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Introduction

We want the double differential factorization for τ0 and τ1

→ measures 2 consecutive resolved emissions

Some kinematic regions are already
known

τ1 � τ0 � Q : known with
SCET+ approach
→ strongly ordered emissions
Pietrulewicz, Tackmann , Waalewijn

2016

τ1 � τ0 ∼ Q : only τ1

resummation
→ one hard emission
τ1 ∼ τ0 ∼ Q : purely fixed-order
→ two hard emissions

τ1

τ0
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τ1~τ0≪Q 

τ1~τ0~Q 

τ1≪τ0~Q 
τ1≪τ0≪Q 

τ1 ∼ τ0 � Q is the missing piece in the τ0 × τ1 space
→ region with two unordered (but resolved) emissions
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Motivation for τ1 ∼ τ0 � Q

Prototype for factorization beyond strongly ordered regime
→ using N-jettiness as a “simple” resolution variable
→ treatment of unordered emissions is currently unknown
→ relevant to increase accuracy of Parton Showers

Immediate application: Geneva framework at NNLL’ + NNLO
→ Needs full 0/1-jet and 1/2-jet separation

Jet substructure : understanding cases with multiple observables with
no hierarchy between them
→ Example : C- and D-parameters in the region D ∼ C 2 � 1
Larkoski, Procita 2019 – See Larkoski’s talk later today

→Finite N-subjettiness ratios τ21 = τ2/τ1 and τ32 = τ3/τ2

Napoletano, Soyez 2018
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Notation and Setup

Because τ0 � Q → power counting is defined by τ0 only

na nb

Soft

a-collinear b-collinear

Definition of observables here

τ0 =
1

Q

∑
i∈event

min (na · pi , nb · pi ) , τ1 =
1

Q

∑
i∈event

min (n1 · pi , na · pi , nb · pi )

Decompose N-jet as

τN = τs,N + τa,N + τb,N

How to write τ1 with these modes?
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“Inspiration” : Fully Recursive N-jettiness

Fully recursive τFR0 is given by

Step 1 Compute τ1, with the
resp. axis n1

Step 2 Emissions divided in
subgroups – depends
on which axis the have
“chosen”

Step 3 Add contribution

∆FR =
∣∣∣∑~p

∣∣∣− ∣∣∣∑ pz
∣∣∣

na

n1

nb

Corollary: we can always write τFR0 = τ1 + ∆FR

Definition of τ0 used for pp collision in GENEVA (Alioli and al. 2015)
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1-jettiness axis choice

We select the axis n1 that minimizes the 1-jettiness

Possibilities for the axis choice are → in the a-collinear sector

n1={na}

na nb

{na} ≡
(

1,
~pa
|~pa|

)
, pa ∼ (p+

a , p
−
a , pa⊥) ∼ Q2(λ2, 1, λ)
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1-jettiness axis choice

We select the axis n1 that minimizes the 1-jettiness

Possibilities for the axis choice are → in the b-collinear sector

na nb

{na} ≡
(

1,
~pa
|~pa|

)
, pa ∼ (p+

a , p
−
a , pa⊥) ∼ Q2(λ2, 1, λ)
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1-jettiness axis choice

We select the axis n1 that minimizes the 1-jettiness

Possibilities for the axis choice are → none of the above

na

n1={na},{nb}

nb

From the power-counting point of view

{na} ≡
(

1,
~pa
|~pa|

)
, pa ∼ (p+

a , p
−
a , pa⊥) ∼ Q2(λ2, 1, λ)
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Factorization

Decompose axis minimization as

τ1 = min

[
min

n1={na}

( ∑
i∈event

min (na · pi , nb · pi , n1 · pi )

)
,

min
n1={nb}

( ∑
i∈event

min (na · pi , nb · pi , n1 · pi )

)
,

min
n1 6={na},{nb}

( ∑
i∈event

min (na · pi , nb · pi , n1 · pi )

)]

Divide and conquer → prove factorization for each piece
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)
,

min
n1 6={na},{nb}

( ∑
i∈event

min (na · pi , nb · pi , n1 · pi )

)]

Divide and conquer → prove factorization for each piece

Start with n1 = {na} case
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Factorization for n1 = {na}

Reminder : we can write τN = τs,N + τa,N + τb,N
1 For a-collinear piece

τ1,a = min (na · ba, nb · ba, n1 · ba) = b+
a − δτa

2 For b-collinear piece

τ1,b = min (na · bb, nb · bb, n1 · bb) = b+
b

3 For soft piece:
{na} = na + λ2~n → n1 · ks = na · ks(1 +O(λ2))

τ1,s = min (na · ks , nb · ks , n1 · ks) = ks

If n1 ∈ {na}, then τ1 = τ0 − δτa
Only emissions in the a-collinear sector matter
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Factorization for n1 6= {na}, {nb}

Suppose n1 6= {na}, {nb}
1 Collinear pieces → same reasoning as before

τ1,a = b+
a , τ1,b = b+

b

2 Soft emissions

τ1,s = min (na · ks , nb · ks , n1 · ks) = ks − δτs

If n1 = {na}, then τ1 = τ0 − δτa
If n1 = {nb}, then τ1 = τ0 − δτb

If n1 6= {na}, {nb}, then τ1 = τ0 − δτs

Axis in a sector implies δτi in the same sector
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Láıs Schunk Work in progress with Goutam Das and Frank TackmannFactorization in τ0 and τ1 SCET 2019 9 / 16



