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Motivation

• Higher log resummation only been performed for the narrow 
class of global observables (e.g. no hard phase-space cuts)

• In non-global observables soft emissions can resolve the 
direction and color information of energetic particles

• In this talk I will show our recent computation of higher-
logarithmic terms for non-global observables
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Interjet energy flow

Single log observable: collinear logs cancel 
out inside the jets  

Two sources of single logarithms:

JHEP03(2002)017

will turn out that an analysis of the dependence of the effect on the geometry of the patch
Ω casts considerable light on the dynamical mechanisms involved in non-global effects.
Secondly it allows us to make a general order of magnitude estimate of the importance of
non-global terms relative to those from the resummation of primary emissions. Finally the
measurement of energy-flow distributions in 2-jet events in e+e− collisions or DIS could well
be of intrinsic interest since it would be complementary to measurements in hadron-hadron
collisions, and in particular, free of the problems associated with the underlying event.

2. Primary emission form factor

In this paper we shall be considering as our observable the amount of transverse energy Et

flowing into a patch Ω in rapidity and azimuth:

Et =
∑

i∈Ω

Et,i . (2.1)

We are interested in the probability ΣΩ for Et to be less than some value QΩ which is much
smaller than the hard scale Q of the process in question:

ΣΩ(QΩ, Q) =
1
σ

∫ QΩ

0
dEt

dσ

dEt
, (2.2)

where σ is the Born-order cross section for the process — in our case the production of
two jets in e+e− or of 1 + 1 jets in DIS.

In order, later on, to quantify the effect of non-global logs it is useful first to calculate
the contribution to ΣΩ from primary emissions alone. This is the much simpler 2-jet
analogue of what has been calculated in [2] for 4-jet systems.

At first order in αs, the logarithmically enhanced contribution to ΣΩ comes from the
incomplete cancellation of real and virtual contributions for a soft primary emission:

Σ(1)
Ω (QΩ, Q) = −4CF

αs

2π

∫ Q/2

QΩ

dkt

kt

∫

Ω
dη

dφ

2π
= −4CF αs

2π
AΩ ln

Q

2QΩ
, (2.3)

where we have introduced the notation AΩ for area of the region Ω,

AΩ =
∫

Ω
dη

dφ

2π
. (2.4)

The upper limit in the kt integral is arbitrary to single-log accuracy, as long as it is of
order Q.

When the logarithm of Q/QΩ becomes large enough to compensate the smallness of
αs, it is necessary to include terms (αs ln Q

QΩ
)n to all orders. If one assumes (incorrectly, as

we shall see) that multiple wide-angle soft gluons from a two-jet system are simply radiated
independently according to a two-particle antenna pattern, then eq. (2.3) can be extended
to all orders by accounting for the running of the coupling3 and then exponentiating the
answer:

ΣΩ,P(QΩ, Q) ≡ ΣΩ,P (t(QΩ, Q)) = exp [−4CFAΩt] . (2.5)

3Strictly speaking the running of the coupling is connected with the collinear branching of the primary

gluons. This however is a separate issue from that of large-angle soft gluon emission with which we deal

later on in this article.
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1. From primary emissions

2. From secondary emissions
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The subscript P on ΣΩ,P serves as a reminder that we have only taken into account primary
emissions and t is defined to be the following integral of αs,

t(QΩ, Q) =
1
2π

∫ Q/2

QΩ

dkt

kt
αs(kt) =

1
4πβ0

ln
αs(Q/2)
αs(QΩ)

, (2.6)

where the second equality holds at the one-loop level and β0 = (11CA − 2nf )/(12π).

3. Leading order calculation of non-global effects

As well as dealing with primary emissions, it is necessary to account also for contributions
from (secondary) emissions coherently radiated into Ω from large-angle soft-gluon ensem-
bles outside of Ω. We will denote the contribution from such non-global terms by the
function S(t), such that to SL accuracy

ΣΩ(t(QΩ, Q)) ≡ S(t)ΣΩ,P(t) . (3.1)

To start with, we calculate the leading order contribution to S, i.e. S2, where we define the
following series expansion for S:

b a

2 1

∆η

Figure 2: The kind of diagram to be con-
sidered for the calculation of S2 in the
case of a rapidity slice of width ∆η.

S(t) =
∑

n=2

Sntn . (3.2)

Since this kind of contribution only starts with sec-
ondary emissions, there is no S1 term. In the cal-
culation of S2, we shall be entitled to equate t with
αs
2π ln Q

2QΩ
.

The exact value of S2 depends on the geometry
of the patch Ω. Here we calculate it analytically
for the case where Ω is a slice in rapidity of width
∆η. The kind of diagram to be considered is shown in figure 2, where a and b are quarks
(they may be outgoing or incoming depending on whether for example we are dealing with
e+e− or DIS in the Breit frame) and 1 and 2 are gluons. We introduce the following
four-momenta

ka =
Q

2
(1, 0, 0, 1) , (3.3a)

kb =
Q

2
(1, 0, 0,−1) , (3.3b)

k1 = x1
Q

2
(1, 0, sin θ1, cos θ1) , (3.3c)

k2 = x2
Q

2
(1, sin θ2 sin φ, sin θ2 cos φ, cos θ2) , (3.3d)

where we have defined energy fractions x1,2 ≪ 1 for the two gluons. To our accuracy, we
can neglect the recoil of the hard particles against the soft gluons.
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Soft gluon evolution at LO
• The leading logarithms arise from configuration in which the emitted 

gluons are strongly ordered

E1 � E2 � · · · � Em

• In the large-Nc limit, multi-gluon emission amplitudes become simple

• Banfi-Marchesini-Smye eqation

• Dasgupta-Salam shower
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Figure 14. The action of the operator Vm on an amplitude in the large-Nc limit.

suppressed at large Nc. At large Nc, emissions arise only between nearest-neighbour legs,

since all other attachments would lead to non-planar contributions which are suppressed.

Based on the above simplification, the effect of Rm in the large-Nc limit is shown diagram-

matically in Figure 13. The action of Vm simplifies analogously, as shown in Figure 14.

The large-Nc color factor from squaring the amplitudes is simply a factor of Nc for each

color loop, and the number of additional color loops is equal to the number of powers of

αs, so that the color factor is obtained by switching to the ’t Hooft coupling λ = Nc αs.

We now plug the explicit results (5.11) for the anomalous-dimension coefficients Vm

and Rm into the expressions (5.17). For the coefficients of the expansion in t, we then

obtain

S
(1)
2 = −4Nc

∫

Ω
3OutW

3
12 ,

S
(2)
2 =

(4Nc)
2

2!

∫

Ω

[
− 3In 4Out

(
P 34
12 −W 3

12 W
4
12

)
+ 3Out 4OutW

3
12 W

4
12

]
,

S
(3)
2 =

(4Nc)
3

3!

∫

Ω

[
3In 4Out 5Out

[
P 34
12

(
W 5

13 +W 5
32 +W 5

12

)
− 2W 3

12 W
4
12 W

5
12

]

− 3In 4In 5OutW
3
12

[(
P 45
13 −W 4

13 W
5
13

)
+

(
P 45
32 −W 4

32 W
5
32

)
−

(
P 45
12 −W 4

12 W
5
12

)]

− 3Out 4Out 5OutW
3
12 W

4
12 W

5
12

]
, (5.20)

where
∫
Ω 3Out =

∫ dΩ(n3)
4π Θnn̄

out(n3), and we have used the abbreviation

P kl
ij = W k

ij

(
W l

ik +W l
kj

)
. (5.21)

The above expressions include all leading logarithms, i.e. the global and non-global loga-

rithmic terms appear together.

Let us now relate the above expressions to the leading logarithmic resummation of

NGLs at large Nc, which can be obtained by solving the BMS equation [26]

∂L̂Gkl(L̂) =

∫
dΩ(nj)

4π
W j

kl

[
Θnn̄

in (j)Gkj(L̂)Gjl(L̂)−Gkl(L̂)
]
, (5.22)

with boundary condition Gkl(0) = 1. The function Gkl(L̂) depends on two light-like refer-

ence vectors nk and nl. After solving the equation, the resummed soft function is obtained

as S({n}, Qβ, µ) = G12(L̂) with L̂ = 4Nc t. While the non-linear integral equation (5.22)
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(Dasgupta & Salam 2001)

(Banfi, Marchesini & Smye 2002)
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• Dress gluon expansion (Larkoski et.al.’15), finite Nc (Hatta et.al.’15, Martinez 
et.al.‘18), rapidity logs (Becher et.al.’17), double NGLs resummation(Hatta 
et.al.’18), reduced density matrix (Neill et.al. ’18), automation (Balsiger 
et.al.’18), clustering effects(Neill’18) . . .
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Factorization in SCET

(see [7] for a review). Our starting point is the factorization theorem which separates the

hard radiation inside the jets (or outside the isolation cone) from the soft radiation. The

soft radiation is driven by Wilson lines along the directions of the hard partons in the

process. Since there are contributions involving any number of hard partons, we end up

with operators with an arbitrary number of Wilson lines and these operators mix under

renormalization. The corresponding RG equation is complicated, but we will show that it

takes the form of a recursive equation which can be solved using a parton shower Monte-

Carlo (MC) program, which at leading-log accuracy and large-Nc is equivalent to the one

used by Dasgupta and Salam. An advantage of our treatment is that the RG equation is

not limited to leading logarithmic accuracy and we briefly discuss which ingredients and

modifications will be necessary to reach higher precision. There has been a lot of recent

work [8–11] on the general structure of parton showers and how to increase their accuracy.

