$
$I_{\bar{n}}^{(0)} \sim \int \frac{d \omega^{-}}{\omega^{-}}\left(2-2 \omega^{+}+\left(\omega^{+}\right)^{2}\right)$
$I_{\bar{n}}^{\left(2 \delta^{-}\right)} \sim \int \frac{d \omega^{-}}{\omega^{-}}\left(-\omega^{-}\right)\left(2-2 \omega^{+}+\left(\omega^{+}\right)^{2}\right)$
$I_{\bar{n}}^{\left(2 \delta^{+}\right)} \sim 0$
Again, easy to see the double-counting

Next-to-Leading Power Subtraction - Identification

Easiest to study Q_{T}^{2} / Q^{2} corrections are the subleading contributions to the cross-section from the multipole expansion, e.g.
$\delta\left(p_{n}^{-}+p_{\bar{n}}^{-}-Q^{-}\right) \rightarrow \delta\left(p_{n}^{-}-Q^{-}\right)+p_{\bar{n}}^{-} \frac{d}{d p_{n}^{-}} \delta\left(p_{n}^{-}-Q^{-}\right) \rightarrow O_{2}^{(0)}+O_{2}^{\left(2 \delta^{-}\right)}$
$I_{n}^{(0)} \sim \int \frac{d \omega^{-}}{\omega^{-}}\left(2-2 \omega^{-}+\left(\omega^{-}\right)^{2}\right)$
$I_{n}^{\left(2 \delta^{-}\right)} \sim 0$
$\omega^{-} \equiv \frac{k^{-}}{p_{1}^{-}}, \omega^{+} \equiv \frac{Q_{T}^{2}}{\omega^{-} p_{1}^{-} p_{2}^{+}}$
$I_{n}^{\left(2 \delta^{+}\right)} \sim \int \frac{d \omega^{-}}{\omega^{-}}\left(-\omega^{+}\right)\left(2-2 \omega^{-}+\left(\omega^{-}\right)^{2}\right)$
$I_{\bar{n}}^{(0)} \sim \int \frac{d \omega^{-}}{\omega^{-}}\left(2-2 \omega^{+}+\left(\omega^{+}\right)^{2}\right)$
$I_{\bar{n}}^{\left(2 \delta^{-}\right)} \sim \int \frac{d \omega^{-}}{\omega^{-}}\left(-\omega^{-}\right)\left(2-2 \omega^{+}+\left(\omega^{+}\right)^{2}\right) \quad I_{\text {sub }} \sim \int \frac{d \omega^{-}}{\omega^{-}}(2$
$I_{\bar{n}}^{\left(2 \delta^{+}\right)} \sim 0$
Again, easy to see the double-counting

Next-to-Leading Power Subtraction - Identification

Easiest to study Q_{T}^{2} / Q^{2} corrections are the subleading contributions to the cross-section from the multipole expansion, e.g.
$\delta\left(p_{n}^{-}+p_{\bar{n}}^{-}-Q^{-}\right) \rightarrow \delta\left(p_{n}^{-}-Q^{-}\right)+p_{\bar{n}}^{-} \frac{d}{d p_{n}^{-}} \delta\left(p_{n}^{-}-Q^{-}\right) \rightarrow O_{2}^{(0)}+O_{2}^{\left(2 \delta^{-}\right)}$
$I_{n}^{(0)} \sim \int \frac{d \omega^{-}}{\omega^{-}}\left(2-2 \omega^{-}+\left(\omega^{-}\right)^{2}\right)$
$I_{n}^{\left(2 \delta^{-}\right)} \sim 0$
$\omega^{-} \equiv \frac{k^{-}}{p_{1}^{-}}, \omega^{+} \equiv \frac{Q_{T}^{2}}{\omega^{-} p_{1}^{-} p_{2}^{+}}$
$I_{n}^{\left(2 \delta^{+}\right)} \sim \int \frac{d \omega^{-}}{\omega^{-}}\left(-\omega^{+}\right)\left(2-2 \omega^{-}+\left(\omega^{-}\right)^{2}\right)$
$I_{\bar{n}}^{(0)} \sim \int \frac{d \omega^{-}}{\omega^{-}}\left(2-2 \omega^{+}+\left(\omega^{+}\right)^{2}\right)$
$I_{\bar{n}}^{\left(2 \delta^{-}\right)} \sim \int \frac{d \omega^{-}}{\omega^{-}}\left(-\omega^{-}\right)\left(2-2 \omega^{+}+\left(\omega^{+}\right)^{2}\right) \quad I_{\text {sub }} \sim \int \frac{d \omega^{-}}{\omega^{-}}\left(2-2 \omega^{+}\right.$
$I_{\bar{n}}^{\left(2 \delta^{+}\right)} \sim 0$
Again, easy to see the double-counting

