Double differential factorization in τ_{0} and τ_{1}

Laís Schunk
Work in progress with Goutam Das and Frank Tackmann

DESY

SCET

25 March 2019

Introduction

- We want the double differential factorization for τ_{0} and τ_{1} \rightarrow measures 2 consecutive resolved emissions
- Some kinematic regions are already known
- $\tau_{1} \ll \tau_{0} \ll Q$: known with SCET + approach
\rightarrow strongly ordered emissions
Pietrulewicz, Tackmann, Waalewijn 2016
- $\tau_{1} \ll \tau_{0} \sim Q$: only τ_{1} resummation
\rightarrow one hard emission
- $\tau_{1} \sim \tau_{0} \sim Q$: purely fixed-order

\rightarrow two hard emissions
- $\tau_{1} \sim \tau_{0} \ll Q$ is the missing piece in the $\tau_{0} \times \tau_{1}$ space
\rightarrow region with two unordered (but resolved) emissions

Motivation for $\tau_{1} \sim \tau_{0} \ll Q$

- Prototype for factorization beyond strongly ordered regime \rightarrow using N -jettiness as a "simple" resolution variable \rightarrow treatment of unordered emissions is currently unknown \rightarrow relevant to increase accuracy of Parton Showers
- Immediate application: Geneva framework at NNLL' + NNLO \rightarrow Needs full $0 / 1$-jet and $1 / 2$-jet separation
- Jet substructure : understanding cases with multiple observables with no hierarchy between them
\rightarrow Example: C- and D-parameters in the region $D \sim C^{2} \ll 1$
Larkoski, Procita 2019 - See Larkoski's talk later today
\rightarrow Finite N-subjettiness ratios $\tau_{21}=\tau_{2} / \tau_{1}$ and $\tau_{32}=\tau_{3} / \tau_{2}$
Napoletano, Soyez 2018

Notation and Setup

- Because $\tau_{0} \ll Q \rightarrow$ power counting is defined by τ_{0} only

- Definition of observables here

$$
\tau_{0}=\frac{1}{Q} \sum_{i \in \mathrm{event}} \min \left(n_{a} \cdot p_{i}, n_{b} \cdot p_{i}\right), \quad \tau_{1}=\frac{1}{Q} \sum_{i \in \mathrm{event}} \min \left(n_{1} \cdot p_{i}, n_{a} \cdot p_{i}, n_{b} \cdot p_{i}\right)
$$

- Decompose N -jet as

$$
\tau_{N}=\tau_{s, N}+\tau_{a, N}+\tau_{b, N}
$$

Notation and Setup

- Because $\tau_{0} \ll Q \rightarrow$ power counting is defined by τ_{0} only

- Definition of observables here

$$
\tau_{0}=\frac{1}{Q} \sum_{i \in \mathrm{event}} \min \left(n_{a} \cdot p_{i}, n_{b} \cdot p_{i}\right), \quad \tau_{1}=\frac{1}{Q} \sum_{i \in \mathrm{event}} \min \left(n_{1} \cdot p_{i}, n_{a} \cdot p_{i}, n_{b} \cdot p_{i}\right)
$$

- Decompose N -jet as

$$
\tau_{N}=\tau_{s, N}+\tau_{a, N}+\tau_{b, N}
$$

How to write τ_{1} with these modes?

"Inspiration" : Fully Recursive N-jettiness

- Fully recursive $\tau_{0}^{F R}$ is given by

Step 1 Compute τ_{1}, with the resp. axis n_{1}
Step 2 Emissions divided in subgroups - depends on which axis the have "chosen"
Step 3 Add contribution

$$
\Delta^{F R}=\left|\sum \vec{p}\right|-\left|\sum p^{z}\right|
$$

- Corollary: we can always write $\tau_{0}^{F R}=\tau_{1}+\Delta^{F R}$

Definition of τ_{0} used for $p p$ collision in GENEVA (Alioli and al. 2015)

"Inspiration" : Fully Recursive N-jettiness

- Fully recursive $\tau_{0}^{F R}$ is given by

Step 1 Compute τ_{1}, with the resp. axis n_{1}
Step 2 Emissions divided in subgroups - depends on which axis the have "chosen"
Step 3 Add contribution

$$
\Delta^{F R}=\left|\sum \vec{p}\right|-\left|\sum p^{z}\right|
$$

- Corollary: we can always write $\tau_{0}^{F R}=\tau_{1}+\Delta^{F R}$

Definition of τ_{0} used for $p p$ collision in GENEVA (Alioli and al. 2015)