The problem at hand provides an explicit example of a shower equation derived from first

principles for which it is clear what ingredients are needed to resum sub-leading logarithms.

The leading logarithms can be obtained by starting from the tree-level amplitudes and

running the parton shower to generate the logarithmically enhanced terms. Using a tree-

level event generator, this resummation can be automated. We have written a dedicated

parton shower code to perform the resummation and use the MadGraph5_aMC@NLO

framework [12] to generate the necessary tree-level amplitudes. We then study exclusive

jet and isolation-cone cross sections. In particular, we give numerical results for dijet

production with a gap between jets and compare to ATLAS measurements and theoretical

predictions [13] based on the BMS equation [14]. We also study isolated photon production

and compute the logarithms of ✏� , the energy fraction inside the isolation cone.

The remainder of this paper is organized as follows. In Section 2 we review the factor-

ization theorem for jet cross sections with gaps or isolation cones. In Section 3 we will show

that RG evolution of the associated Wilson coe�cients is equivalent to a parton shower,

and we give the necessary ingredients for LL resummation. In Section 4 we will apply

the shower code to obtain some phenomenological predictions, namely gap fraction of dijet

production and isolation cone cross section. We summarize our results and provide some

further discussions in Section 5.

2 Factorization for jet cross sections with gaps or isolation cones

The factorization formula for lepton-collider processes with k jets which takes the form

[1, 2]

d�(Q,Q0) =
1X

m=k

⌦
Hm({n}, Q, µ)⌦ Sm({n}, Q0, µ)

↵
. (2.1)

Here Q denotes the large energy inside the jets, while Q0 denotes the small energy outside

the jets in an angular region ⌦out. The factorization theorem is the leading term in an

expansion of the cross section in � = Q0/Q. Both the soft and hard functions depend on

the directions {n} = {n1, . . . , nm} and colors of the hard partons. The symbol ⌦ indicates

an integral over these directions and h. . . i denotes the color trace, which is taken after
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• For k jets process at lepton collider Q0 Q

Q0 ⌧Q
• Soft function:

• Hard function: integrating over the energies of the hard particles, while 
keeping their direction fixed

• ⊗ indicates integration over the direction of the energetic partons 

•       taking the color trace

from these Wilson lines

Sm({n}, Q0, µ) =

Z

Xs

X
h0|S†

1
(n1) . . . S

†
m(nm) |XsihXs|S1(n1) . . . Sm(nm) |0i ✓(Q0 � E out) ,

(2.3)

where the state Xs contains an arbitrary number of soft partons. The soft functions depend

on the energy Q0 of the radiation and implicitly also on the shape of the region ⌦out in

which the energy is measured. TheWilson-line matrix elements have ultraviolet divergences

which can be renormalized away and this induces a dependence on the renormalization scale

µ.

The hard function is given by the square of the hard-scattering amplitudes, together

with the phase-space constraints ⇥in

��
p
 �

which restrict the hard partons to the inside of

the jets,

Hm({n}, Q, µ) =
1

2Q2

X

spins

mY

i=1

Z
dEiE

d�3

i

(2⇡)d�2
|Mm({p})ihMm({p})|

⇥ (2⇡)d �
⇣
Q�

mX

i=1

Ei

⌘
�
(d�1)(~ptot)⇥in

��
p
 �

. (2.4)

For cone jets the phase-space constraint ⇥in

��
p
 �

is given by cones around the hard par-

tons. For recombination algorithms, on the other hand, the jet clustering constraints can

be quite complicated in general and can spoil factorization. However, they simplify in our

setup which considers the limit of hard partons together with (infinitely) soft radiation.

This situation was considered in [28] where it was shown that for anti-kT jets, the jet

boundary becomes cone-like so that the theorem (2.1) also applies to this case.

Since the cross section must be independent of the scale µ, the scale dependence among

the hard and soft functions must cancel. The one for the hard function is driven by the

RG equation

d

d lnµ
Hm({n}, Q, µ) = �

mX

l=k

Hl({n}, Q, µ)�H

lm
({n}, Q, µ) . (2.5)

This evolution equation is formally solved by the path ordered exponential

U({n}, µs, µh) = P exp

 Z
µh

µs

dµ

µ
�
H({n}, µ)

�
. (2.6)

and the resummed cross section is then

d�(Q,Q0) =
1X

l=k,m�l

⌦
Hl({n}, Q, µh)⌦Ulm({n}, µs, µh) ⌦̂Sm({n}, Q0, µs)

↵
. (2.7)

The condition m � l arises because the anomalous dimension matrix is zero below the

diagonal, see below. The hat in ⌦̂ indicates that one has to integrate over the angles of

the (m � l) additional unresolved emissions. For the choice µh ⇠ Q and µs ⇠ Q0, the

hard and soft functions are free of large logarithms and can be expanded in the respective
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from these Wilson lines

Sm({n}, Q0, µ) =

Z

Xs

X
h0|S†

1
(n1) . . . S

†
m(nm) |XsihXs|S1(n1) . . . Sm(nm) |0i ✓(Q0 � E out) ,

(2.3)

where the state Xs contains an arbitrary number of soft partons. The soft functions depend

on the energy Q0 of the radiation and implicitly also on the shape of the region ⌦out in

which the energy is measured. TheWilson-line matrix elements have ultraviolet divergences

which can be renormalized away and this induces a dependence on the renormalization scale

µ.

The hard function is given by the square of the hard-scattering amplitudes, together

with the phase-space constraints ⇥in

��
p
 �

which restrict the hard partons to the inside of

the jets,

Hm({n}, Q, µ) =
1

2Q2

X

spins

mY

i=1

Z
dEiE

d�3

i

(2⇡)d�2
|Mm({p})ihMm({p})|

⇥ (2⇡)d �
⇣
Q�

mX

i=1

Ei

⌘
�
(d�1)(~ptot)⇥in

��
p
 �

. (2.4)

For cone jets the phase-space constraint ⇥in

��
p
 �

is given by cones around the hard par-

tons. For recombination algorithms, on the other hand, the jet clustering constraints can

be quite complicated in general and can spoil factorization. However, they simplify in our

setup which considers the limit of hard partons together with (infinitely) soft radiation.

This situation was considered in [28] where it was shown that for anti-kT jets, the jet

boundary becomes cone-like so that the theorem (2.1) also applies to this case.

Since the cross section must be independent of the scale µ, the scale dependence among

the hard and soft functions must cancel. The one for the hard function is driven by the

RG equation

d

d lnµ
Hm({n}, Q, µ) = �

mX

l=k

Hl({n}, Q, µ)�H

lm
({n}, Q, µ) . (2.5)

This evolution equation is formally solved by the path ordered exponential

U({n}, µs, µh) = P exp

 Z
µh

µs

dµ

µ
�
H({n}, µ)

�
. (2.6)

and the resummed cross section is then

d�(Q,Q0) =
1X

l=k,m�l

⌦
Hl({n}, Q, µh)⌦Ulm({n}, µs, µh) ⌦̂Sm({n}, Q0, µs)

↵
. (2.7)

The condition m � l arises because the anomalous dimension matrix is zero below the

diagonal, see below. The hat in ⌦̂ indicates that one has to integrate over the angles of

the (m � l) additional unresolved emissions. For the choice µh ⇠ Q and µs ⇠ Q0, the

hard and soft functions are free of large logarithms and can be expanded in the respective
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from these Wilson lines

Sm({n}, Q0, µ) =

∫

Xs

∑
⟨0|S†

1(n1) . . . S
†
m(nm) |Xs⟩⟨Xs|S1(n1) . . . Sm(nm) |0⟩ θ(Q0 − E out) ,

(2.3)

where the states Xs contain an arbitrary number of soft partons. The soft functions depend

on the energyQ0 of the radiation and implicitly also on the shape of the region Ωout in which

the energy is measured. TheWilson-line matrix elements have ultraviolet divergences which

can be renormalized away and this induces a dependence on the renormalization scale µ.

The hard functions are given by the square of the hard-scattering amplitudes, together

with the phase-space constraints Θin
({

p
})

which restrict the m hard partons to the inside

of the jets,

Hm({n}, Q, µ) =
1

2Q2

∑

spins

m∏

i=1

∫
dEiE

d−3
i

(2π)d−2
|Mm({p})⟩⟨Mm({p})|

× (2π)d δ
(
Q−

m∑

i=1

Ei

)
δ(d−1)(p⃗tot)Θin

({
p
})

. (2.4)

For cone jets the phase-space constraint Θin
({

p
})

is defined by cones around the hard

partons. For recombination algorithms, on the other hand, the jet clustering constraints

can be quite complicated in general and can spoil factorization. However, they simplify in

our setup which considers the limit of hard partons together with (infinitely) soft radiation.

This situation was considered in [31] where it was shown that for anti-kT jets, the jet

boundary becomes cone-like so that the theorem (2.1) also applies to this case.

