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Power expansion for generic O observable

• A large class of observables O (qT , threshold, event shapes, etc.) exhibit singularities in
perturbation theory as O → 0.

• Standard factorization theorems describe only leading power term.

• More generally, we can consider expanding an observable O
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Leading Power (LP)

Next to Leading Power (NLP)

• Why do we want to understand power corrections?
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NLP field theoretical motivations

• Various interesting field theoretical questions to answer at subleading
power

• What is the structure of factorization theorems at each power?

dσ(n)

dO =
∑
j

H
(nHj )
j ⊗ J

(nJj )
j ⊗ S

(nSj )
j

• What is the degree of universality?

• Appearance of universal structures, e.g. Γcusp(αs)?

• Appearance of new structures, functions, objects, etc
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Application: Fixed Order Subtractions

• IR divergences in fixed order calculations can be regulated using slicing parameter.

σ(X ) =

∫
0

dqT
dσ(X )

dqT
=

qcut
T∫

0

dqT
dσ(X )

dqT
+

∫
qcut
T

dqT
dσ(X )

dqT

• qT subtraction has been applied to many processes in pp at NNLO:
pp → Z , pp → W , pp → H, pp → γγ, pp → Zγ, pp → Wγ, pp → ZZ ,
pp →WW , pp →WZ

• Error, ∆σ(qcut
T ), (or computing time) can be exponentially improved by analyti-

cally computing power corrections.

∆σ(qcut
T ) =

qcut
T∫

0

dqT

(
dσ(X )

dqT
−

dσ(X )LP

dqT

)
≡ σnon sing.(qcut

T )

• Understanding of power corrections crucial for applications to more complicated
processes.

[Catani, Grazzini]

[Matrix collaboration]
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Other applications: Bootstrap and NLP log divergences

Bootstrap for observables
• Bootstrap approaches aim to completely recon-

struct amplitudes or cross sections from limits.

• Intensively applied for amplitudes in N = 4.

• Can the bootstrap be extended from amplitudes to
event shape observables?
(e.g. EEC? see Kai’s talk)

Taming log divergence of NLP

• Fixed order power correction exhibits an inte-
grable divergence for τ → 0

• If LP (singular) is resummed and NLP is not, the
NLP (integrable) divergence dominates.
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Fixed order calculations at Subleading Power

• Various O(αs) fully differential fixed order results for perturbative power corrections have
now appeared in the literature:

◦ SCETI with 2 collinear directions (τ0 in color singlet production)

[Moult, Stewart, Tackmann, Zhu + GV, Ebert, Rothen] 1612.00450, 1710.03227, 1807.10764

(also resummed for H → gg) [Moult, Stewart, GV, Zhu] 1804.04665, presented last year at SCET

(results also for N-jet ops and threshold) [see M.Beneke’s, R.Szafron’s, and S.Jaskiewicz’s talks]

◦ SCETII with 2 collinear directions
(qT in color singlet production) [Ebert, Moult, Stewart, Tackmann, GV, Zhu] 1812.08189

◦ SCETI with 3 collinear directions
(τ1 in Higgs production) [Bhattacharya, Moult, Stewart, GV] 1812.06950

Color singlet H + 1 jet
SCETI (τ0) SCETII (pT ) SCETI (T1)

ALP X

X X

ANLP X

X X

ΦLP X

X X

ΦNLP X

X ?

• A =Amplitude squared, Φ = Phase Space, LP = Leading Power, NLP = Subleading power
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Outline

• Rapidity Divergences and Regularization
at Subleading Power:

• New Rapidity Divergences at Subleading Power

• Rapidity Regularization at Subleading Power

• Power Corrections for Color-Singlet qT Spectra

• Phase Space and Matrix Element Expansions

• LL and NLL results

• Subleading Power Operators in SCETII

• SCETII Hard Scattering Operators

• Fixed Order Comparison with SCETI
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Rapidity Divergences and Regularization

at Subleading Power

k+

k�

Q
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�2Q �Q Q

n-coll.

