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Motivations for NLP

• Precision (Loops, Legs, Powers) and new insights into amplitude structure

• Next-to-leading power (NLP, τ → 0) at NNLO

σ̂NNLO(τ)
τ→0∼ δ(τ) +

[
ln3,2,1,0

τ

]
+

+ ln3,2,1,0 τ +O(τ)

I Drell-Yan process near threshold
[Del Duca, Laenen, Magnea, Vernazza, White, 1706.04018; Bonocore, Laenen, Magnea, Vernazza, White,

1706.04018, 1610.06842 and earlier papers]

I Improving N-jettiness subtraction
[Moult, Rothen, Stewart, Tackmann, Zhu, 1612.00450, 1710.03227, Ebert, Moult, Stewart, Tackmann, Vita, Zhu

1807.10764; Boughezal, Liu, Petriello, 1612.02911, 1802.00456]

• All-order resummation of NLP logs

I Thrust distribution in H → gg
[Moult, Stewart, Vita, Zhu, 1804.04665]

I Drell-Yan process near threshold
[MB, Broggio, Garny, Jaskiewicz, Szafron, Vernazza, Wang, 1809.10631]
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Factorization at NLP

dσ =
∑
a,b

CaC?b ⊗
N∏

i=1

J(i)
a J(i)

b ⊗ Sab

• SCETI observables. Hard (Q), collinear (Qλ) and soft (Qλ2) functions.

(NLP rapidity factorization [Ebert, Moult, Stewart, Tackmann, Vita, Zhu, 1812.08189])

• This talk: Anomalous dimensions of SCETI operators→ evolution of
hard functions Ca,b.

Mostly relevant from NLP-NLL.

• Factorization formula in dim reg at fixed order, resummation not
generally understood.
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N-jet amplitudes, leading power

Source of the hard process. N non-collinear directions defined by momenta

pµi = n+i · pi
nµ−i

2
+ p⊥i + n−i · pi

nµ+i

2
, p2

i = 0, all pi · pj ∼ Q2

Log structure determined by IR singularities of the amplitude

N-jet operator in SCET

O(x) =

∫ N∏
i=1

dti C({ti})
N∏

i=1

ψi(x + tin+i)

Log structure determined by the UV divergences of
collinear and soft loops in SCET [Becher, Neubert, 2009]

ZO
N∏

i=1

√
Zi〈0|O(0)|M({pi})〉|L(0)

SCET

!
= finite
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N-jet amplitudes, leading power anomalous dimension

〈0|O(0)|M({pi})〉|L(0)
SCET

= S({pi})
N∏

i=1

Ji(p2
i )

= 1− αs

4π

 ∑
i,j,i 6=j

Ti · Tj

2

[
2
ε2

+
2
ε

ln
µ2

−sij

]
−
∑

i

T2
i

ci

ε
+O(ε0)



SCET matrix element is scaleless without IR regulator,
since all invariants are hard. Use small off-shellness p2

i .
Colour conservation

∑
i

Ti = 0.

Ji(p2
i ) = 1 +

αs

4π
T2

i

[
2

ε2
+

2

ε
ln
µ2

−p2
i

+
ci

ε

]

S({pi}) = 1 +
αs

4π

∑
i,j,i 6=j

Ti · Tj

2

 2

ε2
+

2

ε
ln
−µ2sij

p2
i p2

j


Note cancellation of IR regulator in pole parts. Required by
consistency. UV anomalous dimension must not depend on
IR reg. UV div non-local for J and S separately.
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N-jet amplitudes, sub-leading power

NLP N-jet operators are the basic objects to match onto for NLP calculations.
If p⊥ ∼ λQ and jet mass scale p2

J ∼ λ2Q2, needO(λ2) in SCET expansion.
Consider a SCETI situation p2

s � p2
J � Q2.

