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Power expansion for generic O observable

e A large class of observables O (g1, threshold, event shapes, etc.) exhibit singularities in
perturbation theory as O — 0.

e Standard factorization theorems describe only leading power term.

o More generally, we can consider expanding an observable O
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Power expansion for generic O observable

e A large class of observables O (g7, threshold, event shapes, etc.) exhibit singularities in
perturbation theory as O — 0.

e Standard factorization theorems describe only leading power term.

e More generally, we can consider expanding an observable O
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e Why do we want to understand power corrections?



NLP field theoretical motivations

Various interesting field theoretical questions to answer at subleading
power

What is the structure of factorization theorems at each power?

U(n)

Z () "J/ 5_("5/)

J

What is the degree of universality?

Appearance of universal structures, e.g. [cysp(cvs)?

Appearance of new structures, functions, objects, etc



Application: Fixed Order Subtractions

e IR divergences in fixed order calculations can be regulated using slicing parameter.
[Catani, Grazzini]

cut

w00 = o o) [ 0 [ 250

qr S dqr
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e g7 subtraction has been applied to many processes in pp at NNLO:
pp— Z, pp > W, pp— H, pp— vy, pp = Zv, pp = W~, pp = ZZ,
pp — WW, pp - WZ

[Matrix collaboration]

e Error, Ac(q$"), (or computing time) can be exponentially improved by analyti-
cally computing power corrections.

cut

Ao(q7") = /T dqr (dU(X) - M) = "o sing: (geut)
0

dqr dqr

e Understanding of power corrections crucial for applications to more complicated
processes.



Other applications: Bootstrap and NLP log divergences

Bootstrap for Observables Remaining Parameters in Symbol

e Bootstrap approaches aim to completely recon- of 6-Point MHV Remainder Function

struct amplitudes or cross sections from limits.

e If LP (singular) is resummed and NLP is not, the
NLP (integrable) divergence dominates.

Constraint L=2|L=3][L=4]
e Intensively applied for amplitudes in N = 4. 1. Integrability 75 | 643 | 5807
. < . symmetry : 5 22
e Can the bootstrap be extended from amplitudes to 2 Total Sy symumety 20 | 151 | 1224
2 3. Parity invariance 18 120 874
event shape observables? - — -
” . 4. Collinear vanishing (7°) 4 59 622
(eg. EECT see Kai's talk) PR— 5. OPE leading discontinuity 0 26 482
6. Final entry 0 2 113
7. Multi-Regge limit 0 2 80
: 0 T
A\LP7 NNLP > 8. Near-collinear OPE (T) 0 0 4
9. Near-collinear OPE (72) 0 0 0
[Dixon et al.] [Basso, Sever, Vieira]
]
14— E = . .
o —wmwows 3 Taming log divergence of NLP
E — LP LL a,(p) ]
10— |
I - NLP Fixed Order (x4) e Fixed order power correction exhibits an inte-
< |T 8 " | .
~1ek N NLPLL o) (<) ] grable divergence for 7 — 0
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Fixed order calculations at Subleading Power

e Various O(as) fully differential fixed order results for perturbative power corrections have
now appeared in the literature:

o SCET, with 2 collinear directions (7 in color singlet production)
[Moult, Stewart, Tackmann, Zhu + GV, Ebert, Rothen] 1612.00450, 1710.03227, 1807.10764
(also resummed for H — gg) [Moult, Stewart, GV, Zhu] 1804.04665, presented last year at SCET

(results also for N-jet ops and threshold) [see M.Beneke's, R.Szafron’s, and S.Jaskiewicz's talks]

Color singlet H+1jet

SCET, (7o) | SCETy (p1) | SCET, (71)
ALP v
ANLP v
LY v
¢NLP v

e A =Amplitude squared, ® = Phase Space, LP = Leading Power, NLP = Subleading power



Fixed order calculations at Subleading Power

e Various O(as) fully differential fixed order results for perturbative power corrections have
now appeared in the literature:

o SCET, with 2 collinear directions (7 in color singlet production)
[Moult, Stewart, Tackmann, Zhu + GV, Ebert, Rothen] 1612.00450, 1710.03227, 1807.10764
(also resummed for H — gg) [Moult, Stewart, GV, Zhu] 1804.04665, presented last year at SCET