n̄-coll.

soft

(Ebert, Moult, Stewart, Tackmann, GV, Zhu)

[1812.08189]
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Mode setup in SCET

• Light cone coordinates: kµ = n̄µ

2 k+ + nµ

2 k− + kµ⊥ ≡ (k+, k−, k⊥)

(k+, k−, k⊥)

n-collinear: kµn ∼ Q(λ2, 1, λ)

n̄-collinear: kµn̄ ∼ Q(1, λ2, λ)

soft: kµs ∼ Q(λ, λ, λ)

usoft: kµus ∼ Q(λ2, λ2, λ2)

hard scale: kµhard ∼ Q(1, 1, 1) (integrated out)

• Allows for a factorized description: Hard, Jet, Beam, Soft radiation

SCETII →

SCETI →

EFT expansion: λ� 1
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Rapidity Divergences

• Large class of observables e.g. ~qT , broadening, EEC, pvetoT , . . .
belong to the class of SCETII observables

• SCETII calculations are affected by Rapidity Divergences

• Measurement fixes ⊥ component of momentum, i.e. k+k− ∼ k2
⊥ hyperbola

Light cone coordinates: kµ = (k+, k−, ~k⊥)

n-collinear: pn ∼ Q(λ2, 1, λ)

n̄-collinear: pn̄ ∼ Q(1, λ2, λ)

soft: ps ∼ Q(λ, λ, λ)

k+

k�

Q

�Q

�2Q

�2Q �Q Q

n-coll.

n̄-coll.

soft

• Example of massless soft real emission with SCETII measurement:∫
ddk δ+(k2)δ(d−2)(~q⊥ − ~k⊥)f (k+, k−, ~k⊥) = q−2ε

T

∫ ∞
0

dk−

k−
f (k−, ~q⊥)

• Divergence when modes overlap

k± → 0 , y = 1/2 log(k+/k−)→ ±∞ ,

not regulated by dimensional regularization =⇒ need a rapidity regulator
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Rapidity Divergences at Leading Power

• Leading Power (in q2
T � Q2) representative rapidity divergent integral:

dσLP

dq2
T

∼ 1

q2+2ε
T

∫ Q

0

dk−

k−

• Log divergent, from eikonal propagators from Wilson Lines.

• It can be regulated in many ways:

◦ Wilson lines off the light cone [Collins]

◦ Analytic continuation of eikonal prop. [Beneke, Feldmann, Chiu, Manohar, . . . ]

◦ Analytic regularization of real phase space (k+, k0) [Becher, Bell] [Bell, Rahn, Talbert]

◦ |kz | (or η, CMU), non-analytic regulator [Chiu, Jain, Neill, Rothstein] [Rothstein,Stewart]

◦ δ regulator [Chiu, Fuhrer, Hoang, Kelley, Manohar], [Echevarria, Idilbi, Scimemi]

◦ Exponential regulator [Li, Neill, Zhu]

...

(typically...)

For a recent review of the implementation of different rapidity regulators in the context of LP TMD factorization
see App.B of [1901.03685] (Ebert, Stewart, Zhao)
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Rapidity Divergences at Subleading Power

• At Subleading Power, much broader class of rapidity divergent integrals appearing

• Prototypical integrals take the form

soft sector: I(α)
s [R] =

∫ ∞
0

dk−

k−

(
k−

Q

)α
R(k, η)

n-collinear sector: I(α)
n [R] =

∫ Q

0

dk−

k−

(
k−

Q

)α
gn(k−)R(k, η)

n̄-collinear sector: I(α)
n̄ [R] =

∫ Q

0

dk+

k+

(
k+

Q

)α
gn̄(k+)R(k, η)

α = 0, ±1, ±2, . . . gn(k), gn̄(k) regular as k → 0 R(k, η) is some rapidity regulator

Comments:

• α can be negative, hence not only log divergences∫
dk−

(k−)2
,

∫
dk−

(k−)3
=⇒ Power Law Rapidity Divergences

• Regulating only Wilson lines is not sufficient.
Note that this is also true at LP for Glaubers, see [Rothstein, Stewart]