I Matrix elements of LP N-jet operators with sub-leading
soft and collinear interactions from L(1), L(2)

I N-jet operators with 1) more than one collinear field of
the same type in one direction, or 2) with additional soft
fields, or 3) with derivatives.
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Building blocks and basis of N-jet operators

Put x = 0, i.e.O(0).
Building blocks collinear quark collinear gluon soft fields

χi(tini+) ≡ W†i ξi Aµ⊥i(tini+) ≡ W†i [iDµ⊥iWi] qs(0),Fs
µν(0)

O(λ) O(λ) O(λ3, λ4)

I Collinear gluon operator always transverse.
in+i · Dci can be eliminated by Wilson line identities and in−i · Dci+s by equation of
motion, e.g. for n−i · Ai

I Soft covariant derivatives on collinear fields can be eliminated, e.g. [in−Ds,Aµ⊥]
No soft fields in NLP operators.

I Sub-leading N-jet basis operators are constructed in the following way

• every element collinear gauge invariant and soft gauge covariant
• operate with i∂µ⊥i on collinear building block
• take products of several collinear building blocks in the same collinear sector, e.g.

χi(ti1n+i)χi(ti2n+i)Aµci⊥(ti3n+i)
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Notation

General form of the operator

O(0) =

∫ N∏
i=1

ni∏
ki=1

dtiki C({tiki})
N∏

i=1

Ji(ti1 , ti2 , . . . tini
)

I Notation: JAn, JBn, JCn, ...

– A,B,C, . . . refers to 1,2,3, ... fields in a given collinear direction

– n meansO(λn) in a given collinear sector relative to A0

I AtO(λ2) up to two ∂⊥ or up to three fields in one sector. Examples:

i∂⊥ii∂⊥iχi (A2), χ(ti1 )∂⊥iA⊥ii(ti2 ) (B2), χ(ti1 )χ(ti2 )χ(ti3 ) (C2)

I A 3-jet operator atO(λ2) could then be, for example,

J(A0)J(A0)J(B2), J(B1)J(A0)J(A1), . . .
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SCET Lagrangian at NLP

Employ the position-space SCET formalism [MB, Chapovsky, Diehl, Feldmann, 2002]

L(0)
SCET =

N∑
i=1

L(0)
ci + Lsoft

Lc(x) = ξ̄

(
in−Dc + gsn−As(x−) + iD/⊥c

1
in+Dc

iD/⊥c

)
n/+

2
ξ + L(0)

c,YM

+ ξ̄
(

xµ⊥nν−Wc gsFs
µνW†c

) n/+

2
ξ + L(1)

ξq+YM +O(λ2)

iDc = i∂ + gsAc, xµ− =
1

2
n+ · x nµ−

• Note multipole expansion of the soft field around x− in collinear interactions.
Guarantees eikonal propagator and soft-gluon
decoupling via Wilson line field redefinition
ξ → Y(x−)ξ(0) [Bauer, Pirjol, Stewart, 2001]

Drops small momentum components at vertex.

• No purely collinear subleading interactions. At least one soft field in every vertex.
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General structure of the ADM (at one-loop)

ΓPQ(x, y) = δPQδ(x− y)

−γcusp(αs)
∑
i<j

∑
l,k

Tik · Tjl ln
(−sijxik xjl

µ2

)
+
∑

i

∑
k

γik (αs)


+2
∑

i

δ[i](x− y)γi
PQ(x, y) + 2

∑
i<j

δ(x− y)γij
PQ

I Operators [O(λ2)]

P = J(A0,A2), J(A1,A1), J(A1,B1), J(A0,B2), J(A0,C2), J(B1,B1),

T(J(A0,A0),L(1),L(1)), T(J(A0,A0),L(2)), T(J(A0,A1),L(1)), T(J(A0,B1),L(1))

I Off-shell IR regulator p2
ik cancels upon summing soft+collinear

I Operator mixing, collinear anomalous dimension γi
PQ(x, y) a matrix in the spin, colour

and momentum labels within a collinear sector.