Since the cross section must be independent of the scale µ, the scale dependence among

the hard and soft functions must cancel. The one for the hard function is driven by the

RG equation

d

d lnµ
Hm({n}, Q, µ) = −

m∑

l=k

Hl({n}, Q, µ)ΓH
lm({n}, Q, µ) . (2.5)

This evolution equation is formally solved by the path ordered exponential

U({n}, µs, µh) = P exp

[ ∫ µh

µs

dµ

µ
ΓH({n}, µ)

]
, (2.6)

and the resummed cross section is then

dσ(Q,Q0) =
∞∑

l=k,m≥l

〈
Hl({n}, Q, µh)⊗Ulm({n}, µs, µh) ⊗̂Sm({n}, Q0, µs)

〉
. (2.7)

The condition m ≥ l arises because the anomalous dimension matrix is zero below the

diagonal, see below. The hat in ⊗̂ indicates that one has to integrate over the angles of

the (m − l) additional unresolved emissions. For the choice µh ∼ Q and µs ∼ Q0, the

hard and soft functions are free of large logarithms and can be expanded in the respective

coupling constants αs(µh) and αs(µs). At leading logarithmic accuracy, we only need these
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(Becher, Neubert, Rothen & DYS ’15)

{n} = {n1, n2, · · · , nm}

h· · · i



Resummation in SCET

the MadGraph5 aMC@NLO event generator [26]. This provides an automated frame-

work to perform the LL resummation for single-logarithmic observables. However, collider

observables are typically double logarithmic. The LL in the jet mass distribution, for ex-

ample, are ↵n
s ln

2n
⇢. Even for non-global observables, these double logarithmic terms have

a simple structure, and they can be factored out and treated separately. In the parton

shower framework, we therefore subtract these “global” contributions and exponentiate

them manually, as Dasgupta and Salam did in their original paper on NGLs [27]. Given

their di↵erent nature, it is interesting to analyze both the interjet energy flow and the jet

mass as examples and we will present LL0 and NLL0 improved results for single logarithmic

and double logarithmic observables, separately. A second motivation to also analyze the

jet mass, is that there are LEP measurements to which we can compare to, in contrast

to the interjet energy flow. Unfortunately, the typical jet mass at LEP jet is quite low

M . 10GeV, which translates to a scale of the soft radiation of Q0 ⇠ M
2
/Q . 1GeV so

that non-perturbative e↵ects are very important in the peak region of the distribution.

Our paper is organized as follows. In the next section, we will discuss LL0 resummation

for interjet energy flow and show how one implements the one-loop corrections to the hard

and soft functions. We then move to the jet mass distribution in Section 3, focussing on the

di↵erences to the single-logarithmic case. We will in particular show how to subtract global

logarithms in the parton shower and in the soft function. After presenting numerical results

in Section 4 and comparing to LEP data and PYTHIA results, we conclude in Section 5.

2 Interjet energy flow at LL0 accuracy

The perturbative expansion of the interjet energy flow in (1.1) su↵ers from large logarithms

of the ratio of the hard scale Q and the soft scale Q0. To resum these, one solves the RG

equation of the hard function and evolves it from its characteristic scale µh ⇠ Q down to

a soft scale µs ⇠ Q0. This yields the RG-improved expression [8]

�(Q,Q0) =
1X

l=2

⌦
Hl({n0}, Q, µh)⌦

1X

m�l

Ulm({n}, µs, µh) ⌦̂Sm({n}, Q0, µs)
↵
, (2.1)

where the evolution factor is defined as a path-ordered exponential of the anomalous di-

mension

U({n}, µs, µh) = P exp

Z
µh

µs

dµ

µ
�H({n}, µ)

�
. (2.2)

The RG-evolution generates additional partons and maps the l-parton configuration along

the directions {n0} = {n1, . . . , nl} into an m-parton final state along the directions {n} =

{n1, . . . , nl, nl+1, . . . , nm}. The symbol ⌦̂ in (2.1) indicates the integral over the directions

of the additional m� l partons generated in the evolution.

At the leading logarithmic level, we only need the one-loop anomalous dimension and

can rewrite the exponent as

Z
µh

µs

dµ

µ
�H =

Z
↵s(µh)

↵s(µs)

d↵

�(↵)

↵

4⇡
�(1) =

1

2�0
ln

↵s(µs)

↵s(µh)
�(1) ⌘ t�(1)

. (2.3)
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Evolving hard function from          to  µh ⇠ Q µs ⇠ Q0
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the MadGraph5 aMC@NLO event generator [26]. This provides an automated frame-

work to perform the LL resummation for single-logarithmic observables. However, collider

observables are typically double logarithmic. The LL in the jet mass distribution, for ex-

ample, are ↵n
s ln
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⇢. Even for non-global observables, these double logarithmic terms have

a simple structure, and they can be factored out and treated separately. In the parton

shower framework, we therefore subtract these “global” contributions and exponentiate

them manually, as Dasgupta and Salam did in their original paper on NGLs [27]. Given

their di↵erent nature, it is interesting to analyze both the interjet energy flow and the jet
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Leading Log Resummation

In the last step, we have introduced the evolution time t ⌘ t(µh, µs). For a given µh, there

is a one-to-one correspondence of the evolution time to the low scale µs. Obviously, for

µh = µs, we have t = 0. During the evolution, t grows and goes to infinity as µs hits the

Landau pole. For µh = MZ and two-loop running with a Landau pole at ⇤ = 0.230GeV,

the choice µs = 1GeV corresponds to t = 0.08. A plot connecting t and µs for di↵erent

values of µh can be found in Figure 1 of our previous paper [15].

In [15] we implemented the RG evolution factor U({n}, µs, µh) in the large-Nc limit
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The entries Rm and Vm are angular functions associated with the emission of a real or

virtual soft gluon and take the form

Vm = 2
X
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(Ti,L · Tj,L + Ti,R · Tj,R)

Z
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where the color matrices Ti,L act on the hard function from the left, i.e. on the amplitude,

while Ti,R acts on the conjugate amplitude. The sum runs over all unequal pairs (ij) of

the m hard partons. The anomalous dimension involves the dipole radiator

W
k

ij =
ni · nj

(ni · nk)(nj · nk)
, (2.6)

which is given by the product of the associated eikonal factors. In the virtual corrections,

one integrates over the direction nk of the emission. We note that individually Rm and

Vm su↵er from collinear divergences, which cancel in the cross section. In the Monte Carlo

implementation, one works with a collinear cuto↵ to regularize the divergences.

As long as we choose the µh and µs properly, the hard and soft functions will be

free of large logarithms and the large logarithmic terms are resummed in the evolution

factor. Because they are free of large logarithms, the higher-multiplicity hard functions

are suppressed by ↵s as Hl ⇠ ↵
l�2
s H2. At LL level, we thus only need to include the hard

function H2 and the soft function is given as the unit matrix in the color space Sm ⇠ 1.

At LL accuracy, the RG-improved result (2.1) simplifies to

�
LL(Q,Q0) =

1X

m=2

⌦
H2({n1, n2}, Q, µh)⌦U2m({n}, µs, µh) ⌦̂1

↵
. (2.7)
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divergence from the lower end of the energy integration, the total result for the divergent

part becomes

αs

4π
z
(1)
m,m({n}, Q, δ, ϵ, µ) +

αs

4π

∫
dΩ(nm+1)

4π
z
(1)
m,m+1({n, nm+1}, Q, δ, ϵ, µ)

= − αs

2πϵ

∑

(ij)

Ti · Tj

∫
dΩ(nk)

4π
W k

ij Θ
nn̄
out(nk) . (5.8)

Since the color factors are contracted with the trivial tree-level soft function, we do not need

to distinguish the left and right color generators. Note that inside the cone the real and

virtual corrections have cancelled, so that the net result only gets contributions from out-

of-cone radiation and precisely cancels against the divergence of the soft function. We see

that the renormalization indeed works at the one-loop level. We have repeated the same

exercise also for the narrow-jet case, see Appendix C. In this case, we can give explicit

expressions for the angular integrals. Again, we find that the divergences cancel as they

should.

5.2 Renormalization-group evolution at leading logarithmic level

We now discuss the anomalous-dimension matrix ΓH defined in (2.40), which governs the

RG evolution of the hard (2.38) and soft functions (2.39), and verify the agreement between

the perturbative expansion of the BMS equation and our RG-based resummation method.

In order to resum the leading logarithmic terms, the anomalous-dimension matrix is needed

up to O(αs). It can be expressed as

ΓH ({n}, Q, δ, µ) =
αs

4π
Γ(1) ({n}, Q, δ, µ) +O(α2

s) , (5.9)

where

Γ(1) =

⎛

⎜⎜⎜⎜⎜⎜
⎝

V2 R2 0 0 . . .

0 V3 R3 0 . . .

0 0 V4 R4 . . .

0 0 0 V5 . . .
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟
⎠

. (5.10)

It follows from the discussion in the previous section that, in the soft approximation, the

corresponding matrix elements are given by

Vm = Γ(1)
m,m = −2

∑

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

∫
dΩ(nk)

4π
W k

ij

[
Θnn̄

in (k) +Θnn̄
out(k)

]
,

Rm = Γ
(1)
m,m+1 = 4

∑

(ij)

Ti,L · Tj,RWm+1
ij Θnn̄

in (nm+1) . (5.11)

The anomalous dimensions Vm and Rm depend on the directions {n} = {n1, . . . , nm} and

colors of the hard partons, and the indices i, j in the sum run from 1 to m. The quantities

Rm also depend on the additional direction nm+1 of the real emission. The integration over

this direction is performed after the multiplication with the soft function. At first sight,
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↵
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⌦
Hm({n}, Q, µ)⌦ Sm({n}, Q0, µ)

↵
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In the last step, we have introduced the evolution time t ⌘ t(µh, µs). For a given µh, there

is a one-to-one correspondence of the evolution time to the low scale µs. Obviously, for

µh = µs, we have t = 0. During the evolution, t grows and goes to infinity as µs hits the

Landau pole. For µh = MZ and two-loop running with a Landau pole at ⇤ = 0.230GeV,

the choice µs = 1GeV corresponds to t = 0.08. A plot connecting t and µs for di↵erent

values of µh can be found in Figure 1 of our previous paper [15].