(results also for N-jet ops and threshold) [see M.Beneke's, R.Szafron’s, and S.Jaskiewicz's talks]

o SCET), with 2 collinear directions
(gt in color singlet production) [Ebert, Moult, Stewart, Tackmann, GV, Zhu] 1812.08189

o SCET, with 3 collinear directions
(71 in Higgs production) [Bhattacharya, Moult, Stewart, GV] 1812.06950
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o A =Amplitude squared, ® = Phase Space, LP = Leading Power, NLP = Subleading power
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Rapidity Divergences and Regularization

at Subleading Power

NQ  AQ Q
(Ebert, Moult, Stewart, Tackmann, GV, Zhu)

[1812.08189]



Mode setup in SCET

e Light cone coordinates: k* = - k* + 2k~ + k' = (k*, k=, k1)

EFT expansion: A <« 1

(k+7 k_7 kJ_) k+
n-collinear: k% ~ Q(A\2, 1, \)
Q-
n-collinear: k& ~ Q(1, A2, \)
SCETy = soft: ki ~ Q(A, A, A) ol
N Q|-

SCET; — usoft: ki ~ Q(A\2, )2, )\2)

hard scale: k., ~ Q(1,1,1) (integrated out)

e Allows for a factorized description: Hard, Jet, Beam, Soft radiation



Rapidity Divergences

veto

o Large class of observables e.g. ¢, broadening, EEC, p'™@ ..
belong to the class of SCET), observables

e SCET) calculations are affected by Rapidity Divergences

e Measurement fixes | component of momentum, i.e. kTk~ ~ k” hyperbola

kt
Light cone coordinates: k* = (kt, k—, k1)
Q-
n-collinear: p, ~ Q(\2, 1, \)
n-collinear: pr ~ Q(1, A2, \) ;g ol
soft: ps ~ Q(A, A, A) NQ A Q

o Example of massless soft real emission with SCET|; measurement:

() - o [ dkT
/ddk6+(k2)z\(’ G, — ko O)F(kt, k ,kJ_):qTZ/O k—_f(k ,G1)

e Divergence when modes overlap
Kkt >0, y =1/2log(kT/k™) = +oo,

not regulated by dimensional regularization = need a rapidity regulator



Rapidity Divergences at Leading Power

e Leading Power (in q%— < @) representative rapidity divergent integral:

dotP 1 /Q dk—
dg7 g7 Jo k-

e Log divergent, from eikonal propagators from Wilson Lines.
. (typically...)
e |t can be regulated in many ways:

o Wilson lines off the light cone [Collins]

[e)

Analytic continuation of eikonal prop. [Beneke, Feldmann, Chiu, Manohar, ...]

o

Analytic regularization of real phase space (k*, k0) [Becher, Bell] [Bell, Rahn, Talbert]

o

|kz| (or m, CMU), non-analytic regulator [Chiu, Jain, Neill, Rothstein] [Rothstein,Stewart]
o 4 regulator [Chiu, Fuhrer, Hoang, Kelley, Manohar], [Echevarria, Idilbi, Scimemi]

o Exponential regulator [Li, Neill, Zhu]

For a recent review of the implementation of different rapidity regulators in the context of LP TMD factorization
see App.B of [1901.03685] (Ebert, Stewart, Zhao)



Rapidity Divergences at Subleading Power

e At Subleading Power, much broader class of rapidity divergent integrals appearing

e Prototypical integrals take the form

o o dk™ (k—\“
soft sector: Zg )[R] :/ —_— (—) R(k,n)
o kT \Q@
o Qdk— (k—\“
n-collinear sector: ZR] :/ _— (—) gn(k)R(k,m)
o k= \Q
o Q dkt /kTt\¢
f-collinear sector: I,g )[R] :/0 o (6) gn(kT)R(k,m)
a=0, £1, £2, ... gn(k), gn(k) regular as k — 0 R(k,n) is some rapidity regulator

Comments:

e « can be negative, hence not only log divergences
dk— dk—

(G CRE

- Power Law Rapidity Divergences

e Regulating only Wilson lines is not sufficient.
Note that this is also true at LP for Glaubers, see [Rothstein, Stewart]

e Divergences also from soft-quark emissions,
hard-collinear propagators, phase space expansion.