Next-to-Leading Power Subtraction - Identification

Easiest to study Q_{T}^{2} / Q^{2} corrections are the subleading contributions to the cross-section from the multipole expansion, e.g.
$\delta\left(p_{n}^{-}+p_{\bar{n}}^{-}-Q^{-}\right) \rightarrow \delta\left(p_{n}^{-}-Q^{-}\right)+p_{\bar{n}}^{-} \frac{d}{d p_{n}^{-}} \delta\left(p_{n}^{-}-Q^{-}\right) \rightarrow O_{2}^{(0)}+O_{2}^{\left(2 \delta^{-}\right)}$
$I_{n}^{(0)} \sim \int \frac{d \omega^{-}}{\omega^{-}}\left(2-2 \omega^{-}+\left(\omega^{-}\right)^{2}\right)$
$I_{n}^{\left(2 \delta^{-}\right)} \sim 0$

$$
\omega^{-} \equiv \frac{k^{-}}{p_{1}^{-}}, \omega^{+} \equiv \frac{Q_{T}^{2}}{\omega^{-} p_{1}^{-} p_{2}^{+}}
$$

$I_{n}^{\left(2 \delta^{+}\right)} \sim \int \frac{d \omega^{-}}{\omega^{-}}\left(-\omega^{+}\right)\left(2-2 \omega^{-}+\left(\omega^{-}\right)^{2}\right)$
$I_{\bar{n}}^{(0)} \sim \int \frac{d \omega^{-}}{\omega^{-}}\left(2-2 \omega^{+}+\left(\omega^{+}\right)^{2}\right)$
$I_{\bar{n}}^{\left(2 \delta^{-}\right)} \sim \int \frac{d \omega^{-}}{\omega^{-}}\left(-\omega^{-}\right)\left(2-2 \omega^{+}+\left(\omega^{+}\right)^{2}\right)$
$I_{\text {sub }} \sim \int \frac{d \omega^{-}}{\omega^{-}}\left(2-2 \omega^{+}-2 \omega^{-}\right.$
$I_{\bar{n}}^{\left(2 \delta^{+}\right)} \sim 0$
Again, easy to see the double-counting

Next-to-Leading Power Subtraction - Identification

Easiest to study Q_{T}^{2} / Q^{2} corrections are the subleading contributions to the cross-section from the multipole expansion, e.g.
$\delta\left(p_{n}^{-}+p_{\bar{n}}^{-}-Q^{-}\right) \rightarrow \delta\left(p_{n}^{-}-Q^{-}\right)+p_{\bar{n}}^{-} \frac{d}{d p_{n}^{-}} \delta\left(p_{n}^{-}-Q^{-}\right) \rightarrow O_{2}^{(0)}+O_{2}^{\left(2 \delta^{-}\right)}$
$I_{n}^{(0)} \sim \int \frac{d \omega^{-}}{\omega^{-}}\left(2-2 \omega^{-}+\left(\omega^{-}\right)^{2}\right)$
$I_{n}^{\left(2 \delta^{-}\right)} \sim 0$

$$
\omega^{-} \equiv \frac{k^{-}}{p_{1}^{-}}, \omega^{+} \equiv \frac{Q_{T}^{2}}{\omega^{-} p_{1}^{-} p_{2}^{+}}
$$

