Double differential factorization in τ_0 and τ_1

Laís Schunk Work in progress with Goutam Das and Frank Tackmann

DESY

SCET 25 March 2019

Laís Schunk Work in progress with Goutam I

Factorization in au_0 and au_1

SCET 2019 1 / 16

Introduction

- We want the double differential factorization for τ_0 and $\tau_1 \rightarrow$ measures 2 consecutive resolved emissions
- Some kinematic regions are already known
 - $\tau_1 \ll \tau_0 \ll Q$: known with SCET+ approach \rightarrow strongly ordered emissions Pietrulewicz, Tackmann , Waalewijn 2016
 - $au_1 \ll au_0 \sim Q$: only au_1 resummation

 \rightarrow one hard emission

• $\tau_1 \sim \tau_0 \sim Q$: purely fixed-order \rightarrow two hard emissions

• $\tau_1 \sim \tau_0 \ll Q$ is the missing piece in the $\tau_0 \times \tau_1$ space \rightarrow region with two unordered (but resolved) emissions

- Prototype for factorization beyond strongly ordered regime
 - \rightarrow using N-jettiness as a "simple" resolution variable
 - \rightarrow treatment of unordered emissions is currently unknown
 - \rightarrow relevant to increase accuracy of Parton Showers
- Immediate application: Geneva framework at NNLL' + NNLO \rightarrow Needs full 0/1-jet and 1/2-jet separation
- Jet substructure : understanding cases with multiple observables with no hierarchy between them \rightarrow Example : C- and D-parameters in the region $D \sim C^2 \ll 1$ Larkoski, Procita 2019 – See Larkoski's talk later today \rightarrow Finite N-subjettiness ratios $\tau_{21} = \tau_2/\tau_1$ and $\tau_{32} = \tau_3/\tau_2$ Napoletano, Soyez 2018

Notation and Setup

• Because $au_0 \ll Q
ightarrow$ power counting is defined by au_0 only

• Definition of observables here

$$\tau_0 = \frac{1}{Q} \sum_{i \in \text{event}} \min\left(n_a \cdot p_i, n_b \cdot p_i\right), \quad \tau_1 = \frac{1}{Q} \sum_{i \in \text{event}} \min\left(n_1 \cdot p_i, n_a \cdot p_i, n_b \cdot p_i\right)$$

• Decompose N-jet as

$$\tau_{N} = \tau_{s,N} + \tau_{a,N} + \tau_{b,N}$$

Notation and Setup

• Because $au_0 \ll Q
ightarrow$ power counting is defined by au_0 only

• Definition of observables here

$$\tau_0 = \frac{1}{Q} \sum_{i \in \text{event}} \min\left(n_a \cdot p_i, n_b \cdot p_i\right), \quad \tau_1 = \frac{1}{Q} \sum_{i \in \text{event}} \min\left(n_1 \cdot p_i, n_a \cdot p_i, n_b \cdot p_i\right)$$

• Decompose N-jet as

$$\tau_{N} = \tau_{s,N} + \tau_{a,N} + \tau_{b,N}$$

How to write τ_1 with these modes?

Laís Schunk Work in progress with Goutam I

Factorization in au_0 and au_1

"Inspiration" : Fully Recursive N-jettiness

- Fully recursive τ_0^{FR} is given by
 - Step 1 Compute τ_1 , with the resp. axis n_1
 - Step 2 Emissions divided in subgroups – depends on which axis the have "chosen"

Step 3 Add contribution

$$\Delta^{\mathsf{FR}} = \left|\sum \vec{p}\right| - \left|\sum p^{z}\right|$$

 $\bullet~$ Corollary: we can always write $\tau_0^{FR}=\tau_1+\Delta^{FR}$

Definition of τ_0 used for *pp* collision in GENEVA (Alioli and al. 2015)

"Inspiration" : Fully Recursive N-jettiness

- Fully recursive τ_0^{FR} is given by
 - Step 1 Compute τ_1 , with the resp. axis n_1
 - Step 2 Emissions divided in subgroups – depends on which axis the have "chosen"

Step 3 Add contribution

$$\Delta^{\mathsf{FR}} = \left|\sum \vec{p}\right| - \left|\sum p^z\right|$$

 $\bullet~$ Corollary: we can always write $\tau_0^{FR}=\tau_1+\Delta^{FR}$

Definition of τ_0 used for *pp* collision in GENEVA (Alioli and al. 2015)

"Inspiration" : Fully Recursive N-jettiness

- Fully recursive τ_0^{FR} is given by
 - Step 1 Compute τ_1 , with the resp. axis n_1
 - Step 2 Emissions divided in subgroups – depends on which axis the have "chosen"