Rapidity Regularization at Subleading Power

Hence, at Subleading Power:
e Regularization should conveniently treat power law rapidity divergent integrals

e Common simplifications always used at Leading Power no longer true

Example: analytic reg. with energy k¥ (or n regulator with |k.|). At LP it looks

Q dk— k n o dk= [ 2ko\ " Q dkt kT "
: —_— k=) — ft : —_— — n: —gr(kT <—
)y S )<> ot k—<w> "y S )>

in all sectors —> regulator generates power corrections!

but it truly is | 2k, " = (kT + kT)™"
ky + ki " KZNTT (kT k2
n collinear regulator: (g) =" (k;—i—i) = (L> |:1—77 r +O(>\4)}
v kn v (ka )?

Q - Q -

LP collinear integral NLP integral induced by the regulator

We'll see that the NLP integral induced by the regulator is % divergent = the 1) prefactor cancels out and the term does NOT vanish for  — 0



Pure rapidity regularization

At Subleading power it is convenient to use homogeneous rapidity regulators.
Introduce the pure rapidity regulator
= —n/2

/ddk—>/ddkw2v" Z

with bookkeeping and regulator parameters w, 7 as in the n regulator.

= /ddszu”e*y“7

e |t doesn't introduce power corrections
e It breaks boost symmetry in the most minimal way.
e Includes dimensionless (pure) rapidity scale v (upsilon)

e Dimensional regularization-like % poles for rapidity divergences.

e MS-analog scheme is pure rapidity renormalization.

e Symmetry in n <> fi: for a class of measurements (like g7) results for 7 sector are trivially
obtained from n-sector via n — —n,v — % =

o Soft and zero-bin integrals are scaleless
o Order by order poles have opposite sign (cancellation of poles is trivial).
o Finite terms are identical!

o |t shares features of both the k; and k™ analytic regulator



Power Corrections for Color-Singlet g7

Spectra

> T “ §
T [ pp— H (13 TeV) S B
Sb F ggNLOp, Y =2 [ ]
St full nonsi ro ]
\3j — full nonsing. \ ]
P oL I \ ]
% o —-=-caLl+c lI =
as [ l ]
o L i
_:‘. L I i
= 1 ‘I ]
~ = 4
S ! ]
Zo T R TR

10t 100 10! 102

qr [GeV]

(Ebert, Moult, Stewart, Tackmann, GV, Zhu)

[1812.08189]



Power corrections at FO: General Setup

~ 57 HARLL B AL B
e Want the fully differential cross E - pp— H (13 TeV) //‘\ ]
S U 99NLOy, Y =2 SN
section d@ﬁ% for color singlet pro- 3;37 —— full nonsing. ! ‘\ 3
> T \
duction including O(as) and O(q%/Q%) & °F [
=} L 1
- 3 I P
corrections. B i: : E
10~ 102
do _ do™P L doNLP
dQ2dYdq% N d@3dYdg? dQ2dYdg%
d LP 02 q2
7—1—— Y)In -5 +c(Y) ) +0( 2L, a?
dQ2deq7— ( ( ) q%_ 0( ) Qz s

o Power corrections in A ~ g7/Q < 1:

e Perturbative

e NOT higher twist PDFs/non-perturbative power corrections.