$I_{n}^{\left(2 \delta^{+}\right)} \sim \int \frac{d \omega^{-}}{\omega^{-}}\left(-\omega^{+}\right)\left(2-2 \omega^{-}+\left(\omega^{-}\right)^{2}\right)$
$I_{\bar{n}}^{(0)} \sim \int \frac{d \omega^{-}}{\omega^{-}}\left(2-2 \omega^{+}+\left(\omega^{+}\right)^{2}\right)$
$I_{\bar{n}}^{\left(2 \delta^{-}\right)} \sim \int \frac{d \omega^{-}}{\omega^{-}}\left(-\omega^{-}\right)\left(2-2 \omega^{+}+\left(\omega^{+}\right)^{2}\right)$
$I_{\bar{n}}^{\left(2 \delta^{+}\right)} \sim 0$

$$
\begin{gathered}
I_{\text {sub }} \sim \int \frac{d \omega^{-}}{\omega^{-}}\left(2-2 \omega^{+}-2 \omega^{-}\right. \\
\left.+2 \omega^{-} \omega^{+}\right)
\end{gathered}
$$

Again, easy to see the double-counting.

Next-to-Leading Power Subtraction - Prescription

$$
\begin{aligned}
& I_{\text {sub }} \sim \int \frac{d \omega^{-}}{\omega^{-}}\left(2+2 \omega^{-} \omega^{+}-2 \omega^{+}-2 \omega^{-}\right) \\
& \frac{\left\langle p_{1} p_{2}\right| T\left\{O_{2}^{(0)}(x) O_{2}^{(0) \dagger}(0)\right\}\left|p_{1} p_{2}\right\rangle}{\frac{1}{N_{c}} \operatorname{Tr}\langle 0| T\left\{\left(1+\frac{D_{T}^{2}}{Q^{2}}\right) W^{\dagger}(x) W(x) \bar{W}^{\dagger}(0) \bar{W}(0)\right\}|0\rangle} \supset \int \frac{d \omega^{-}}{\omega^{-}}\left(2+2 \omega^{-} \omega^{+}\right)
\end{aligned}
$$

\rightarrow NLP subtraction of LP operators

$$
\begin{aligned}
& \frac{\left\langle p_{1} p_{2}\right| T\left\{O_{2}^{\left(2 \delta^{+}\right)}(x) O_{2}^{(0) \dagger}(0)\right\}\left|p_{1} p_{2}\right\rangle}{\frac{1}{N_{c}} \operatorname{Tr}\langle 0| T\left\{W^{\dagger}(x) W(x) \bar{W}^{\dagger}(0) \bar{W}(0)\right\}|0\rangle} \supset \int \frac{d \omega^{-}}{\omega^{-}}\left(-2 \omega^{+}\right) \\
& \frac{\left\langle p_{1} p_{2}\right| T\left\{O_{2}^{\left(2 \delta^{-}\right)}(x) O_{2}^{(0) \dagger}(0)\right\}\left|p_{1} p_{2}\right\rangle}{\frac{1}{N_{c}} \operatorname{Tr}\langle 0| T\left\{W^{\dagger}(x) W(x) \bar{W}^{\dagger}(0) \bar{W}(0)\right\}|0\rangle} \supset \int \frac{d \omega^{-}}{\omega^{-}}\left(-2 \omega^{-}\right)
\end{aligned}
$$

\rightarrow LP subtraction of NLP operators

Net Subleading Contribution

$$
I_{n}^{(0)}+I_{n}^{\left(2 \delta^{-}\right)}+I_{n}^{\left(+2 \delta^{+}\right)}+I_{\bar{n}}^{0}+I_{\bar{n}}^{\left(2 \delta^{-}\right)}+I_{\bar{n}}^{\left(+2 \delta^{+}\right)}-I_{\text {sub }} \sim\left(1+\frac{Q_{T}^{2}}{Q^{2}}\right) \log \frac{\zeta^{2}}{Q_{T}^{2}}
$$

- Subtractions automatically tame all rapidity divergences
- Rescaling of different integrals again gives a scheme dependent result
- Subleading power subtractions required

Works in progress:

- Other subleading power operators need to be included in calculation
- As pointed out by [Ebert et al, 1812.08189], power-law divergences need better regulator than δ or η. Still shopping.

Conclusion

SCET without modes is useful to study next-to-leading power calculations

In this formalism, rapidity logs are related to ambiguities in summing diagrams

At low energies the choice of scheme becomes free, allowing for resummation of rapidity logs

Overlap subtraction at subleading powers requires additional denominator insertions