Step 3 Add contribution

$$\Delta^{\mathsf{FR}} = \left|\sum \vec{p}\right| - \left|\sum p^z\right|$$

 $\bullet~$ Corollary: we can always write $\tau_0^{FR}=\tau_1+\Delta^{FR}$

Definition of τ_0 used for *pp* collision in GENEVA (Alioli and al. 2015)

- We select the axis n_1 that minimizes the 1-jettiness
- ullet Possibilities for the axis choice are \rightarrow in the a-collinear sector

- We select the axis n_1 that minimizes the 1-jettiness
- ullet Possibilities for the axis choice are \rightarrow in the b-collinear sector

- We select the axis n_1 that minimizes the 1-jettiness
- Possibilities for the axis choice are ightarrow none of the above

- We select the axis n_1 that minimizes the 1-jettiness
- Possibilities for the axis choice are ightarrow none of the above

• From the power-counting point of view

$$\{n_a\} \equiv \left(1, \frac{\vec{p_a}}{|\vec{p_a}|}\right), \qquad p_a \sim (p_a^+, p_a^-, p_{a\perp}) \sim Q^2(\lambda^2, 1, \lambda)$$

• Decompose axis minimization as

$$\tau_{1} = \min\left[\min_{n_{1}=\{n_{a}\}}\left(\sum_{i\in event}\min\left(n_{a}\cdot p_{i}, n_{b}\cdot p_{i}, n_{1}\cdot p_{i}\right)\right),$$
$$\min_{n_{1}=\{n_{b}\}}\left(\sum_{i\in event}\min\left(n_{a}\cdot p_{i}, n_{b}\cdot p_{i}, n_{1}\cdot p_{i}\right)\right),$$
$$\min_{n_{1}\neq\{n_{a}\},\{n_{b}\}}\left(\sum_{i\in event}\min\left(n_{a}\cdot p_{i}, n_{b}\cdot p_{i}, n_{1}\cdot p_{i}\right)\right)\right]$$

 \bullet Divide and conquer \rightarrow prove factorization for each piece

• Decompose axis minimization as

$$\begin{aligned} \tau_1 &= \min\left[\min_{n_1 \in \{n_a\}} \left(\sum_{i \in event} \min\left(n_a \cdot p_i, n_b \cdot p_i, n_1 \cdot p_i\right)\right), \\ &\min_{n_1 \in \{n_b\}} \left(\sum_{i \in event} \min\left(n_a \cdot p_i, n_b \cdot p_i, n_1 \cdot p_i\right)\right), \\ &\min_{n_1 \neq \{n_a\}, \{n_b\}} \left(\sum_{i \in event} \min\left(n_a \cdot p_i, n_b \cdot p_i, n_1 \cdot p_i\right)\right)\right] \end{aligned}$$

 \bullet Divide and conquer \rightarrow prove factorization for each piece

Start with $n_1 = \{n_a\}$ case

- **→ →** →

Factorization for $n_1 = \{n_a\}$

• Reminder : we can write $\tau_N = \tau_{s,N} + \tau_{a,N} + \tau_{b,N}$

For a-collinear piece

$$\tau_{1,a} = \min\left(n_a \cdot b_a, n_b \cdot b_a, n_1 \cdot b_a\right) = b_a^+ - \delta \tau_a$$

Por b-collinear piece

$$\tau_{1,b} = \min\left(n_a \cdot b_b, n_b \cdot b_b, n_1 \cdot b_b\right) = b_b^+$$

So For soft piece:

$$\{n_a\} = n_a + \lambda^2 \vec{n} \rightarrow n_1 \cdot k_s = n_a \cdot k_s (1 + \mathcal{O}(\lambda^2))$$

$$\tau_{1,s} = \min(n_a \cdot k_s, n_b \cdot k_s, n_1 \cdot k_s) = k_s$$

If $n_1 \in \{n_a\}$, then $\tau_1 = \tau_0 - \delta \tau_a$ Only emissions in the a-collinear sector matter

(日)

SCET 2019

8 / 16

Laís Schunk Work in progress with Goutam I

Factorization in au_0 and au_1

Factorization for $n_1 \neq \{n_a\}, \{n_b\}$

Suppose n₁ ≠ {n_a}, {n_b}
Collinear pieces → same reasoning as before

$$\tau_{1,a} = \boldsymbol{b}_a^+, \qquad \tau_{1,b} = \boldsymbol{b}_b^+$$

Soft emissions

$$\tau_{1,s} = \min\left(n_a \cdot k_s, n_b \cdot k_s, n_1 \cdot k_s\right) = k_s - \delta \tau_s$$