δ
(i)

(xi − yi) =

ni∏
k=1

δ(xiki − yiki ) δ(x− y) =
N∏

i=1

δ
(i)

(xi − yi) δ
[i]

(x− y) =
N∏

j=1,j 6=i

δ
(j)

(xj − yj)
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General structure of the ADM (at one-loop)

ΓPQ(x, y) = δPQδ(x− y)

−γcusp(αs)
∑
i<j

∑
l,k

Tik · Tjl ln
(−sijxik xjl

µ2

)
+
∑

i

∑
k

γik (αs)


+2
∑

i

δ[i](x− y)γi
PQ(x, y) + 2

∑
i<j

δ(x− y)γij
PQ

I Note similarity of 1/ε2 and 1/ε× ln
−sijxik xjl

µ2
to LP. The lnµ2 is∑

i<j

(
∑

k

Tik ) · (
∑

l

Tjl ) and involves only total colour charge in every collinear sector.

I Collinear contribution depends only on single sectors, but within each sector on xik .
complicated expressions hidden in collinear term γi

PQ(x, y).

I Soft contributions connect two sectors i, j and have dipole form. Loops with LP soft
interaction contribute (only) to the first line. The NLP soft contribution γij

PQ arises only
from mixing of time-ordered products into currents.

γi =

(
γi

PQ 0
0 γi

P′Q′

)
, γij =

(
0 0

γij
T(P′)Q 0

)
.
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Collinear anomalous dimension

(1) Status: Fermion number |F| = 1, 2, 3 of Ji completed. This includes quark (anti-quark) jets
(F = ±1), gluons jets F = 0 in progress.

(2) Recall: no subleading-power purely collinear Lagrangian interactions

(3) No mixing between An and Bn operators. “An” anomalous dimension can be expressed in
terms of LP A0 anomalous dimension.

(4) Example:O(λ2), Fi = 1

γi
PQ =

JA2
∂∂χ JB2

A∂χ JB2
∂(Aχ) JC2

AAχ JC2
χχ̄χ

JA2
∂∂χ 0 0 0 0 0

JB2
A∂χ 0 (4.7) (4.8) (4.22) (4.30)

JB2
∂(Aχ) 0 0 (4.9) 0 0
JC2
AAχ 0 0 0 (4.32) (4.33)

JC2
χχ̄χ 0 0 0 (4.35) (4.34)

(5) Spin-dependent, momentum-fraction-dependent, colour structures, ugly.
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Two-particle B2 mixing into three-particle C2

ti1

ti1

ti2 q2

p

q1

ti1

ti2

ti1

p
q2

q1

ti1

ti2

ti1

p
q2

q1

ti1
ti1

ti2

ti1

p

q2
q1

(b, i)F (b, i)B (b, i)V (b, i)J

ti2

ti2

ti1 q2

p

q1

ti2

ti2

ti1
q2

p

q1

ti2

ti2

ti1ti1

q2

p

q1

ti1

ti2

p

q2
q1

(b, ii)B (b, ii)V (b, ii)J (b, iii)F

ti2

ti1

pq2

q1

ti2

ti1

q2

p

q1

ti2

ti1

p
q2

q1

ti2

ti1

p

q2
q1

(b, iii)B (b, iii)V (c, i)F (c, i)B

ti2

ti1

q2

p

q1

ti2

ti1

q1
q2

p

ti2

ti1

q2

q1

p

(c, i)V (c, ii)F (c, ii)V

γi
Aµa∂νξ,AσdAλeξ

(x, y1, y2) = −αs

8π
Iµνσλade (x, y1, y2)

where the kernel Iµνσλade (x, y1, y2) is a sum of terms of
the form

Iµνσλade (x, y1, y2)|(b,iii)B

=
if abe

2
x̄

(
θ(x− y2)

x̄

ȳ2
+ θ(y2 − x)

x

y2

)
{(

2gνλ⊥ γ
µ
⊥γ

σ
⊥ −

2y2

x
gµν⊥ γ

λ
⊥γ

σ
⊥ −

1 + y2

x̄
gµλ⊥ γ

ν
⊥γ

σ
⊥

) tbtd

y1 + y3

+

(
2gνλ⊥ γ

σ
⊥γ

µ
⊥ −

2y2

x
gµν⊥ γ

σ
⊥γ

λ
⊥ − gµλ⊥ γ

σ
⊥γ

ν
⊥

) td tb

y2 + y3 − x

}
+ (y1dσ ↔ y2eλ)
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Three-particle collinear C2 anomalous dimension