Power corrections at FO: General Setup

e Get g7/Q corrections by expanding the full QCD phase space and matrix
element squared in soft and collinear limit:

e Phase space: ¢ = ¢(0) + Zo1) 4 qTCD +0(q3/Q3)

Example: (soft limit)

kemY g
momentum fraction: (5(k) = x, [1 + 2 + % + O(>\3)] < (fixed by Y, Q, g7 measurement)

k Y
Expansion of PDFs: f,((5(k)) = fa(xa) + ; fo(xa) + - -

e Matrix element squared: |M|?> = AQ)+ L AN+ T AR +O(q3/Q3)
Example: (soft limit ggHg)
1
s 8rasCa [ Q° + sf, + 57, + 53,
< =A
// s o(Q) X Q@ 51251k 52k ]
\\\H(&,r, L) <C
((/ T AL (@) x BTAEEA L A0 4 A®) 4 o3 /0%
q

2 T

e No corrections at O(q7/Q) for the cross section

2
Schematically: —27_ ~ / dz [A(°)4>(0> + % (A(°>q><2> 1 A@eO 4 A<1?1<1><1>) +0(q3/Q%)

dequ z




Collinear Master Formula for g+ power corrections

1 _ dz

k~ — 0 rapidity divergences mapped to (standard) splitting variable z — 1 via fQ dk_) o
a\l—2a

O(O)(LP phase space)

dO'(z) 1 dz, Zal+n
__—7n " Gz 2 ¢ £ A
dQdvdgz " /Xa za (1 za)1+n{ a( ) b(x) AV (71 22)

2 2
0 97 [(1—za)*—2_ /xs , [ Xa
+ A0 (qriza) L | 22l 2 (22 () + xaf] (22 ()
_,_/ 2Q 1— 2z, Za Z;
LP | M2
l + Z. X, i
a fa (i) beb (Xb) <+ Subleading power expansion
Z3 of phase space ()
27 22 Xa
Power correction from the expansion of the |k;| — + — - s fa (*) f/J(XD)
regulator. Not there in pure rapidity regularization (1 Z(,)’ Z3

o Combining rapidity divegent factors (1 — z,) ™! we get
1 1
(1—z5)%tm ’ (1—z)3tn

—> power law rapidity divergences!

e They appear in ®() =  The fact that they appear is generic

e They can also be generated by ®(® x A() when

— “4a

e Analogous master formula exists for the soft limit



How to treat power law divergences

Consider rapidity divergent integral /ld £(2)

e Consider ra erge egra z ———

nsider rapidity divergent integr g = z)n

e When g(z) is not known analytically (eg. when it involves PDFs), need to extract pole
as n — 0 without computing the integral.

e For a =1, use standard distributional identity

1 5(1—z2)
TR — +Lo(l—2)+O(m),  Loly)=I[0y)/v]+,

e For a > 1, these distributions need to be generalized to higher-order plus distributions
subtracting higher derivatives as well. For example, for a = 2 one obtains

1 12
(]_ _ Z)2+77 - n

6(1—2)+ L, (1-2)+0m)|,

where the second-order plus function £, (1 — z) acts on a test function g(z) as a double
subtraction.

e Power law divergences generate new PDF derivatives

/ dz, F0a/Z2)(0/2) _ F0a)FO0/20) | 0y

(1 —z5)%tn n



Leading-Logarthmic power corrections

e Compute power corrections in the n-collinear, n-collinear and soft

[imits (soft is scaless for homogeneous regulators)
e Sum together results
e Rapidity divergences cancel between sectors, finite terms add up.
(In rapidity regularization this is trivial since g,(n) = gr(—n))
At Leading Log the result is quite simple. Here a couple of examples:
e Drell Yan production (gg — Vg)

()L
do 2 _
qq—>Vg 50 (Q) x asCr 2 | Q [f 9(x, Xb)] ,

— q
uni

n
4r Q2 g3

TN2Av A2 v
dQ2dvdg: ~ 79

e Gluon fusion Higgs production (gg — Hg)

@)L

g 2
gg—Hg 5LO asCy 2 Q e
dQ2dYdq? Ggg—n(Q) X an Qzl ra [ng(xa)fg(xb) + fomi (%3, Xb)]

e Common factor

£ (xay Xb) = —Xaf! (xa) £ () — i(xa) X6 F! (Xb) + 2%/ (xa) X6/ (Xb)



Next Leading-Logarthmic power corrections

o We computed also the NLL kernels at O(as) for all channels both in
DY and ggH.

e z,, 2, kernels pretty complicated. They involve £, (1 — z,), etc.
e Remainder is g3/ Q2 suppressed

e Describes gt distribution up to 10 GeV

5 . .