In [15] we implemented the RG evolution factor U({n}, µs, µh) in the large-Nc limit

using the parton shower method proposed by Dasgupta and Salam in [27]. We don’t want

to repeat the entire discussion here, but we give the algorithm in Appendix B, since we

need to extend it to compute the soft functions, as discussed below. Let us also list the

one-loop anomalous dimension, since its form will be relevant in the discussion of the jet

mass below. It is given by [8]
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The entries Rm and Vm are angular functions associated with the emission of a real or

virtual soft gluon and take the form

Vm = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k

ij ,

Rm = �4
X

(ij)

Ti,L · Tj,R W
m+1

ij
⇥in(nm+1) , (2.5)

where the color matrices Ti,L act on the hard function from the left, i.e. on the amplitude,

while Ti,R acts on the conjugate amplitude. The sum runs over all unequal pairs (ij) of

the m hard partons. The anomalous dimension involves the dipole radiator

W
k

ij =
ni · nj

(ni · nk)(nj · nk)
, (2.6)

which is given by the product of the associated eikonal factors. In the virtual corrections,

one integrates over the direction nk of the emission. We note that individually Rm and

Vm su↵er from collinear divergences, which cancel in the cross section. In the Monte Carlo

implementation, one works with a collinear cuto↵ to regularize the divergences.

As long as we choose the µh and µs properly, the hard and soft functions will be

free of large logarithms and the large logarithmic terms are resummed in the evolution

factor. Because they are free of large logarithms, the higher-multiplicity hard functions

are suppressed by ↵s as Hl ⇠ ↵
l�2
s H2. At LL level, we thus only need to include the hard

function H2 and the soft function is given as the unit matrix in the color space Sm ⇠ 1.

At LL accuracy, the RG-improved result (2.1) simplifies to

�
LL(Q,Q0) =

1X

m=2

⌦
H2({n1, n2}, Q, µh)⌦U2m({n}, µs, µh) ⌦̂1

↵
. (2.7)

– 5 –

In the last step, we have introduced the evolution time t ⌘ t(µh, µs). For a given µh, there

is a one-to-one correspondence of the evolution time to the low scale µs. Obviously, for

µh = µs, we have t = 0. During the evolution, t grows and goes to infinity as µs hits the

Landau pole. For µh = MZ and two-loop running with a Landau pole at ⇤ = 0.230GeV,

the choice µs = 1GeV corresponds to t = 0.08. A plot connecting t and µs for di↵erent

values of µh can be found in Figure 1 of our previous paper [15].

In [15] we implemented the RG evolution factor U({n}, µs, µh) in the large-Nc limit

using the parton shower method proposed by Dasgupta and Salam in [27]. We don’t want

to repeat the entire discussion here, but we give the algorithm in Appendix B, since we

need to extend it to compute the soft functions, as discussed below. Let us also list the

one-loop anomalous dimension, since its form will be relevant in the discussion of the jet

mass below. It is given by [8]

�(1) =

0

BBBBBB@

V2 R2 0 0 . . .

0 V3 R3 0 . . .

0 0 V4 R4 . . .

0 0 0 V5 . . .

...
...

...
...

. . .

1

CCCCCCA
. (2.4)

The entries Rm and Vm are angular functions associated with the emission of a real or

virtual soft gluon and take the form

Vm = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k

ij ,

Rm = �4
X

(ij)

Ti,L · Tj,R W
m+1

ij
⇥in(nm+1) , (2.5)

where the color matrices Ti,L act on the hard function from the left, i.e. on the amplitude,

while Ti,R acts on the conjugate amplitude. The sum runs over all unequal pairs (ij) of

the m hard partons. The anomalous dimension involves the dipole radiator

W
k

ij =
ni · nj

(ni · nk)(nj · nk)
, (2.6)

which is given by the product of the associated eikonal factors. In the virtual corrections,

one integrates over the direction nk of the emission. We note that individually Rm and

Vm su↵er from collinear divergences, which cancel in the cross section. In the Monte Carlo

implementation, one works with a collinear cuto↵ to regularize the divergences.

As long as we choose the µh and µs properly, the hard and soft functions will be

free of large logarithms and the large logarithmic terms are resummed in the evolution

factor. Because they are free of large logarithms, the higher-multiplicity hard functions

are suppressed by ↵s as Hl ⇠ ↵
l�2
s H2. At LL level, we thus only need to include the hard

function H2 and the soft function is given as the unit matrix in the color space Sm ⇠ 1.

At LL accuracy, the RG-improved result (2.1) simplifies to

�
LL(Q,Q0) =

1X

m=2

⌦
H2({n1, n2}, Q, µh)⌦U2m({n}, µs, µh) ⌦̂1

↵
. (2.7)

– 5 –

One-loop anomalous dim. :

In the last step, we have introduced the evolution time t ⌘ t(µh, µs). For a given µh, there

is a one-to-one correspondence of the evolution time to the low scale µs. Obviously, for

µh = µs, we have t = 0. During the evolution, t grows and goes to infinity as µs hits the

Landau pole. For µh = MZ and two-loop running with a Landau pole at ⇤ = 0.230GeV,

the choice µs = 1GeV corresponds to t = 0.08. A plot connecting t and µs for di↵erent

values of µh can be found in Figure 1 of our previous paper [15].

In [15] we implemented the RG evolution factor U({n}, µs, µh) in the large-Nc limit

using the parton shower method proposed by Dasgupta and Salam in [27]. We don’t want

to repeat the entire discussion here, but we give the algorithm in Appendix B, since we

need to extend it to compute the soft functions, as discussed below. Let us also list the

one-loop anomalous dimension, since its form will be relevant in the discussion of the jet

mass below. It is given by [8]

�(1) =

0

BBBBBB@

V2 R2 0 0 . . .

0 V3 R3 0 . . .

0 0 V4 R4 . . .

0 0 0 V5 . . .

...
...

...
...

. . .

1

CCCCCCA
. (2.4)

The entries Rm and Vm are angular functions associated with the emission of a real or

virtual soft gluon and take the form

Vm = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k

ij ,

Rm = �4
X

(ij)

Ti,L · Tj,R W
m+1

ij
⇥in(nm+1) , (2.5)

where the color matrices Ti,L act on the hard function from the left, i.e. on the amplitude,

while Ti,R acts on the conjugate amplitude. The sum runs over all unequal pairs (ij) of

the m hard partons. The anomalous dimension involves the dipole radiator

W
k

ij =
ni · nj

(ni · nk)(nj · nk)
, (2.6)

which is given by the product of the associated eikonal factors. In the virtual corrections,

one integrates over the direction nk of the emission. We note that individually Rm and

Vm su↵er from collinear divergences, which cancel in the cross section. In the Monte Carlo

implementation, one works with a collinear cuto↵ to regularize the divergences.

As long as we choose the µh and µs properly, the hard and soft functions will be

free of large logarithms and the large logarithmic terms are resummed in the evolution

factor. Because they are free of large logarithms, the higher-multiplicity hard functions

are suppressed by ↵s as Hl ⇠ ↵
l�2
s H2. At LL level, we thus only need to include the hard

function H2 and the soft function is given as the unit matrix in the color space Sm ⇠ 1.

At LL accuracy, the RG-improved result (2.1) simplifies to

�
LL(Q,Q0) =

1X

m=2

⌦
H2({n1, n2}, Q, µh)⌦U2m({n}, µs, µh) ⌦̂1

↵
. (2.7)

– 5 –

dipole:

VmHm ⇠

X

a

T a
i · T a

j |Mmi hMm| + |Mmi hMm|

X

a

T a
i · T a

jvirtual:

RmHm ⇠ T a
i |Mmi hMm| T a

jreal:
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Hm(t) = Hm(t)Vm +Hm�1(t)Rm�1 . (21)
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Z
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dt
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Hm�1(t

0)Rm�1e
(t�t

0)Vn (22)
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What is a shower?

A parton shower consists of three main features:

1. An ordering variable which defines the sequence according to which
emissions are generated (such as kt , angle, virtuality).

2. A branching probability P(Sn .v) of finding a state Sn with n partons at
scale v, which evolves as

dP(Sn , v)
d ln 1/v

⇤ � f (Sn , v)P(Sn , v) .

3. A kinematic mapping M from state Sn to Sn+1

Sn+1 ⇤ M(Sn , v; i , j, z , �|{z}
emission

) .

with an associated “splitting” weight function dP(Sn , v; i , j, z , �),
governing relative probabilities of new states.

Frédéric Dreyer 3/12

RG evolution = Parton Shower

“Renormalization Scale”

Vm

Rm

JHEP08(2018)104

nevertheless use the scalar product notation Ti,L · Tj,R since it allows us to suppress the

color indices, which is one of the advantages of the color-space formalism. However, when

applying the real emission operator Rm one needs to keep in mind that one changes into

new color space and that subsequent applications of color matrices can act on the new

color index.