γi
AµAνχα,AρAσχβ (x1, x2, y1, y2) =

1
1− y2

δ(x2 − y2)gνσ⊥ γi
Aµχα,Aρχβ

(
x1

1− x2
,

y1

1− y2

)
+

1
1− y1

δ(x1 − y1)gµρ⊥ γi
Aνχα,Aσχβ

(
x2

1− x1
,

y2

1− y1

)
+

1
1− y3

δ(x3 − y3)δαβγ
i
AµAν ,AρAσ

(
x1

1− x3
,

y1

1− y3

)
+ (y1, ρ, b1)↔ (y2, σ, b2)

• At one-loop only two of the three lines can be connected.

• Anomalous dimension is a sum ofO(λ) B1 anomalous dimensions for all pairs of lines
with rescaled momentum fractions, since now x1 + x2 + x3 = 1, y1 + y2 + y3 = 1.
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Soft time-ordered product mixing

(1) Recall: At one-loop, sub-leading-power Lagrangian interactions necessarily give soft loops,
since there are no soft fields in the operators.

(2) The non-cusp contribution to the soft anomalous dimension, γij
PQ is generated only by

sub-leading power Lagrangian insertions.

(3) Soft loops vanish, if gluon is attached to two collinear lines in the same direction.

(4) Find that the single insertions of L(1) and L(2) vanish (more on this below), in particular
noO(λ) mixing.
Double L(1) insertion is non-zero.

s

til

tjk

1

s

til

tjk

2

s
til

tjk

1

1
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Soft time-ordered product mixing

The following mixings exist through the double insertion

I (A0,A0)→ (A1,A1)

γ
ij(

JT1
χ,ξ

)
i

(
JT1
χ,ξ

)
j
,

(
JA1
∂µχ

)
i

(
JA1
∂νχ

)
j

=
2αs

π
Ti · Tj

(
gµν −

nνi−nµj−
ni−nj−

)
1

(ni−nj−)PiPj︸ ︷︷ ︸
Gµνij

I (A0,A0)→ (B1,A1), (A1,B1), (B1,B1). Example:

γ
ij(

JT1
χα,YM

)
i

(
JT1
χβ,YM

)
j
,

(
JB1
Aµb χγ

)
i

(
JB1
Aνc χδ

)
j

(yi1 , yj1 )

= −
αs

2π
f bda f cea Td

i Te
j Gij
λκ

 2gµλ⊥i

yi1

− γλ⊥iγ
µ
⊥i


αγ

(
2gνκ⊥j

yj1

− γκ⊥jγ
ν
⊥j

)
βδ

I Soft quark exchange vanishes for massless quarks.

til

tjk

s

q1

q2

1

1

s
ti

tj

q
q1

q2

1

1

s
ti

tj

q
q1

q′
q2

1

1

s
ti

tj

q
q1

q2 q′

1

1
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Cusp anomalous dimension and Lorentz invariance

I Take i, j directions back-to-back, nµj± = nµi∓ ≡ nµ±, allow p⊥i, p⊥j 6= 0. One particle in each
direction (A0)

sij = 2pi · pj = n+ · pin− · pj︸ ︷︷ ︸
s(0)
ij =2PiPj

+2p⊥i · p⊥j +O(λ4)

Γ = −γcusp(αs)
∑
i<j

Ti · Tj

ln
s(0)
ij

µ2
+

2p⊥i · p⊥j

s(0)
ij

+ . . .

 ⇒ γ
ij
PQ = −

2αs

π
Ti · Tj

gµν⊥
(n−n+)PiPj

Same structure as the the time-ordered product mixing into (A1,A1).