<o T T I\Hmu; 10 T [T T

34; pp — H (13 TeV) an 1 >

3, F 99NLOy, ¥ =2 [ 3 10

T [ ! ] o

~ 3 — i 1 - F oo al

> 3: VVVVV iugnonslng~ \ ] = 1055 ——-e1L + ¢

S f o alte v >~ E— full— i L

S 2 e [ — full — ¢, L —

ak 2: \ ] % 106 e = E

o L ] o

= r [ g 3

£ b . ]

z 1: \ B T 107F pp — H (13 TeV)

st . < ggNLOy, Y =2 7

1 E A e T

~ 0 Ll T " " N )

10-1 100 10! 102 10 10 10 10
ar [GeV] qr [GeV]

do dU’LP 2 2
dvdeZ ~ dvagz —aMin q% +C°(Y)+O(qT)
T T



Subleading Power Operators in SCET),

M - GoLLIPEAR HARD - GeLive AR
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(Chang, Stewart, GV) [to appear]



Subleading SCET), Operators

Structure of SCET); at subleading power is much richer than SCET:
e 2 classes of singularities and regularizations: UV and Rapidity (e, 1)

e New non-localities: hard-collinear modes

e Hard-collinear modes mediate interaction of soft and collinear fields (which can’t happen
at LP) = They are crucial at subleading powers

kT

| 7i-coll hard

Q ..... ® M- COLLINEAR HA(Lb~CaL1,H~‘5A/L®
. _ >— - - —-——-—
hard-collinear . v (-: | )‘) S K >t
N ' ' = L
( A ’ )‘) oFF - SHBLL nons !

hard-collinear v
>+
\l’r N
-G INEAR
) - CoLireat o
k (s%, 1, 3) (3%, 1, %)




Hard scattering Operators

e Hard-collinear propagators enhance the power counting of the operators

CN S S
p,%( A pnn- ps AOX

e For gt first non vanishing power correction is at O(\?)

e Therefore, need to consider more operators than in the SCET), case.

Example: Hard scattering emission of a soft quark in gg — Hq

(2 wawn _ Lo .
Ogar ™ ™~ an(wn)ngﬁ (wa)ys (ps)H : n Lo,
00 £
n b (a?&&ﬂ-ﬂﬂit( )<ﬁn
W _ n O () E 2 Ll
O? ~ 0 Salon)g iy (n) [ Put(ps)]| H
7 9990000.9000999¢ 7 < —

0@ £W

o Using these operators we reproduce power correction for gqg channel.



Comparison with FO calculations at Subleading Power

e Various O(as) fully differential fixed order results for perturbative power corrections have
now appeared in the literature:

o SCET, with 2 collinear directions
(7o in color singlet production) [Ebert,Moult,Stewart, Tackmann, GV, Zhu] 1807.10764

o SCET), with 2 collinear directions
(gt in color singlet production) [Ebert,Moult,Stewart, Tackmann, GV, Zhu] 1812.08189

o SCET, with 3 collinear directions
(71 in Higgs production) [Bhattacharya,Moult,Stewart, GV] 1812.06950

e Use them to compare k——0 behavior for Amplitude squared contributions A%) and Phase
Space ®(K), at Leading Power (LP) and subleading power (NLP) in different situations.

Color singlet H + 1 jet
SCET| (To) SCET“ (pT) SCET| (7-1)
ALP (k=) k% 1 k%
1 1 1
ANLP(kf) F F (k*)2
®LP (k) 1 k% 1
NLP ([ — 1
ONLE (k) 1 W ?




Conclusions

e Described new structure of rapidity divergences /1 dz  fi(x/z)
arising at subleading powers x 2z (1—2z)&m)

e Looked at how to implement rapidity regularization at subleading

powers and proposed a new regulator k|2
. /ddkﬁ /ddszun —
purely based on rapidity n-k
:5 T T
S P woHBTY) /"\' E
e Computed full O(as) power correction of § |« ¥ =2 ‘
. . . . . Z 3 — full nonsing. =
gr differential distribution for color S

2
T

singlet production
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qr [GeV]
e Used SCET), operators to reproduce FO result
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