We have explicitly indicated the imaginary part of the virtual diagrams in the anoma-

lous dimension (3.2). The corresponding Glauber phase arises from cutting the two lines

between which the virtual gluon is exchanged and arises when i and j are both incoming or

outgoing, and the factor Πij is defined to be 1 in this case and 0 otherwise. For e+e− colli-

sions, this part immediately vanishes due to color conservation
∑

i Ti = 0 but it is present

in hadronic collisions and induces the super-leading logarithms discovered in [29, 30].

Let us now discuss the solution of the RG at leading logarithmic accuracy. Using the

simple structure of the anomalous dimension matrix (3.1) and changing variables from µ

to t, the RG equation (2.5) reads

d

dt
Hm(t) = Hm(t)Vm +Hm−1(t)Rm−1 , (3.6)

where we have suppressed the dependence on the other variables. The solution of the

homogenous part of the equation is simply an exponential and we can thus rewrite (3.6) as

Hm(t) = Hm(t0) e
(t−t0)Vm +

∫ t

t0

dt′Hm−1(t
′)Rm−1 e

(t−t′)Vm . (3.7)

This is the form in which parton-shower equations are usually presented: we evolve from

t0 to time t either without an emission (the first part), or by adding an additional emission

to a lower-leg amplitude. In this context e(t−t
′)Vm is usually called the Sudakov factor, but

since our problem is single logarithmic, this nomenclature does not quite fit. To map to

expression (2.8), we note that

Hm(t) ≡ Hk({n}, Q, µh)Ukm({n}, µs, µh) , (3.8)

and that the initial condition is Hm(0) = 0 for all m > k. To solve the equation for a

process with k jets, one starts with m = k and then uses (3.7) iteratively to generate all

higher functions

Hk(t) = Hk(0) e
tVk ,

Hk+1(t) =

∫ t

0
dt′Hk(t

′)Rk e
(t−t′)Vk+1 , (3.9)

Hk+2(t) =

∫ t

0
dt′Hk+1(t

′)Rk+1 e
(t−t′)Vk+2 ,

Hk+3(t) = . . . .

– 7 –
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Leading Log Shower

1. start at       with initial event                and weight 
2. increase     according to 
3. choose a dipole           with probability
4. generate a new vector, if it’s inside the jet, add it to the event, and return 

step 2. Otherwise, add the weight factor at time t, go to step 1

VE exp(�VEt)

E = {n1, n2}
�t

Vij/VE{ni, nj}

t = 0 w = 1

�LL (Q,Q0) =
1X

m=k

⌦
Hm ({n}, Q, µs) ⌦̂1

↵
= hH2(t) +

Z
d⌦1

4⇡
H3(t) +

Z
d⌦1

4⇡

Z
d⌦2

4⇡
H4(t) + . . .i

MC time
H2(t) = H2(0)e

tV2

H3(t) =

Z t

0
dt0H2 (t

0)R2e(
t�t0)V3

H4(t) =

Z t

0
dt0H3 (t

0)R3e(
t�t0)V4

outside jet:
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From LL to NLL: Sub-leading NGLs

• In order to resum sub-leading NGLs, one needs

• One-loop soft function

• One-loop hard function       and tree level hard function

• Two-loop anomalous dimensions:

• Monte-Carlo implementation of all ingredients

S(1)
m

For the moment, we will work in the large Nc limit. Using component notation, the

leading-order RG can then be written in the form

d

dt
Hm(t) = Hm(t)Vm +Hm−1(t)Rm−1 . (2.4)

Also the second term lives in them-parton space because Rm−1 adds an additional emission

to Hm−1(t). To write this in a form suitable for MC implementation, let us now consider

the evolution from a time t1 to time t. The solution for this can be written in the form

Hm(t) = Hm(t1)e
(t−t1)Vn +

∫ t

t1

dt′Hm−1(t
′)Rm−1e

(t−t′)Vn (2.5)

It is easy to verify that Hm(t) defined in this way fulfills the RG equation (2.4) by taking

the derivative with respect to t. This form is exactly what is implemented in a standard

parton shower Monte-Carlos. The first term is the contribution in which no emission

occurred between t1 and t, while the second term is the contribution from all terms which

had their last emission at t′ between t1 and t.

Together with the LO initial conditions that H2(0) = σ0, while all higher hard func-

tions vanish for t = 0, equation (2.5) provides a natural framework for a Monte-Carlos

computation of the hard functions. One first obtains a MC sample of

H2(t) = σ0 e
tV2 (2.6)

by generating a set of random values of t according the distribution p2(∆t) = V2etV2 . For

each of these, one then generates H3(t+∆t)’s by adding a first emission at t and generating

a next step ∆t with distribution p3(∆t) = V3e∆tV3 .

3 Two-loop anomalous dimension matrix

We expand the anomalous dimension matrix as

Γ =
αs

4π
Γ(1) +

(αs

4π

)2
Γ(2) (3.1)

The one- and two-loop matrices have the form

Γ(1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

V2 R2 0 0 . . .

0 V3 R3 0 . . .

0 0 V4 R4 . . .

0 0 0 V5 . . .
...

...
...

...
. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, Γ(2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

v2 r2 d2 0 . . .

0 v3 r3 d2 . . .

0 0 v4 r4 . . .

0 0 0 v5 . . .
...

...
...

...
. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (3.2)

Where we now put superscripts to distinguish the one and two-loop entries. The

quantities vm encode divergencies due to two-loop virtual corrections, rm includes the one-

loop corrections to single emissions and the double branching terms d2 describe divergences

in the correlated emission of two gluons.

– 4 –
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⇠ H
(1)

2
⌦ U2m ⌦̂S

(0)

m

⇠ H
(1)

3
⌦ U3m ⌦̂S

(0)

m

⇠ H
(0)

2
⌦ U2m ⌦̂S

(1)

m

Figure 2. Pictorial representations of the di↵erent ingredients for LL0 resummation of the interjet
energy flow. The diagrams on the three lines correspond to the one-loop corrections from H

(1)
2 ,

H
(1)
3 and S

(1)
m

, respectively. The virtual corrections to Sm are scaleless and vanish.

To extend these results to NLL, one needs two ingredients: the one-loop matching cor-

rections and the corrections to the RG running due to the two-loop anomalous dimensions.

The present paper focuses on the first set of corrections, i.e. LL0 accuracy. Specifically, we

need one-loop corrections to H2, the tree-level result for H3 and the one-loop soft functions

Sm. We write their perturbative expansions in the form

H2 = �0

⇣
H

(0)

2
+

↵s

4⇡
H

(1)

2
+ · · ·

⌘
, H3 = �0

⇣
↵s

4⇡
H

(1)

3
+ · · ·

⌘
,

Sm = 1+
↵s

4⇡
S

(1)

m + · · · . (2.8)

In this notation, the full LL0 resummed cross section takes the form

�
LL

0
(Q,Q0)

�0
=

1X

m=2

⌦
H

(0)

2
({n1, n2}, Q, µh) ⌦ U2m({n}, µs, µh) ⌦̂1

↵

+
↵s(µh)

4⇡

1X

m=2

⌦
H

(1)

2
({n1, n2}, Q, µh) ⌦ U2m({n}, µs, µh) ⌦̂1

↵

+
↵s(µh)

4⇡

1X

m=3

⌦
H

(1)

3
({n1, n2, n3}, Q, µh) ⌦ U3m({n}, µs, µh) ⌦̂1

↵

+
↵s(µs)

4⇡

1X

m=2

⌦
H

(0)

2
({n1, n2}, Q, µh) ⌦ U2m({n}, µs, µh) ⌦̂S

(1)

m ({n}, Q0, µs)
↵
.

(2.9)

– 6 –

LL’ resummation
µh ⇠ Q µs ⇠ Q0
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Soft corrections

We evaluate the one-loop soft function numerically within our Monte Carlo code. It is well

suited for this task since it generates emissions between neighbouring dipoles in an e�cient

way, by randomly choosing the rapidity ŷ and azimuthal angle �̂ of the emission in the

COM (center-of-mass) frame of the emitting dipole (ni, nj). Here and in the following, we

will use hats to indicate kinematic quantities in the COM frame. Our hard function shower

keeps emitting additional hard partons until one of them enters the veto region at which

point it terminates. In our implementation, we use this last parton in the veto region to

obtain the NLO correction to the soft function. At NLO, the renormalized soft function

can be expressed as

S(1)

m ({n}, Q0, µ) =
Nc

2

mX

i,j=1

�i,j±1

Z
dŷ

Z
2⇡

0

d�̂

2⇡

"
�4 ln

µ

Q0

+ 4 ln
2 | sin �̂|
fij(�̂, ŷ)

#
⇥lab

out(ŷ, �̂) ,

(2.25)

with ⇥lab
out(ŷ, �̂) constraining soft radiation to be outside of the jet cone in the lab frame.

In the Monte Carlo implementation, the factor in square brackets is a weight factor for

the corresponding emission. The auxiliary function fij(�̂, ŷ) connects the transverse mo-

mentum k̂T in the COM frame to the energy Q0 in the lab frame, k̂T fij(�̂, ŷ)  Q0, and is

given by fij(�̂, ŷ) =
2

M

⇣
�� cos �̂+ cosh ŷ

⌘
, where M2 = 2ni ·nj is the invariant “mass” of

the dipole pair, and � =
p

1�M2/4. The logarithm of | sin �̂| arises from expanding the

azimuthal angular integration in ✏, which is related to the space-time dimension through

d = 4� 2✏. A detailed derivation of expression (2.25) can be found in Appendix A.