I Take i, j directions non-back-to-back, p⊥i 6= 0 but p⊥j = 0 for simplicity. One particle in each
direction (A0)

sij = s(0)
ij + nj+ · pjnj− · p⊥i +O(λ2)

Γ = −γcusp(αs)
∑
i<j

Ti · Tj

ln
s(0)
ij

µ2
+

nj+ · pjnj− · p⊥i

s(0)
ij

+ . . .

 ⇒ γ
ij
PQ = −

αs

π
Ti · Tj

nµj−
(ni−nj−)Pi

There must beO(λ) mixing into (A1,A0).
In conflict with previous results.
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RPI in SCET

I RPI invariant operator is∫
dsdt χ̄j(snj−)

[
1 +

2t
ni−nj−

nj− · ∂⊥i

]
χi(tni−)

Momentum-space coefficient relation

C(A1,A0) =
2

ni−nj−

∂

∂ni+pi
C(A0,A0)

I Implies the RGE equation

d

d lnµ
C(A1,A0)

= −

γcuspTi · Tj ln
s(0)
ij

µ2
+ non-cusp

 C(A1,A0) − γcuspTi · Tj
2

(ni−nj−)ni+pi
C(A0,A0)

The inhomogeneous term arises from
∂

∂ni+pi
acting on the cusp logarithm.

It impliesO(λ) mixing into (A1,A0).

I The counterterm related to this AD is also required to reproduce the IR poles of the on-shell
QCD amplitude.
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Soft time-ordered product mixing at O(λ) revisited

I Only possibility is the soft loop with one insertion of L(1).

L(1)
ξ = ξ̄

(
xµ⊥nν− gsFs

µν

) n/+

2
ξ

L̃(1)
ξ = ξ̄

(
iD/⊥c

1
in+Dc

gA/⊥us + gA/⊥s
1

in+Dc
iD/⊥c + [(x⊥∂) (gn−As)]

)
n/+

2
ξ

The 2nd Lagrangian arises in the direct expansion of the quark Lagrangian. The 1st form was
obtained in [MB, Chapovsky, Diehl, Feldmann, hep-ph/0206152] by the field redefinition

ξ′ = (1 + gsx⊥ · As)ξ

I Alternatively,
L̃(1)
ξ = L(1)

ξ + ∆L(1)
eom

∆L(1)
eom = ξ̄

[
igsx⊥As, in−D + iD/⊥c

1
in+Dc

iD/⊥c

]
n/+

2
ξ.

[To avoid dealing with the YM part of the Lagrangian, we assume abelian gauge fields for simplicity.]
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Soft time-ordered product mixing at O(λ) revisited

s

til

tjk

1
I Calculate the soft mixing graph with L̃(1)

ξ

I Relevant integral is (off-shell IR regularization)

−iµ̃2ε
∫

ddl
(2π)d

nj+pj

l2(p2
i − ni+pini−l)2(p2

j − nj+pjnj−l)

×
(
− [nj−p⊥i n+ipi n−il− n+ipi ni−nj− p⊥il]︸ ︷︷ ︸

fromL(1)
ξ

+ nj−p⊥i p2
i︸ ︷︷ ︸

from ∆L(1)
eom

)

=
1

4π2

nj− p⊥i

ni−nj− ni+pi

µ2s(0)
ij

p2
i p2

j

ε 1
ε
6= 0

I Off-shell term contributes due to p2
i /p2

i . UV divergence is non-local. Introduce a counterterm
for mixing of eom operator into a “physical operator”

T(J(A0),∆L(1)
eom)→ J(A1)
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Does off-shell Lagrangian mixing into currents make sense?

(1) Does ∆L(1)
eom contribute to on-shell amplitudes?

(2) Violates the [Kluberg-Stern, Zuber, 1975] theorem that eom operators do not mix into “physical
operators” (i.e. that don’t vanish by eom), i.e. the block-triangular structure of ADM matrix.

(3) Uniqueness. We could use L(1)
ξ + const.×∆L(1)

eom and get an arbitrary coefficient for the
mixing counterterm
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Does off-shell Lagrangian mixing into currents make sense?

(1) Does ∆L(1)
eom contribute to on-shell amplitudes? – No.