"Inspiration" : Fully Recursive N-jettiness

- Fully recursive $\tau_{0}^{F R}$ is given by

Step 1 Compute τ_{1}, with the resp. axis n_{1}
Step 2 Emissions divided in subgroups - depends on which axis the have "chosen"
Step 3 Add contribution

$$
\Delta^{F R}=\left|\sum \vec{p}\right|-\left|\sum p^{z}\right|
$$

- Corollary: we can always write $\tau_{0}^{F R}=\tau_{1}+\Delta^{F R}$

Definition of τ_{0} used for $p p$ collision in GENEVA (Alioli and al. 2015)

1-jettiness axis choice

- We select the axis n_{1} that minimizes the 1 -jettiness
- Possibilities for the axis choice are \rightarrow in the a-collinear sector

1-jettiness axis choice

- We select the axis n_{1} that minimizes the 1 -jettiness
- Possibilities for the axis choice are \rightarrow in the b-collinear sector

1-jettiness axis choice

- We select the axis n_{1} that minimizes the 1 -jettiness
- Possibilities for the axis choice are \rightarrow none of the above

1-jettiness axis choice

- We select the axis n_{1} that minimizes the 1 -jettiness
- Possibilities for the axis choice are \rightarrow none of the above

- From the power-counting point of view

$$
\left\{n_{a}\right\} \equiv\left(1, \frac{\overrightarrow{p_{a}}}{\left|\overrightarrow{p_{a}}\right|}\right), \quad p_{a} \sim\left(p_{a}^{+}, p_{a}^{-}, p_{a \perp}\right) \sim Q^{2}\left(\lambda^{2}, 1, \lambda\right)
$$

Factorization

- Decompose axis minimization as

$$
\begin{aligned}
& \tau_{1}=\min \left[\min _{n_{1}=\left\{n_{a}\right\}}\left(\sum_{i \in \text { event }} \min \left(n_{a} \cdot p_{i}, n_{b} \cdot p_{i}, n_{1} \cdot p_{i}\right)\right),\right. \\
& \min _{n_{1}=\left\{n_{b}\right\}}\left(\sum_{i \in \text { event }} \min \left(n_{a} \cdot p_{i}, n_{b} \cdot p_{i}, n_{1} \cdot p_{i}\right)\right), \\
& \left.\min _{n_{1} \neq\left\{n_{a}\right\},\left\{n_{b}\right\}}\left(\sum_{i \in \text { event }} \min \left(n_{a} \cdot p_{i}, n_{b} \cdot p_{i}, n_{1} \cdot p_{i}\right)\right)\right]
\end{aligned}
$$

- Divide and conquer \rightarrow prove factorization for each piece

Factorization

- Decompose axis minimization as

$$
\begin{aligned}
\tau_{1}=\min & \min _{n_{1}=\left\{n_{a}\right\}}\left(\sum_{i \in \text { event }} \min \left(n_{a} \cdot p_{i}, n_{b} \cdot p_{i}, n_{1} \cdot p_{i}\right)\right) \\
& \min _{n_{1}=\left\{n_{b}\right\}}\left(\sum_{i \in \text { event }} \min \left(n_{a} \cdot p_{i}, n_{b} \cdot p_{i}, n_{1} \cdot p_{i}\right)\right) \\
& \left.\min _{n_{1} \neq\left\{n_{a}\right\},\left\{n_{b}\right\}}\left(\sum_{i \in \text { event }} \min \left(n_{a} \cdot p_{i}, n_{b} \cdot p_{i}, n_{1} \cdot p_{i}\right)\right)\right]
\end{aligned}
$$

- Divide and conquer \rightarrow prove factorization for each piece

Start with $n_{1}=\left\{n_{a}\right\}$ case

Factorization for $n_{1}=\left\{n_{a}\right\}$

- Reminder: we can write $\tau_{N}=\tau_{s, N}+\tau_{a, N}+\tau_{b, N}$
(1) For a-collinear piece

$$
\tau_{1, a}=\min \left(n_{a} \cdot b_{a}, n_{b} \cdot b_{a}, n_{1} \cdot b_{a}\right)=b_{a}^{+}-\delta \tau_{a}
$$