While our slicing implementation of the hard function is simple but specific to the dijet

processes and certainly not optimal, the above procedure to obtain the NLO soft function

is simple, e�cient and general. Compared to the LL parton shower code, including the

one-loop soft function correction (2.25) yields

1X

m=2

⌦
Hm(t) ⌦̂S

(1)

m

↵
=

⌦
H2(t)S

(1)

2
+

Z
d⌦1

4⇡
H3(t)S

(1)

3
+

Z
d⌦1

4⇡

Z
d⌦2

4⇡
H4(t)S

(1)

4
+ . . .

↵
,

(2.26)

where one evolves the hard function from hard scale to soft scale and multiplies it with the

soft function S
(1)

m of the corresponding multiplicity. When running our Monte Carlo code

we fill three histograms, one for the LL shower, one for the logarithmic part of (2.25) and

one for the non-logarithmic part. Further details of the Monte Carlo algorithm, including

the implementation of the one-loop soft function are given in Appendix B.

The computer time needed to run the shower including the one-loop corrections de-

pends on the maximum evolution time needed in the computation. For the interjet energy

flow, we run the shower until t = 0.08, corresponding to µs ⇡ 1GeV. For a collinear cuto↵

at ⌘cut = 4 (⌘cut = 5) in the parton shower we then end up with about 15 (30) hard partons

per event on average. To resolve the peak region of the jet mass, discussed in the next

section, we run to extremely low scales µs = 0.275GeV, corresponding to t = 0.3, near

the Landau pole at ⇤ = 0.230GeV. At this scale, hundreds of partons are generated in

– 11 –

One-loop soft function corrections:

Definition:

↵s

4⇡
S(1)

m ({n}, Q0, ✏) = �g2s µ̃
2✏
X

(ij)

Ti,L · Tj,R

Z
ddk

(2⇡)d�1
�(k2)✓(k0)

ni · nj

ni · k nj · k
⇥out(nk)✓(Q0 � Ek)

in the hard function into the Monte Carlo is to use a slicing method. To explain it in a

simple setting, let us for the moment only consider the v dependence and forget about the

variable u. Then the convolution (2.19) takes the form

H(1)

3
⌦ bS3 =

Z
1

0

dv

"
A �(v) +B(v) +

1X

i=0

Ci(v)

✓
lni v

v

◆

+

#
bS3(v), (2.21)

where B(v) represents a regular function. Thanks to relation (2.20) the A term can be

combined with the LL parton shower result involving bS2 and the contribution from B(v)

can be computed by randomly generating v-values and running the shower for each chosen

configuration. The slicing method introduces a lower cuto↵ v0 into the plus distribution

integrals Ci(v) to ensure v that can not go to zero. With the cuto↵ in place, we can

integrate the subtraction term, e.g.

Z
1

0

dv

v

h
bS3(v)� bS2

i
=

Z
1

v0

dv

v

bS3(v) + ln v0 bS2 +O(v0), (2.22)

where one can use the same Monte Carlo method as for the B(v) terms to simulate the

first term with the collinear cuto↵ v0, and then adds back the second term which is given

by the LL parton shower result, multiplied by a logarithm of the cuto↵ parameter. The

v0 dependence will cancel out between the two terms up to power corrections. The power

corrections in the artificial parameter v0 can be neglected as long as one chooses it small

enough. The slicing method involves large cancellations between the two terms on the

right-hand side of (2.22), so for numerical stability reasons one should not choose v0 too

small. These two opposing requirements make slicing methods delicate, but we compared

to the result using the interpolated soft function bS3 and found good consistence. The

cuto↵ independence is demonstrated in Figure 12 in Appendix A.

Up to now we have disregarded the u-dependence, but the Monte Carlo implementation

of the full equations (2.13), (2.15) and (2.17) involves nothing beyond the above discussion,

except that we have to consider both integrations. As (2.20) shows, the soft function

becomes trivial for v ! 0 and we can combine all �(v) dependent terms with the parton

shower for bS2. We thus only need to apply the slicing method to the �(u)
�
lni v/v

�
+

and

(1/u)+(1/v)+ terms. The corresponding cuto↵ dependent compensation terms are collected

in Appendix A.

The final ingredient we need to implement is the one-loop soft function, which is defined

as a sum over all dipoles

↵s

4⇡
S

(1)

m ({n}, Q0, ✏) =

� g
2

s µ̃
2✏
X

(ij)

Ti,L · Tj,R

Z
d
d
k

(2⇡)d�1
�(k2)✓(k0)

ni · nj

ni · k nj · k
⇥out(nk)✓(Q0 � Ek) , (2.23)

where the sum runs over all unordered pairs (ij). In the large-Nc limit only neighbouring

legs give a contribution

Ti,L · Tj,R ! �Nc

2
�i,j±1 . (2.24)
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c.m. frame of parent dipole (ni, nj)

We evaluate the one-loop soft function numerically within our Monte Carlo code. It is well

suited for this task since it generates emissions between neighbouring dipoles in an e�cient

way, by randomly choosing the rapidity ŷ and azimuthal angle �̂ of the emission in the

COM (center-of-mass) frame of the emitting dipole (ni, nj). Here and in the following, we

will use hats to indicate kinematic quantities in the COM frame. Our hard function shower

keeps emitting additional hard partons until one of them enters the veto region at which

point it terminates. In our implementation, we use this last parton in the veto region to

obtain the NLO correction to the soft function. At NLO, the renormalized soft function

can be expressed as

S(1)

m ({n}, Q0, µ) =
Nc

2

mX

i,j=1

�i,j±1

Z
dŷ

Z
2⇡

0

d�̂

2⇡

"
�4 ln

µ

Q0

+ 4 ln
2 | sin �̂|
fij(�̂, ŷ)

#
⇥lab

out(ŷ, �̂) ,

(2.25)

with ⇥lab
out(ŷ, �̂) constraining soft radiation to be outside of the jet cone in the lab frame.

In the Monte Carlo implementation, the factor in square brackets is a weight factor for

the corresponding emission. The auxiliary function fij(�̂, ŷ) connects the transverse mo-

mentum k̂T in the COM frame to the energy Q0 in the lab frame, k̂T fij(�̂, ŷ)  Q0, and is

given by fij(�̂, ŷ) =
2

M

⇣
�� cos �̂+ cosh ŷ

⌘
, where M2 = 2ni ·nj is the invariant “mass” of

the dipole pair, and � =
p

1�M2/4. The logarithm of | sin �̂| arises from expanding the

azimuthal angular integration in ✏, which is related to the space-time dimension through

d = 4� 2✏. A detailed derivation of expression (2.25) can be found in Appendix A.

While our slicing implementation of the hard function is simple but specific to the dijet

processes and certainly not optimal, the above procedure to obtain the NLO soft function

is simple, e�cient and general. Compared to the LL parton shower code, including the

one-loop soft function correction (2.25) yields

1X

m=2

⌦
Hm(t) ⌦̂S

(1)

m

↵
=

⌦
H2(t)S

(1)

2
+

Z
d⌦1

4⇡
H3(t)S

(1)

3
+

Z
d⌦1

4⇡

Z
d⌦2

4⇡
H4(t)S

(1)

4
+ . . .

↵
,

(2.26)

where one evolves the hard function from hard scale to soft scale and multiplies it with the

soft function S
(1)

m of the corresponding multiplicity. When running our Monte Carlo code

we fill three histograms, one for the LL shower, one for the logarithmic part of (2.25) and

one for the non-logarithmic part. Further details of the Monte Carlo algorithm, including

the implementation of the one-loop soft function are given in Appendix B.

The computer time needed to run the shower including the one-loop corrections de-

pends on the maximum evolution time needed in the computation. For the interjet energy

flow, we run the shower until t = 0.08, corresponding to µs ⇡ 1GeV. For a collinear cuto↵

at ⌘cut = 4 (⌘cut = 5) in the parton shower we then end up with about 15 (30) hard partons

per event on average. To resolve the peak region of the jet mass, discussed in the next

section, we run to extremely low scales µs = 0.275GeV, corresponding to t = 0.3, near

the Landau pole at ⇤ = 0.230GeV. At this scale, hundreds of partons are generated in

– 11 –

weight factor
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Soft corrections

We evaluate the one-loop soft function numerically within our Monte Carlo code. It is well

suited for this task since it generates emissions between neighbouring dipoles in an e�cient
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Z
dŷ
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d�̂

2⇡
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2 | sin �̂|
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⇥lab
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+

Z
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where one evolves the hard function from hard scale to soft scale and multiplies it with the
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m of the corresponding multiplicity. When running our Monte Carlo code

we fill three histograms, one for the LL shower, one for the logarithmic part of (2.25) and

one for the non-logarithmic part. Further details of the Monte Carlo algorithm, including

the implementation of the one-loop soft function are given in Appendix B.

The computer time needed to run the shower including the one-loop corrections de-

pends on the maximum evolution time needed in the computation. For the interjet energy

flow, we run the shower until t = 0.08, corresponding to µs ⇡ 1GeV. For a collinear cuto↵

at ⌘cut = 4 (⌘cut = 5) in the parton shower we then end up with about 15 (30) hard partons

per event on average. To resolve the peak region of the jet mass, discussed in the next

section, we run to extremely low scales µs = 0.275GeV, corresponding to t = 0.3, near

the Landau pole at ⇤ = 0.230GeV. At this scale, hundreds of partons are generated in
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where B(v) represents a regular function. Thanks to relation (2.20) the A term can be

combined with the LL parton shower result involving bS2 and the contribution from B(v)

can be computed by randomly generating v-values and running the shower for each chosen

configuration. The slicing method introduces a lower cuto↵ v0 into the plus distribution

integrals Ci(v) to ensure v that can not go to zero. With the cuto↵ in place, we can

integrate the subtraction term, e.g.