On-shell soft integrals are scaleless and vanish.
Using LSZ:

lim
p2→0

(p2)−ε × i
p2
× p2 = 0

Must take p2 → 0 before ε→ 0.

(2) Violates the [Kluberg-Stern, Zuber, 1975] theorem that eom operators do not mix into “physical
operators” (i.e. that don’t vanish by eom), i.e. the block-triangular structure of ADM matrix.

(3) Uniqueness. We could use L(1)
ξ + const.×∆L(1)

eom and get an arbitrary coefficient for the
mixing counterterm
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Does off-shell Lagrangian mixing into currents make sense?

I Let F(x) be a composite operator, K(y, x) a c-number kernel, and ∂SF the eom operator

∂SF =

∫
ddy

δS
δχ(y)

K(y, z)F(x)

[Kluberg-Stern, Zuber, 1975] show for the generating functional of 1PI functions with one insertion of
∂SF that

Γ
(L),div
∂SF =

∫
ddy

δS
δχ(y)

K(y, z)ΓF(x)
∣∣∣
(L),div

I If Γ
(L),div
F and K(x, y) are polynomial in momentum space, this implies that that Γ

(L),div
∂SF is of

the form
∑
F′

ZFF′∂SF′, which proves the theorem.

I But in our case F = T(J(A0), gsAs(xi−)χi(x)) and K(x, y) = x⊥δ(x− y). Then

Γ
(1−loop),div
F ∝ (p2)−ε/ε2 and K(p) ∝ ∂/∂p⊥

which cancels the p2 from δS/δχ. The theorem is violated because the assumption that the
divergence is local is violated, which in turn happens due to the 1/ε2 pole.
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Does off-shell Lagrangian mixing into currents make sense?

(1) Does ∆L(1)
eom contribute to on-shell amplitudes? – No.

On-shell soft integrals are scaleless and vanish.
Using LSZ:

lim
p2→0

(p2)−ε × i
p2
× p2 = 0

Must take p2 → 0 before ε→ 0.

(2) Violates the [Kluberg-Stern, Zuber, 1975] theorem that eom operators do not mix into “physical
operators” (i.e. that don’t vanish by eom), i.e. the block-triangular structure of ADM matrix.

Yes, but the assumptions of the theorem do not hold.

(3) Uniqueness. We could use L(1)
ξ + const.×∆L(1)

eom and get an arbitrary coefficient for the
mixing counterterm

The SCET Lagrangian is not renormalized (Lorentz invariance! [MB, Chapovsky, Diehl, Feldmann,

2002]).
Coefficient is uniquely fixed by matching to QCD off-shell
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Check: extra collinear emission

s

til

tjk

1

I Case-I on-shell amplitude

• ∆L(1)
eom does not contribute

• The counterterm from T(J(A0),∆L(1)
eom)→ J(A1) mixing

is needed to renormalize the amplitude.

• IR divergences of the QCD amplitude are correctly reproduced and include a purely
collinear contribution from the matrix element of a B1 operator. This includes the pole
of a divergent convolution.

I Case-II off-shell Green function

• In the sum of all soft contributions a non-local pole term
1
ε
× 1

p2
is left-over.

• This cancels with the collinear contribution from a B1 operators.

• Similar cancellations in the presence of an extra collinear emission already occur at
leading power, but the dependence on p2 is logarithmic
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Summary

I Cusp part of the one-loop ADM for NLP N-jet operators has a simple universal
form, which is a straightforward generalization of the LP form

II Collinear anomalous dimensions depend only on single directions, are
spin-dependent and algebraically complicated.

Existing results for |F| = 1, 2, 3, gluon jet F = 0 some time (hopefully) soon

III Soft mixing is subtle and interesting due to a violation of the Kluberg-Stern-Zuber
theorem on non-mixing of eom operators into physical operators when the UV
divergence is extracted using an off-shell IR regulator.

Soft anomalous dimension in [MB, M. Garny, R. Szafron, J. Wang, 1712.04416, 1808.04724]

receives additional contributions still to be determined from off-shell operators.
This is necessary for consistent matching to QCD.