• Divergences also from soft-quark emissions,
hard-collinear propagators, phase space expansion.
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Rapidity Regularization at Subleading Power

Hence, at Subleading Power:

• Regularization should conveniently treat power law rapidity divergent integrals

• Common simplifications always used at Leading Power no longer true

Example: analytic reg. with energy k0 (or η regulator with |kz |). At LP it looks

n :

∫ Q

0

dk−

k−
gn(k−)

(
k−

ν

)−η
soft :

∫ ∞
0

dk−

k−

(
2k0

ν

)−η
n̄ :

∫ Q

0

dk+

k+
gn̄(k+)

(
k+

ν

)−η

but it truly is 2k−η0 = (k− + k+)−η in all sectors =⇒ regulator generates power corrections!

n collinear regulator:

(
k−n + k+

n

ν

)−η
= νη

(
k−n +

k2
T

k−n

)−η
=

(
k−n
ν

)−η [
1−η

k2
T

(k−n )2
+O(λ4)

]

I(0)
n = νη

∫ Q

0
dk−

gn(k−/Q)

(k−)1+η︸ ︷︷ ︸
LP collinear integral

− k2
T ν

η

∫ Q

0
dk−η

gn(k−/Q)

(k−)3+η︸ ︷︷ ︸
NLP integral induced by the regulator

+ O(λ4)

We’ll see that the NLP integral induced by the regulator is 1
η

divergent =⇒ the η prefactor cancels out and the term does NOT vanish for η → 0
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Pure rapidity regularization

At Subleading power it is convenient to use homogeneous rapidity regulators.

Introduce the pure rapidity regulator∫
ddk →

∫
ddk ω2υη

∣∣∣∣ n̄ · kn · k

∣∣∣∣−η/2

=

∫
ddk ω2υηe−ykη

with bookkeeping and regulator parameters ω, η as in the η regulator.

• It doesn’t introduce power corrections

• It breaks boost symmetry in the most minimal way.

• Includes dimensionless (pure) rapidity scale υ (upsilon)

• Dimensional regularization-like 1
η

poles for rapidity divergences.

• MS-analog scheme is pure rapidity renormalization.

• Symmetry in n↔ n̄: for a class of measurements (like qT ) results for n̄ sector are trivially
obtained from n-sector via η → −η , υ → 1

υ
=⇒

◦ Soft and zero-bin integrals are scaleless
◦ Order by order poles have opposite sign (cancellation of poles is trivial).
◦ Finite terms are identical!

• It shares features of both the kz and k+ analytic regulator
14



Power Corrections for Color-Singlet qT
Spectra
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(Ebert, Moult, Stewart, Tackmann, GV, Zhu) [1812.08189]
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Power corrections at FO: General Setup
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• Want the fully differential cross

section dσ
dQ2dYdq2

T
for color singlet pro-

duction including O(αs) and O(q2
T/Q

2)

corrections.

dσ

dQ2dY dq2
T

=
dσLP

dQ2dY dq2
T

+
dσNLP

dQ2dY dq2
T

+O
(
q2
T

Q2

)
=

dσLP

dQ2dY dq2
T

+
αs

4π

(
c1(Y ) ln

Q2

q2
T

+ c0(Y )

)
+O

(
q2
T

Q2
, α2

s

)

• Power corrections in λ ∼ qT/Q � 1:

• Perturbative

• NOT higher twist PDFs/non-perturbative power corrections.
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Power corrections at FO: General Setup

• Get qT/Q corrections by expanding the full QCD phase space and matrix
element squared in soft and collinear limit:

• Phase space: Φ = Φ(0) + qT
Q Φ(1) +

q2
T

Q2 Φ(2) +O(q3
T/Q

3)
Example: (soft limit)

momentum fraction: ζa(k) = xa

[
1 +

k−e−Y

Q
+

q2
T

2Q2
+O(λ3)

]
← (fixed by Y ,Q, qT measurement)

Expansion of PDFs: fa(ζa(k)) = fa(xa) +
k−e−Y

Q
f ′a (xa) + . . .