(2) For b-collinear piece

$$
\tau_{1, b}=\min \left(n_{a} \cdot b_{b}, n_{b} \cdot b_{b}, n_{1} \cdot b_{b}\right)=b_{b}^{+}
$$

(3) For soft piece:

$$
\begin{aligned}
\left\{n_{a}\right\}=n_{a}+\lambda^{2} \vec{n} & \rightarrow n_{1} \cdot k_{s}=n_{a} \cdot k_{s}\left(1+\mathcal{O}\left(\lambda^{2}\right)\right) \\
\tau_{1, s} & =\min \left(n_{a} \cdot k_{s}, n_{b} \cdot k_{s}, n_{1} \cdot k_{s}\right)=k_{s}
\end{aligned}
$$

If $n_{1} \in\left\{n_{a}\right\}$, then $\tau_{1}=\tau_{0}-\delta \tau_{a}$
Only emissions in the a-collinear sector matter

Factorization for $n_{1} \neq\left\{n_{a}\right\},\left\{n_{b}\right\}$

- Suppose $n_{1} \neq\left\{n_{a}\right\},\left\{n_{b}\right\}$
(1) Collinear pieces \rightarrow same reasoning as before

$$
\tau_{1, a}=b_{a}^{+}, \quad \tau_{1, b}=b_{b}^{+}
$$

(2) Soft emissions

$$
\tau_{1, s}=\min \left(n_{a} \cdot k_{s}, n_{b} \cdot k_{s}, n_{1} \cdot k_{s}\right)=k_{s}-\delta \tau_{s}
$$

Factorization for $n_{1} \neq\left\{n_{a}\right\},\left\{n_{b}\right\}$

- Suppose $n_{1} \neq\left\{n_{a}\right\},\left\{n_{b}\right\}$
(1) Collinear pieces \rightarrow same reasoning as before

$$
\tau_{1, a}=b_{a}^{+}, \quad \tau_{1, b}=b_{b}^{+}
$$

(2) Soft emissions

$$
\tau_{1, s}=\min \left(n_{a} \cdot k_{s}, n_{b} \cdot k_{s}, n_{1} \cdot k_{s}\right)=k_{s}-\delta \tau_{s}
$$

$$
\begin{array}{rlrl}
\text { If } n_{1} & =\left\{n_{a}\right\}, & & \text { then } \tau_{1}=\tau_{0}-\delta \tau_{a} \\
\text { If } n_{1}=\left\{n_{b}\right\}, & & \text { then } \tau_{1}=\tau_{0}-\delta \tau_{b} \\
\text { If } n_{1} & \neq\left\{n_{a}\right\},\left\{n_{b}\right\}, & & \text { then } \tau_{1}=\tau_{0}-\delta \tau_{s}
\end{array}
$$

Axis in a sector implies $\delta \tau_{i}$ in the same sector

Factorization

- Write the 1 -jettiness like

$$
\begin{aligned}
\tau_{1}=\min [& b_{b}^{+}+k_{s}+\min _{n_{1}=\left\{n_{a}\right\}}\left(b_{a}^{+}-\delta \tau_{a}\right), \\
& b_{a}^{+}+k_{s}+\min _{n_{1}=\left\{n_{b}\right\}}\left(b_{b}^{+}-\delta \tau_{b}\right), \\
& \left.b_{a}^{+}+b_{b}^{+}+\min _{n_{1} \neq\left\{n_{a}\right\},\left\{n_{b}\right\}}\left(k_{s}-\delta \tau_{s}\right)\right]
\end{aligned}
$$

Factorization

- Write the 1 -jettiness like

$$
\begin{aligned}
\tau_{1}=\min [& \tau_{0}+\min _{n_{1}=\left\{n_{a}\right\}}\left(-\delta \tau_{a}\right) \\
& \tau_{0}+\min _{n_{1}=\left\{n_{b}\right\}}\left(-\delta \tau_{b}\right) \\
& \left.\tau_{0}+\min _{n_{1} \neq\left\{n_{a}\right\},\left\{n_{b}\right\}}\left(-\delta \tau_{s}\right)\right]
\end{aligned}
$$

Factorization

- Write the 1 -jettiness like

$$
\begin{aligned}
& \tau_{1}=\tau_{0}-\max {\left[\max _{n_{1}=\left\{n_{a}\right\}}\left(\delta \tau_{a}\right),\right.} \\
& \max _{n_{1}=\left\{n_{b}\right\}}\left(\delta \tau_{b}\right), \\
&\left.\max _{n_{1} \neq\left\{n_{a}\right\},\left\{n_{b}\right\}}\left(\delta \tau_{s}\right)\right]
\end{aligned}
$$