Factorization for $n_1 \neq \{n_a\}, \{n_b\}$

Suppose n₁ ≠ {n_a}, {n_b}
Collinear pieces → same reasoning as before

$$\tau_{1,a} = b_a^+, \qquad \tau_{1,b} = b_b^+$$

Soft emissions

$$\tau_{1,s} = \min\left(n_a \cdot k_s, n_b \cdot k_s, n_1 \cdot k_s\right) = k_s - \delta \tau_s$$

$$\begin{array}{ll} \text{If } n_1 = \{n_a\}, & \text{then } \tau_1 = \tau_0 - \delta \tau_a \\ \text{If } n_1 = \{n_b\}, & \text{then } \tau_1 = \tau_0 - \delta \tau_b \\ \text{If } n_1 \neq \{n_a\}, \{n_b\}, & \text{then } \tau_1 = \tau_0 - \delta \tau_s \end{array}$$

Axis in a sector implies $\delta \tau_i$ in the same sector

$$\tau_{1} = \min \left[b_{b}^{+} + k_{s} + \min_{n_{1} = \{n_{a}\}} \left(b_{a}^{+} - \delta \tau_{a} \right), \\ b_{a}^{+} + k_{s} + \min_{n_{1} = \{n_{b}\}} \left(b_{b}^{+} - \delta \tau_{b} \right), \\ b_{a}^{+} + b_{b}^{+} + \min_{n_{1} \neq \{n_{a}\}, \{n_{b}\}} \left(k_{s} - \delta \tau_{s} \right) \right]$$

$$\tau_{1} = \min \left[\tau_{0} + \min_{n_{1} = \{n_{a}\}} \left(-\delta \tau_{a} \right), \\ \tau_{0} + \min_{n_{1} = \{n_{b}\}} \left(-\delta \tau_{b} \right), \\ \tau_{0} + \min_{n_{1} \neq \{n_{a}\}, \{n_{b}\}} \left(-\delta \tau_{s} \right) \right]$$

$$\tau_{1} = \tau_{0} - \max\left[\max_{n_{1} = \{n_{a}\}} (\delta\tau_{a}), \\ \max_{n_{1} = \{n_{b}\}} (\delta\tau_{b}), \\ \max_{n_{1} \neq \{n_{a}\}, \{n_{b}\}} (\delta\tau_{s})\right]$$

★ ∃ ►

$$\tau_1 = \tau_0 - \max\left[\Delta_a, \Delta_b, \Delta_s\right]$$

Complete separation of contributions from different modes

$$\tau_1 = \tau_0 - \max\left[\Delta_a, \Delta_b, \Delta_s\right]$$

Complete separation of contributions from different modes

- The rest of factorization is similar to pure τ_0 case
- Need new Beam and Soft functions that depend on Δ_i measurements

$$\frac{d^2\sigma}{d\tau_0 d\tau_1} = \sigma_0 \int db_a^+ db_b^+ d\Delta_a d\Delta_b d\Delta_s B_i^{(a)}(b_a^+, \Delta_a, x_a) B_j^{(b)}(b_b^+, \Delta_b, x_b) \\ \times \frac{S(\tau_0 - b_a^+ - b_b^+, \Delta_s)}{\delta(\tau_1 - \tau_0 + \max(\Delta_i))} \delta(\tau_1 - \tau_0 + \max(\Delta_i))$$

Features

$$\frac{d^2\sigma}{d\tau_0 d\tau_1} = \sigma_0 \int db_a^+ db_b^+ d\Delta_a d\Delta_b d\Delta_s B_i^{(a)}(b_a^+, \Delta_a, x_a) B_j^{(b)}(b_b^+, \Delta_b, x_b) \\ \times \frac{S(\tau_0 - b_a^+ - b_b^+, \Delta_s)}{\delta(\tau_1 - \tau_0 + \max(\Delta_i))} \delta(\tau_1 - \tau_0 + \max(\Delta_i))$$

• We must recover τ_0 SCET factorization

$$\int d\tau_1 \frac{d^2\sigma}{d\tau_0 d\tau_1} = \frac{d\sigma}{d\tau_0}$$

- Integration over $\delta(au_1 \dots)
 ightarrow$ integration over Δ_i measurements
- Implies condition on Beam and Soft functions

$$\int d\Delta_a B_i^{(a)}(b_a^+, \Delta_a, x_a) = B_i^{(a)}(b_a^+, x_a)$$
$$\int d\Delta_s S(k_s, \Delta_s) = S(k_s)$$