Z
1

0

dv

v

h
bS3(v)� bS2

i
=

Z
1

v0

dv

v

bS3(v) + ln v0 bS2 +O(v0), (2.22)

where one can use the same Monte Carlo method as for the B(v) terms to simulate the

first term with the collinear cuto↵ v0, and then adds back the second term which is given

by the LL parton shower result, multiplied by a logarithm of the cuto↵ parameter. The

v0 dependence will cancel out between the two terms up to power corrections. The power

corrections in the artificial parameter v0 can be neglected as long as one chooses it small

enough. The slicing method involves large cancellations between the two terms on the

right-hand side of (2.22), so for numerical stability reasons one should not choose v0 too

small. These two opposing requirements make slicing methods delicate, but we compared

to the result using the interpolated soft function bS3 and found good consistence. The

cuto↵ independence is demonstrated in Figure 12 in Appendix A.

Up to now we have disregarded the u-dependence, but the Monte Carlo implementation

of the full equations (2.13), (2.15) and (2.17) involves nothing beyond the above discussion,

except that we have to consider both integrations. As (2.20) shows, the soft function

becomes trivial for v ! 0 and we can combine all �(v) dependent terms with the parton

shower for bS2. We thus only need to apply the slicing method to the �(u)
�
lni v/v

�
+

and

(1/u)+(1/v)+ terms. The corresponding cuto↵ dependent compensation terms are collected

in Appendix A.

The final ingredient we need to implement is the one-loop soft function, which is defined

as a sum over all dipoles

↵s

4⇡
S

(1)

m ({n}, Q0, ✏) =

� g
2

s µ̃
2✏
X

(ij)

Ti,L · Tj,R

Z
d
d
k

(2⇡)d�1
�(k2)✓(k0)

ni · nj

ni · k nj · k
⇥out(nk)✓(Q0 � Ek) , (2.23)

where the sum runs over all unordered pairs (ij). In the large-Nc limit only neighbouring

legs give a contribution

Ti,L · Tj,R ! �Nc

2
�i,j±1 . (2.24)
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c.m. frame of parent dipole (ni, nj)

We evaluate the one-loop soft function numerically within our Monte Carlo code. It is well

suited for this task since it generates emissions between neighbouring dipoles in an e�cient

way, by randomly choosing the rapidity ŷ and azimuthal angle �̂ of the emission in the

COM (center-of-mass) frame of the emitting dipole (ni, nj). Here and in the following, we

will use hats to indicate kinematic quantities in the COM frame. Our hard function shower

keeps emitting additional hard partons until one of them enters the veto region at which

point it terminates. In our implementation, we use this last parton in the veto region to

obtain the NLO correction to the soft function. At NLO, the renormalized soft function

can be expressed as

S(1)

m ({n}, Q0, µ) =
Nc

2

mX

i,j=1

�i,j±1

Z
dŷ

Z
2⇡

0

d�̂

2⇡

"
�4 ln

µ

Q0

+ 4 ln
2 | sin �̂|
fij(�̂, ŷ)

#
⇥lab

out(ŷ, �̂) ,

(2.25)

with ⇥lab
out(ŷ, �̂) constraining soft radiation to be outside of the jet cone in the lab frame.

In the Monte Carlo implementation, the factor in square brackets is a weight factor for

the corresponding emission. The auxiliary function fij(�̂, ŷ) connects the transverse mo-

mentum k̂T in the COM frame to the energy Q0 in the lab frame, k̂T fij(�̂, ŷ)  Q0, and is

given by fij(�̂, ŷ) =
2

M

⇣
�� cos �̂+ cosh ŷ

⌘
, where M2 = 2ni ·nj is the invariant “mass” of

the dipole pair, and � =
p

1�M2/4. The logarithm of | sin �̂| arises from expanding the

azimuthal angular integration in ✏, which is related to the space-time dimension through

d = 4� 2✏. A detailed derivation of expression (2.25) can be found in Appendix A.

While our slicing implementation of the hard function is simple but specific to the dijet

processes and certainly not optimal, the above procedure to obtain the NLO soft function

is simple, e�cient and general. Compared to the LL parton shower code, including the

one-loop soft function correction (2.25) yields

1X

m=2

⌦
Hm(t) ⌦̂S

(1)

m

↵
=

⌦
H2(t)S

(1)

2
+

Z
d⌦1

4⇡
H3(t)S

(1)

3
+

Z
d⌦1

4⇡

Z
d⌦2

4⇡
H4(t)S

(1)

4
+ . . .

↵
,

(2.26)

where one evolves the hard function from hard scale to soft scale and multiplies it with the

soft function S
(1)

m of the corresponding multiplicity. When running our Monte Carlo code

we fill three histograms, one for the LL shower, one for the logarithmic part of (2.25) and

one for the non-logarithmic part. Further details of the Monte Carlo algorithm, including

the implementation of the one-loop soft function are given in Appendix B.

The computer time needed to run the shower including the one-loop corrections de-

pends on the maximum evolution time needed in the computation. For the interjet energy

flow, we run the shower until t = 0.08, corresponding to µs ⇡ 1GeV. For a collinear cuto↵

at ⌘cut = 4 (⌘cut = 5) in the parton shower we then end up with about 15 (30) hard partons

per event on average. To resolve the peak region of the jet mass, discussed in the next

section, we run to extremely low scales µs = 0.275GeV, corresponding to t = 0.3, near

the Landau pole at ⇤ = 0.230GeV. At this scale, hundreds of partons are generated in
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weight factor
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4. generate a new vector, if it’s inside the jet, add it to the event, and return 

step 2. Otherwise, add the weight factor at time t, go to step 1

VE exp(�VEt)

E = {n1, n2}
�t

Vij/VE{ni, nj}

t = 0 w = 1
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Figure 5. Left panel: Hard function corrections, with bands arising from hard scale variation.
Right panel: Soft function corrections, with bands from soft scale variation.

small cone angles, or equivalently large rapidity gaps, in order not to have to deal with

large collinear logarithms. In our plots we show the gap fraction

R(Q0) =
1

�tot
�(Q,Q0) ⌘

Z
Q0

0

dEs

1

�tot

d�

dEs

, (4.1)

which is the fraction of events in which the soft radiation outside the jets has an energy Es

below the cuto↵ Q0. By definition, the amount of energy in the gap must be below Q/2,

otherwise the thrust axis, which defines our jet axis, would flip. The fixed order result is

therefore R(Q0 = Q/2) = 1 at any order in perturbation theory. The O(↵0
s) result with

just two back-to-back partons is of course R(Q0) = 1, a nontrivial Q0 dependence only

arises at O(↵s) when the third parton is inside the gap. We will refer to the O(↵s) result

as LO.

As a first step, let us check the size of the individual corrections and investigate whether

the scale dependence is reduced after including them. In Figure 5 we show the hard and

soft corrections separately and then plot the scale bands from varying the associated scales

by a factor two around their default values µh = Q and µs = Q0. Compared to the LL

scale bands shown in red, the scale dependence is reduced in both cases after including the

corrections. We observe that the hard corrections are quite significant and positive, while

the soft corrections are moderate and negative. The hard corrections have two sources,

virtual corrections to H2 and real emission contributions encoded in H3. The first of these

is just a constant factor multiplying the LL result, while the second one comes together

with the higher soft function S3. Both corrections are positive. At high values of Q0 the

three parton contribution from H3 is about twice as large as the one from the one-loop

correction to H2 and it becomes more dominant at smaller values.

It is clear that the large hard function corrections at Q0 . Q/2 must be compensated

by terms which are power suppressed in Q0/Q and are not captured by the resummation

based on the factorization formula (1.1), which arises in the limit Q0 ! 0. One can obtain

these power suppressed terms by matching to the fixed-order result. More precisely, one
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Z Q0
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dEs

1

�tot
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dEs

Bands from variation of  
soft scales by factor two 
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Hard corrections

Virtual corrections to      give trivial refactors H2

1X

m=2

⌦
H2({n1, n2}, Q, µh) ⌦ U2m({n}, µs, µh) ⌦̂1

↵
= �0H2(Q,µh)

⌦
U2m({n}, µs, µh) ⌦̂1

↵

I: E1 > E2 > E3 II : E1 > E3 > E2 III: E3 > E1 > E2

q(p1)

q̄(p2)

g(p3)

Figure 3. Kinematical configurations in the three di↵erent regions with di↵erent energy ordering.
Particles with the smallest energy are drawn in red.

We used here that the leading-order soft function S
(0)

m is the unit matrix 1 in color space.

The first line contains to the LL result (2.7), and the remaining three lines show the

di↵erent NLO corrections, which are depicted in Figure 2.