Factorization

- Write the 1 -jettiness like

$$
\tau_{1}=\tau_{0}-\max \left[\Delta_{a}, \Delta_{b}, \Delta_{s}\right]
$$

Complete separation of contributions from different modes

Factorization

- Write the 1 -jettiness like

$$
\tau_{1}=\tau_{0}-\max \left[\Delta_{a}, \Delta_{b}, \Delta_{s}\right]
$$

Complete separation of contributions from different modes

- The rest of factorization is similar to pure τ_{0} case
- Need new Beam and Soft functions that depend on Δ_{i} measurements

$$
\begin{aligned}
\frac{d^{2} \sigma}{d \tau_{0} d \tau_{1}}=\sigma_{0} & \int d b_{a}^{+} d b_{b}^{+} d \Delta_{a} d \Delta_{b} d \Delta_{s} B_{i}^{(a)}\left(b_{a}^{+}, \Delta_{a}, x_{a}\right) B_{j}^{(b)}\left(b_{b}^{+}, \Delta_{b}, x_{b}\right) \\
& \times S\left(\tau_{0}-b_{a}^{+}-b_{b}^{+}, \Delta_{s}\right) \delta\left(\tau_{1}-\tau_{0}+\max \left(\Delta_{i}\right)\right)
\end{aligned}
$$

Features

$$
\begin{aligned}
\frac{d^{2} \sigma}{d \tau_{0} d \tau_{1}}=\sigma_{0} & \int d b_{a}^{+} d b_{b}^{+} d \Delta_{a} d \Delta_{b} d \Delta_{s} B_{i}^{(a)}\left(b_{a}^{+}, \Delta_{a}, x_{a}\right) B_{j}^{(b)}\left(b_{b}^{+}, \Delta_{b}, x_{b}\right) \\
& \times S\left(\tau_{0}-b_{a}^{+}-b_{b}^{+}, \Delta_{s}\right) \delta\left(\tau_{1}-\tau_{0}+\max \left(\Delta_{i}\right)\right)
\end{aligned}
$$

- We must recover τ_{0} SCET factorization

$$
\int d \tau_{1} \frac{d^{2} \sigma}{d \tau_{0} d \tau_{1}}=\frac{d \sigma}{d \tau_{0}}
$$

- Integration over $\delta\left(\tau_{1}-\ldots\right) \rightarrow$ integration over Δ_{i} measurements
- Implies condition on Beam and Soft functions

$$
\begin{aligned}
\int d \Delta_{a} B_{i}^{(a)}\left(b_{a}^{+}, \Delta_{a}, x_{a}\right) & =B_{i}^{(a)}\left(b_{a}^{+}, x_{a}\right) \\
\int d \Delta_{s} S\left(k_{s}, \Delta_{s}\right) & =S\left(k_{s}\right)
\end{aligned}
$$

Features

- At $\operatorname{NLO} \mathcal{O}\left(\alpha_{s}\right)$, we know that there is no 1 -jettiness contribution

$$
\frac{d^{2} \sigma^{N L O}}{d \tau_{0} d \tau_{1}}=\frac{d \sigma}{d \tau_{0}} \delta\left(\tau_{1}\right)
$$

- The 1-loop Beam and Soft functions are given by

$$
\begin{aligned}
B_{i}^{1-\text { loop }}\left(b_{a}^{+}, x_{a}, \Delta_{a}\right) & =B_{i}^{1-\text { loop }}\left(b_{a}^{+}, x_{a}\right) \delta\left(\Delta_{a}-b_{a}\right) \\
S^{1-\operatorname{loop}}\left(k_{s}, \Delta_{s}\right) & =S^{1 \text {-loop }}\left(k_{s}\right) \delta\left(\Delta_{s}-k_{s}\right)
\end{aligned}
$$

- Auxiliary measurement $\delta\left(\tau_{1}\right)$ does not change structure of RGEs \rightarrow resummation up to NLL' is unchanged