• At NLO $\mathcal{O}(\alpha_s)$, we know that there is no 1-jettiness contribution

$$\frac{d^2\sigma^{NLO}}{d\tau_0 d\tau_1} = \frac{d\sigma}{d\tau_0}\delta(\tau_1)$$

• The 1-loop Beam and Soft functions are given by

$$B_i^{1-\text{loop}}(b_a^+, x_a, \Delta_a) = B_i^{1-\text{loop}}(b_a^+, x_a)\delta(\Delta_a - b_a)$$

$$S^{1-\text{loop}}(k_s, \Delta_s) = S^{1-\text{loop}}(k_s)\delta(\Delta_s - k_s)$$

• Auxiliary measurement $\delta(\tau_1)$ does not change structure of RGEs \rightarrow resummation up to NLL' is unchanged

Features

- First unkown order is at $\mathcal{O}(\alpha_s^2) \to$ needs 2-loop functions Work in progress
- Cross-terms are known

$$\begin{aligned} \frac{d\sigma}{d\tau_{0}d\tau_{1}} &= \sigma_{0}\int db_{a}^{+} db_{b}^{+} dk_{s} \ B_{i}^{1-loop}(b_{a}^{+}, x_{a})B_{i}^{tree}(b_{b}^{+}, x_{b}) \\ &\times \ S^{1-loop}(k_{s})\delta(\tau_{0} - b_{a}^{+} - b_{b}^{+} - k_{s})\delta(\tau_{1} - \min(b_{a}^{+}, k_{s})) \\ &= \sigma_{0}\frac{f_{j}(x_{b})}{x_{b}E_{CM}^{2}}\Theta\left(\frac{\tau_{0}}{2} - \tau_{1}\right) \\ &\times \ \left[B_{i}^{1-loop}(\tau_{1}, x_{a})S^{1-loop}(\tau_{0} - \tau_{1}) + B_{i}^{1-loop}(\tau_{0} - \tau_{1}, x_{a})S^{1-loop}(\tau_{1})\right] \end{aligned}$$

• We recover the
$$\tau_1 < \tau_0/2$$
 limit
 \rightarrow intrinsic property of the $\tau_1 \sim \tau_0$ regime

Matching : reminder for large- τ_0

 $au_1 \ll au_0 \sim Q \rightarrow au_1 \sim au_0 \sim Q$ Match au_1 factorization with fixed-order calculation

• For a given τ_0 :

$$d\sigma^{match} = d\sigma^{(1)} + \left(d\sigma^{FO} - \left[d\sigma^{(1)} \right]_{FO} \right)$$

• With $[d\sigma^{(1)}]_{FO}$ such that • $[d\sigma^{(1)}]_{FO} \rightarrow d\sigma^{(1)}$ when $\tau_1 \sim \tau_0$ • $[d\sigma^{(1)}]_{FO} \rightarrow d\sigma^{FO}$ when $\tau_1 \ll \tau_0$ • Set scales to turn off resummation

 $\mu_{(1)} \rightarrow \mu_{FO}$

Matching with SCET+

$au_1 \ll au_0 \ll Q \to au_1 \sim au_0 \ll Q$ Match our factorization with existing SCET+ factorization

• For a given τ_0 :

1

$$d\sigma^{match} = d\sigma^+ + \left(d\sigma^{(0,1)} - \left[d\sigma^+
ight]_{"FO"}
ight)$$

- "FO" has to include resummation in $\tau_{\rm 0}$
- With $[d\sigma^+]_{"FO"}$ such that
 - $[d\sigma^+]_{"FO"} \rightarrow d\sigma^+$ when $\tau_1 \sim \tau_0$
 - $[d\sigma^+]_{"FO"}^{"} \rightarrow d\sigma^{(0,1)}$ when $\tau_1 \ll \tau_0$
- Set scales to "turn off" $\log(\tau_1/\tau_0)$ resummation $\mu_+ \to \mu_{(0,1)}$

Work in progress

Conclusion

Recap

- Presented the factorization of the double differential $\frac{d\sigma}{d\tau_0 d\tau_1}$ in the region $\tau_0 \sim \tau_1$
- Completes the description of the two resolved emissions phase space
 → including unordered emissions

Conclusion

Recap

- Presented the factorization of the double differential $\frac{d\sigma}{d\tau_0 d\tau_1}$ in the region $\tau_0 \sim \tau_1$
- Completes the description of the two resolved emissions phase space
 → including unordered emissions

Future

- Fully understand details of matching to SCET+
- Calculate soft $S(k_s, \Delta_s)$ and beam $B(x_i, b_i, \Delta_i)$ functions at $\mathcal{O}(\alpha_s^2)$