Factorization

Write the 1-jettiness like

τ1 = min
[
b+
b + ks + min

n1={na}

(
b+
a − δτa

)
,

b+
a + ks + min

n1={nb}

(
b+
b − δτb

)
,

b+
a + b+

b + min
n1 6={na},{nb}

(ks − δτs)
]
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Factorization

Write the 1-jettiness like

τ1 = min
[
τ0 + min

n1={na}
(−δτa) ,

τ0 + min
n1={nb}

(−δτb) ,

τ0 + min
n1 6={na},{nb}

(−δτs)
]
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Factorization

Write the 1-jettiness like

τ1 = τ0 −max
[

max
n1={na}

(δτa),

max
n1={nb}

(δτb),

max
n1 6={na},{nb}

(δτs)
]
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Factorization

Write the 1-jettiness like

τ1 = τ0 −max
[
∆a,∆b,∆s

]
Complete separation of contributions from different modes

The rest of factorization is similar to pure τ0 case

Need new Beam and Soft functions that depend on ∆i measurements

d2σ

dτ0dτ1
= σ0

∫
db+

a db
+
b d∆ad∆bd∆sB

(a)
i (b+

a ,∆a, xa)B
(b)
j (b+

b ,∆b, xb)

× S(τ0 − b+
a − b+

b ,∆s) δ(τ1 − τ0 + max(∆i ))
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Features

d2σ

dτ0dτ1
= σ0

∫
db+

a db
+
b d∆ad∆bd∆sB

(a)
i (b+

a ,∆a, xa)B
(b)
j (b+

b ,∆b, xb)

× S(τ0 − b+
a − b+

b ,∆s) δ(τ1 − τ0 + max(∆i ))

We must recover τ0 SCET factorization∫
dτ1

d2σ

dτ0dτ1
=

dσ

dτ0

Integration over δ(τ1 − . . . ) → integration over ∆i measurements

Implies condition on Beam and Soft functions∫
d∆aB

(a)
i (b+

a ,∆a, xa) = B
(a)
i (b+

a , xa)∫
d∆sS(ks ,∆s) = S(ks)
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Features

At NLO O(αs), we know that there is no 1-jettiness contribution

d2σNLO

dτ0dτ1
=

dσ

dτ0
δ(τ1)

The 1-loop Beam and Soft functions are given by

B1-loop
i (b+

a , xa,∆a) = B1-loop
i (b+

a , xa)δ(∆a − ba)

S1-loop(ks ,∆s) = S1-loop(ks)δ(∆s − ks)

Auxiliary measurement δ(τ1) does not change structure of RGEs
→ resummation up to NLL’ is unchanged
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Features

First unkown order is at O(α2
s ) → needs 2-loop functions

Work in progress

Cross-terms are known

dσ

dτ0dτ1
= σ0

∫
db+

a db+
b dks B1−loop

i (b+
a , xa)Btree

i (b+
b , xb)

× S1−loop(ks)δ(τ0 − b+
a − b+

b − ks)δ(τ1 − min(b+
a , ks))

= σ0
fj(xb)

xbE 2
CM

Θ
(τ0

2
− τ1

)
×

[
B1−loop

i (τ1, xa)S1−loop(τ0 − τ1) + B1−loop
i (τ0 − τ1, xa)S1−loop(τ1)

]
.

We recover the τ1 < τ0/2 limit
→ intrinsic property of the τ1 ∼ τ0 regime
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Matching : reminder for large-τ0

τ1 � τ0 ∼ Q → τ1 ∼ τ0 ∼ Q

Match τ1 factorization with fixed-order calculation

For a given τ0:

dσmatch = dσ(1)+
(
dσFO −

[
dσ(1)

]
FO

)
With

[
dσ(1)

]
FO

such that[
dσ(1)

]
FO
→ dσ(1) when τ1 ∼ τ0[

dσ(1)
]
FO
→ dσFO when τ1 � τ0

Set scales to turn off resummation
µ(1) → µFO

τ1

τ0τ0~Q
 

τ1≪τ0 

τ1~τ0 
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Matching with SCET+

τ1 � τ0 � Q → τ1 ∼ τ0 � Q
Match our factorization with existing SCET+ factorization

For a given τ0:

dσmatch = dσ++
(
dσ(0,1) −

[
dσ+

]
“FO”

)
“FO” has to include resummation in τ0

With [dσ+]“FO” such that

[dσ+]“FO” → dσ+ when τ1 ∼ τ0

[dσ+]“FO” → dσ(0,1) when τ1 � τ0

Set scales to “turn off” log(τ1/τ0)
resummation µ+ → µ(0,1)

τ1

τ0

τ1~τ0 

τ1≪τ0 

τ0≪Q
 

Work in progress
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Conclusion

Recap

Presented the factorization of the

double differential
dσ

dτ0dτ1
in the region

τ0 ∼ τ1

Completes the description of the two
resolved emissions phase space
→ including unordered emissions

τ1

τ0

ki
ne

m
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ic 
 li
m

it

τ1~τ0≪Q 

τ1~τ0~Q 

τ1≪τ0~Q 
τ1≪τ0≪Q 

Future

Fully understand details of matching to SCET+

Calculate soft S(ks ,∆s) and beam B(xi , bi ,∆i ) functions at O(α2
s )
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