• Matrix element squared: |M|2 = A(0) + qT
Q A(1) +

q2
T

Q2 A
(2) +O(q3

T/Q
3)

Example: (soft limit ggHg)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

= ALO
gg→H (Q)×

8παsCA

Q4

[
Q8 + s4

12 + s4
1k + s4

2k

s12s1k s2k

]

= ALO
gg→H (Q)×

16παsCA

q2
T

+ A(1) + A(2) +O(q3
T /Q

3)

• No corrections at O(qT/Q) for the cross section

Schematically:
dσ

dYdq2
T

∼
∫

dz

z

[
A(0)Φ(0) +

q2
T

Q2

(
A(0)Φ(2) + A(2)Φ(0) + A(1)Φ(1)

)]
+O

(
q3
T /Q

3
)
17



Collinear Master Formula for qT power corrections

k− → 0 rapidity divergences mapped to (standard) splitting variable z → 1 via
∫ Q

0
dk−
(k−)

→
∫ 1
xa

dza
za(1−za)

dσ
(2)
n

dQ2dYdq2
T

∼ νη

Φ(0)(LP phase space)︷ ︸︸ ︷∫ 1

xa

dza

za

z1+η
a

(1− za)1+η

{
fa
( xa
za

)
fb(xb)A

(2)
n (qT ; za)

+ A
(0)
n (qT ; za)︸ ︷︷ ︸
LP |M|2

q2
T

2Q2

[
(1− za)2 − 2

1− za
fa
( xa
za

)
fb(xb) + xaf

′
a

( xa
za

)
fb(xb)

+
1 + za

1− za
fa
( xa
za

)
xbf
′
b (xb)

→ +
2η

e2Y

z2
a

(1− za)2
fa
( xa
za

)
fb(xb)

]}

• Combining rapidity divegent factors (1− za)−1 we get
1

(1− za)2+η
,

1

(1− za)3+η
=⇒ power law rapidity divergences!

• They appear in Φ(2) =⇒ The fact that they appear is generic

• They can also be generated by Φ(0) × A(2) when

A(2)(za → 1) ∼
1

(1− za)

• Analogous master formula exists for the soft limit

Power correction from the expansion of the |kz |
regulator. Not there in pure rapidity regularization

↑
← Subleading power expansion

of phase space Φ(2)
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How to treat power law divergences

• Consider rapidity divergent integral

∫ 1

x
dz

g(z)

(1− z)a+η
.

• When g(z) is not known analytically (eg. when it involves PDFs), need to extract pole
as η → 0 without computing the integral.

• For a = 1, use standard distributional identity

1

(1− z)1+η
= −

δ(1− z)

η
+ L0(1− z) +O(η) , L0(y) = [θ(y)/y ]+ ,

• For a > 1, these distributions need to be generalized to higher-order plus distributions
subtracting higher derivatives as well. For example, for a = 2 one obtains

1

(1− z)2+η
=
δ′(1− z)

η
− δ(1− z) + L++

0 (1− z) +O(η) ,

where the second-order plus function L++
0 (1− z) acts on a test function g(z) as a double

subtraction.

• Power law divergences generate new PDF derivatives

∫ 1

xa

dza
f (xa/za)f (xb/zb)

(1− za)2+η
=

f ′(xa)f (xb/zb)

η
+O(η0)
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Leading-Logarthmic power corrections

• Compute power corrections in the n-collinear, n̄-collinear and soft
limits (soft is scaless for homogeneous regulators)

• Sum together results

• Rapidity divergences cancel between sectors, finite terms add up.
(In rapidity regularization this is trivial since gn(η) = gn̄(−η))

At Leading Log the result is quite simple. Here a couple of examples:

• Drell Yan production (qq̄ → Vg)

dσ
(2),LL
qq̄→Vg

dQ2dYdq2
T

= σ̂LO
qq̄→V (Q)×

αsCF

4π

2

Q2
ln

Q2

q2
T

[
f qq̄uni (xa, xb)