IV Any other non-dim reg IR regulator (requires to determine the UV anomalous
dimension) will lead to a complication of some sort for algebraic reasons.
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Extra slides
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O(λ1,2) NLP N-jet operator do not contain soft fields

I Collinear gluon operator always transverse. in+i · Dci can be eliminated by Wilson line
identities and in−i · Dci+s by equation of motion, e.g.

(n−A)ij = −
2

in+∂
(i∂⊥νA

ν
⊥)ij −

2

(in+∂)2
[Aν⊥, (in+∂A⊥ν)]ij

−
2g2

s

(in+∂)2

(
δilδjk −

1

3
δijδkl

)
χk
/n+

2
χl ,

I Soft covariant derivatives on collinear fields can be eliminated, e.g.

(
[in−Ds,Aµ⊥]

)
ij

=
1

2
i∂µ⊥(n−A)ij +

1

2

(
[Aµ⊥, n−A]

)
ij

+
1

2in+∂

(
[(in+∂A

µ
⊥), n−A]

)
ij

+
1

in+∂

([
i∂ν⊥ +Aν⊥, [i∂

µ
⊥ +Aµ⊥, i∂⊥ν +A⊥ν ]

])
ij

+
g2

s

2in+∂

(
δilδjk −

1

3
δijδkl

)(
χ̄kγ

µ
⊥

1

in+∂

(
/A⊥
)

ll′
/n+

2
χl′

+χ̄k′ (6A⊥)k′k
1

in+∂
γ
µ
⊥
/n+

2
χl + 2χ̄k

i∂µ⊥
in+∂

/n+
2
χl

)

⇒ Soft fields can appear only in the form of products of soft building blocks at x = 0 and soft
derivative on them. Starts atO(λ3)
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O(λ1,2) NLP N-jet operator do not contain soft fields (2)

Does not generate a soft ope-
rator. Graph is reproduced in
SCET by time-ordered products
T(J(A0),L(2)

ξ ), T(J(A1),L(1)
ξ )

• Checked that LBK amplitude is reproduced. No need to invoke gauge invariance/Ward
identity to fix the local term. Automatic in SCET.

• Previous work on NLP operator bases

I [MB, Campanario, Mannel, Pecjak, hep-ph/0411395]

Operator with soft heavy quark fields as source of large energy. Different, there are
O(λ2) operators with soft gluon fields.

I [Kolodrubetz, Moult, Stewart, 1601.02607; Feige, Kolodrubetz, Moult, Stewart, 1703.03411]

Helicity basis in label SCET – rather different: subleading purely collinear
interactions, two-point insertions, soft building blocks.
Position space SCET looks simpler in this respect.
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SCET Lagrangian, sub-leading power

L(1) = ξ̄
(

xµ⊥nν−Wc gFus
µνW†c

) n/+

2
ξ + q̄ W†c iD/⊥c ξ − ξ̄ i

←−
D/⊥cWc q + L(1)

YM

L(2)
=

1

2
ξ̄
(
(n−x) nµ+nν− Wc gFus

µνW†c + xµ⊥x⊥ρnν−Wc
[
Dρus, gFus

µν

]
W†c
) n/+

2
ξ

+
1

2
ξ̄

(
iD/⊥c

1

in+Dc
xµ⊥γ

ν
⊥ Wc gFus

µνW†c + xµ⊥γ
ν
⊥ Wc gFus

µνW†c
1

in+Dc
iD/⊥c

)
n/+

2
ξ + L(2)

ξq + L(2)
YM

• Algorithm for construction to higher orders. [MB, Feldmann, 2002]

• Invariance soft and (separate for every direction) collinear gauge transformation

Collinear: Ac → Uc Ac U†c +
i
g

Uc

[
Dus(x−),U†c

]
, ξ → Uc ξ,

Aus → Aus, q→ q,

Soft: Ac → Uus(x−) Ac U†us(x−), ξ → Uus(x−) ξ,

Aus → Uus Aus U†us +
i
g

Uus

[
∂,U†us

]
, q→ Uus q.

(1)
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