Features

- First unkown order is at $\mathcal{O}\left(\alpha_{s}^{2}\right) \rightarrow$ needs 2-loop functions Work in progress
- Cross-terms are known

$$
\begin{aligned}
\frac{d \sigma}{d \tau_{0} d \tau_{1}} & =\sigma_{0} \int d b_{a}^{+} d b_{b}^{+} d k_{s} B_{i}^{1-\text { loop }}\left(b_{a}^{+}, x_{a}\right) B_{i}^{\text {tree }}\left(b_{b}^{+}, x_{b}\right) \\
& \times S^{1-\text { loop }}\left(k_{s}\right) \delta\left(\tau_{0}-b_{a}^{+}-b_{b}^{+}-k_{s}\right) \delta\left(\tau_{1}-\min \left(b_{a}^{+}, k_{s}\right)\right) \\
& =\sigma_{0} \frac{f_{j}\left(x_{b}\right)}{x_{b} E_{C M}^{2}} \Theta\left(\frac{\tau_{0}}{2}-\tau_{1}\right) \\
& \times\left[B_{i}^{1-\text { loop }}\left(\tau_{1}, x_{a}\right) S^{1-\text { loop }}\left(\tau_{0}-\tau_{1}\right)+B_{i}^{1-\operatorname{loop}}\left(\tau_{0}-\tau_{1}, x_{a}\right) S^{1-10 o p}\left(\tau_{1}\right)\right] .
\end{aligned}
$$

- We recover the $\tau_{1}<\tau_{0} / 2$ limit
\rightarrow intrinsic property of the $\tau_{1} \sim \tau_{0}$ regime

Matching : reminder for large- τ_{0}

$$
\tau_{1} \ll \tau_{0} \sim Q \rightarrow \tau_{1} \sim \tau_{0} \sim Q
$$

Match τ_{1} factorization with fixed-order calculation

- For a given τ_{0} :

$$
d \sigma^{m a t c h}=d \sigma^{(1)}+\left(d \sigma^{F O}-\left[d \sigma^{(1)}\right]_{F O}\right)
$$

- With $\left[d \sigma^{(1)}\right]_{F O}$ such that
- $\left[d \sigma^{(1)}\right]_{F O} \rightarrow d \sigma^{(1)}$ when $\tau_{1} \sim \tau_{0}$
- $\left[d \sigma^{(1)}\right]_{F O} \rightarrow d \sigma^{F O}$ when $\tau_{1} \ll \tau_{0}$
- Set scales to turn off resummation

$$
\mu_{(1)} \rightarrow \mu_{F O}
$$

Matching with SCET+

$$
\tau_{1} \ll \tau_{0} \ll Q \rightarrow \tau_{1} \sim \tau_{0} \ll Q
$$

Match our factorization with existing SCET+ factorization

- For a given τ_{0} :

$$
d \sigma^{\text {match }}=d \sigma^{+}+\left(d \sigma^{(0,1)}-\left[d \sigma^{+}\right]_{\text {"FO"" }}\right)
$$

- "FO" has to include resummation in τ_{0}
- With $\left[d \sigma^{+}\right]$" $F O$ " such that
- $\left[d \sigma^{+}\right]{ }_{\text {" }}{ }^{\circ O} \rightarrow d \sigma^{+}$when $\tau_{1} \sim \tau_{0}$
- $\left[d \sigma^{+}{ }^{\text {" }}{ }{ }^{\circ} O^{\prime \prime} \rightarrow d \sigma^{(0,1)}\right.$ when $\tau_{1} \ll \tau_{0}$
- Set scales to "turn off" $\log \left(\tau_{1} / \tau_{0}\right)$
 resummation $\mu_{+} \rightarrow \mu_{(0,1)}$

Work in progress

Conclusion

Recap

- Presented the factorization of the double differential $\frac{d \sigma}{d \tau_{0} d \tau_{1}}$ in the region $\tau_{0} \sim \tau_{1}$
- Completes the description of the two resolved emissions phase space \rightarrow including unordered emissions

Conclusion

Recap

- Presented the factorization of the double differential $\frac{d \sigma}{d \tau_{0} d \tau_{1}}$ in the region $\tau_{0} \sim \tau_{1}$
- Completes the description of the two resolved emissions phase space \rightarrow including unordered emissions

Future

- Fully understand details of matching to SCET+
- Calculate soft $S\left(k_{s}, \Delta_{s}\right)$ and beam $B\left(x_{i}, b_{i}, \Delta_{i}\right)$ functions at $\mathcal{O}\left(\alpha_{s}^{2}\right)$