]
,

• Gluon fusion Higgs production (gg → Hg)

dσ
(2),LL
gg→Hg

dQ2dYdq2
T

= σ̂LO
gg→H(Q)×

αsCA

4π

2

Q2
ln

Q2

q2
T

[
8fg (xa)fg (xb) + f gguni (xa, xb)

]
,

• Common factor

f ijuni(xa, xb) = −xaf ′i (xa)fj (xb)− fi (xa) xbf
′
j (xb) + 2xaf

′
i (xa) xbf

′
j (xb)

20



Next Leading-Logarthmic power corrections

• We computed also the NLL kernels at O(αs) for all channels both in
DY and ggH.

• za, zb kernels pretty complicated. They involve L++
0 (1− za), etc.

• Remainder is q2
T/Q

2 suppressed

• Describes qT distribution up to 10 GeV
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10-3

dσ

dYdq2
T

−
dσLP

dYdq2
T

= c1(Y ) ln
Q2

q2
T

+ c0(Y ) +O
(
q2
T

Q2

)
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Subleading Power Operators in SCETII

(Chang, Stewart, GV) [to appear]
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Subleading SCETII Operators

Structure of SCETII at subleading power is much richer than SCETI:

• 2 classes of singularities and regularizations: UV and Rapidity (ε, η)

• New non-localities: hard-collinear modes

• Hard-collinear modes mediate interaction of soft and collinear fields (which can’t happen
at LP) =⇒ They are crucial at subleading powers
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Hard scattering Operators

• Hard-collinear propagators enhance the power counting of the operators

1

p2
hc

=
1

n̄ · pnn · ps
∼

1

λ0λ
∼ λ−1

• For qT first non vanishing power correction is at O(λ2)

• Therefore, need to consider more operators than in the SCETI case.

Example: Hard scattering emission of a soft quark in gq → Hq

O(1/2)
qq1 ∼

ωnωn̄

ωnn · ps
χ̄n(ωn)g /B⊥n̄ (ωn̄)ψ

(n)
S (ps)H :

O(0) L(1)

O(3/2)
qq1 ∼

ωnωn̄

ωnn · ps
χ̄n(ωn)g /B⊥n̄ (ωn̄)

[
n · Psψ

(n)
S (ps)

]
H :


L(1)L(2)O(0)

L(1)O(2)

• Using these operators we reproduce power correction for gq channel.
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Comparison with FO calculations at Subleading Power

• Various O(αs) fully differential fixed order results for perturbative power corrections have
now appeared in the literature:

◦ SCETI with 2 collinear directions
(τ0 in color singlet production) [Ebert,Moult,Stewart,Tackmann, GV, Zhu] 1807.10764

◦ SCETII with 2 collinear directions
(qT in color singlet production) [Ebert,Moult,Stewart,Tackmann, GV, Zhu] 1812.08189

◦ SCETI with 3 collinear directions
(τ1 in Higgs production) [Bhattacharya,Moult,Stewart, GV] 1812.06950

• Use them to compare k−→0 behavior for Amplitude squared contributions A(k) and Phase
Space Φ(k), at Leading Power (LP) and subleading power (NLP) in different situations.

Color singlet H + 1 jet
SCETI (τ0) SCETII (pT ) SCETI (T1)

ALP(k−)
1
k− 1

1
k−

ANLP(k−)
1
k−

1
k−

1
(k−)2

ΦLP(k−) 1
1
k− 1

ΦNLP(k−) 1
1

(k−)2 ?
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Conclusions

∫ 1

x

dz

z

fa(x/z)

(1− z)(2+η)

∫
ddk →

∫
ddk ω2υη

∣∣∣∣ n̄ · kn · k

∣∣∣∣−η/2
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• Described new structure of rapidity divergences
arising at subleading powers

• Looked at how to implement rapidity regularization at subleading
powers and proposed a new regulator
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