The hard functions Hm include the momentum conservation and phase-space con-

straints on the hard partons. For two partons, these constraints render the integrals over

the parton directions trivial. The momentum and jet direction constraints impose that the

vectors n1 and n2 must point along the thrust axis and in opposite directions so that

hH2({n1, n2}, Q, µ)⌦ S2({n1, n2}, Q0, µ)i = �0H2(Q
2
, µ)hS2({n̄, n}, Q0, µ)i , (2.10)

where we have used that also the color structure is trivial for two hard partons. The

function H2(Q2
, µ) is the standard dijet hard function

H2(Q
2
, µ) = 1 +

↵s

4⇡
CF


�8 ln2

µ

Q
� 12 ln

µ

Q
� 16 +

7

3
⇡
2

�
, (2.11)

which arises also for global observables such as the event shape thrust. In the large-Nc

limit, we should replace CF ! Nc/2.

In [8] we have derived an expression for the hard function H
(1)

3
, which corresponds

to the QCD process �
⇤ ! q(p1)q̄(p2)g(p3). By definition H

(1)

3
only depends on angular

information of the three partons, since their energies have already been integrated over.

For convenience we split the phase space integration into di↵erent regions according to

the direction of the thrust axis, which for three-parton final states points in the opposite

direction of the most energetic parton. Due to momentum conservation, the three partons

must be in a plane. Using invariance of the cross section under rotation around the thrust

axis, in Region I only the angles ✓2 and ✓3, between the partons and the thrust axis, are

not fixed.

For convenience we parameterize these angles in terms of two variables u and v each

going from 0 to 1 and defined as

✓̂2 ⌘ tan
✓2

2
= u v, ✓̂3 ⌘ tan

✓3

2
= v, (2.12)

where the variable v is directly related to the larger angle ✓3, while u characterises the

relative size of the angles. Please note that the variables u and v di↵er from the quantities
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di↵erent NLO corrections, which are depicted in Figure 2.
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straints on the hard partons. For two partons, these constraints render the integrals over

the parton directions trivial. The momentum and jet direction constraints impose that the
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hH2({n1, n2}, Q, µ)⌦ S2({n1, n2}, Q0, µ)i = �0H2(Q
2
, µ)hS2({n̄, n}, Q0, µ)i , (2.10)

where we have used that also the color structure is trivial for two hard partons. The

function H2(Q2
, µ) is the standard dijet hard function
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⇡
2

�
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which arises also for global observables such as the event shape thrust. In the large-Nc

limit, we should replace CF ! Nc/2.

In [8] we have derived an expression for the hard function H
(1)

3
, which corresponds

to the QCD process �
⇤ ! q(p1)q̄(p2)g(p3). By definition H

(1)

3
only depends on angular

information of the three partons, since their energies have already been integrated over.

For convenience we split the phase space integration into di↵erent regions according to

the direction of the thrust axis, which for three-parton final states points in the opposite

direction of the most energetic parton. Due to momentum conservation, the three partons

must be in a plane. Using invariance of the cross section under rotation around the thrust

axis, in Region I only the angles ✓2 and ✓3, between the partons and the thrust axis, are

not fixed.

For convenience we parameterize these angles in terms of two variables u and v each

going from 0 to 1 and defined as

✓̂2 ⌘ tan
✓2

2
= u v, ✓̂3 ⌘ tan

✓3

2
= v, (2.12)

where the variable v is directly related to the larger angle ✓3, while u characterises the

relative size of the angles. Please note that the variables u and v di↵er from the quantities
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The hard functions Hm include the momentum conservation and phase-space con-

straints on the hard partons. For two partons, these constraints render the integrals over

the parton directions trivial. The momentum and jet direction constraints impose that the

vectors n1 and n2 must point along the thrust axis and in opposite directions so that

hH2({n1, n2}, Q, µ)⌦ S2({n1, n2}, Q0, µ)i = �0H2(Q
2
, µ)hS2({n̄, n}, Q0, µ)i , (2.10)

where we have used that also the color structure is trivial for two hard partons. The

function H2(Q2
, µ) is the standard dijet hard function
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which arises also for global observables such as the event shape thrust. In the large-Nc

limit, we should replace CF ! Nc/2.

In [8] we have derived an expression for the hard function H
(1)

3
, which corresponds

to the QCD process �
⇤ ! q(p1)q̄(p2)g(p3). By definition H

(1)

3
only depends on angular

information of the three partons, since their energies have already been integrated over.

For convenience we split the phase space integration into di↵erent regions according to

the direction of the thrust axis, which for three-parton final states points in the opposite

direction of the most energetic parton. Due to momentum conservation, the three partons

must be in a plane. Using invariance of the cross section under rotation around the thrust

axis, in Region I only the angles ✓2 and ✓3, between the partons and the thrust axis, are

not fixed.

For convenience we parameterize these angles in terms of two variables u and v each

going from 0 to 1 and defined as
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di↵erent NLO corrections, which are depicted in Figure 2.

The hard functions Hm include the momentum conservation and phase-space con-

straints on the hard partons. For two partons, these constraints render the integrals over

the parton directions trivial. The momentum and jet direction constraints impose that the

vectors n1 and n2 must point along the thrust axis and in opposite directions so that

hH2({n1, n2}, Q, µ)⌦ S2({n1, n2}, Q0, µ)i = �0H2(Q
2
, µ)hS2({n̄, n}, Q0, µ)i , (2.10)
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function H2(Q2
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which arises also for global observables such as the event shape thrust. In the large-Nc

limit, we should replace CF ! Nc/2.

In [8] we have derived an expression for the hard function H
(1)

3
, which corresponds

to the QCD process �
⇤ ! q(p1)q̄(p2)g(p3). By definition H

(1)

3
only depends on angular

information of the three partons, since their energies have already been integrated over.

For convenience we split the phase space integration into di↵erent regions according to

the direction of the thrust axis, which for three-parton final states points in the opposite

direction of the most energetic parton. Due to momentum conservation, the three partons

must be in a plane. Using invariance of the cross section under rotation around the thrust

axis, in Region I only the angles ✓2 and ✓3, between the partons and the thrust axis, are

not fixed.

For convenience we parameterize these angles in terms of two variables u and v each

going from 0 to 1 and defined as
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limit, we should replace CF ! Nc/2.

In [8] we have derived an expression for the hard function H
(1)

3
, which corresponds

to the QCD process �
⇤ ! q(p1)q̄(p2)g(p3). By definition H
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3
only depends on angular

information of the three partons, since their energies have already been integrated over.

For convenience we split the phase space integration into di↵erent regions according to

the direction of the thrust axis, which for three-parton final states points in the opposite

direction of the most energetic parton. Due to momentum conservation, the three partons

must be in a plane. Using invariance of the cross section under rotation around the thrust

axis, in Region I only the angles ✓2 and ✓3, between the partons and the thrust axis, are

not fixed.

For convenience we parameterize these angles in terms of two variables u and v each
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the angular convolution 

Figure 4. Left: Angular dependence of bS3 for fixed evolution time t = 0.08. Note that the angles
✓q and ✓g of the hard partons to the jet axis must be smaller than the cone angle ↵ = ⇡/3 ⇡ 1.04.
Right: Dependence on the evolution time t at fixed angles.

Next, we will discuss how to implement the above expressions into the parton shower code.

We first rewrite the angular integral in the H
(1)

3
contribution as

⌦
H

(1)

3
({n}, Q, µh) ⌦ bS3({n}, µh)

↵
=

Z
1

0

du

Z
1

0

dv
⌦
H

(1)

3
(u, v,Q, µh)bS3(u, v, µh)

↵
, (2.19)

where we have defined bS3(u, v, µh) =
P1

m=3
U3m({n}, µs, µh) ⌦̂1, which is the LL RG

evolution or parton shower soft function. To implement this formula into a Monte Carlo

framework, we will randomly generate u and v and then run the shower bS3(u, v, µh) for the

given configuration. There is, however, one complication, namely that the hard function is

a distribution and can therefore not be integrated point by point. One way to solve this

problem is to evaluate bS3(u, v, µh) on a grid, interpolate and then perform the integrations

over u and v. This works well because bS3(u, v, µh) is a smooth function of the angles as

can be seen from Figure 4. Note in particular that the limit v ! 0, in which both angles go

to zero and the two Wilson lines become collinear, is completely smooth. In this limit the

quark and gluon Wilson lines combine and produce the same radiation as a single quark

Wilson line, encoded in the function bS2. The relation

bS3(u, v = 0, µh) = bS2(µh) (2.20)

will lead to important simplifications below. In the right plot, we show the evolution time

dependence of the soft function bS3 for fixed angles. One observes that the function falls

o↵ much faster when the hard partons approach the jet cone. In this configuration, more

soft radiation exits the cone, explaining this suppression.

Interpolating the soft function bS3 gives accurate results, but is not e�cient since the

function depends on the phase-space constraints and thus needs to be recomputed when

one changes the cone angle. It is much more natural to compute the convolution (2.19)

directly in the Monte Carlo code. The simplest way to implement the plus distributions
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bS3(u, v, µh) =
1X

m=3

U3m({n}, µs, µh) ⌦̂1LL shower from 3-parton configuration:

Figure 4. Left: Angular dependence of bS3 for fixed evolution time t = 0.08. Note that the angles
✓q and ✓g of the hard partons to the jet axis must be smaller than the cone angle ↵ = ⇡/3 ⇡ 1.04.
Right: Dependence on the evolution time t at fixed angles.
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evolution or parton shower soft function. To implement this formula into a Monte Carlo

framework, we will randomly generate u and v and then run the shower bS3(u, v, µh) for the

given configuration. There is, however, one complication, namely that the hard function is

a distribution and can therefore not be integrated point by point. One way to solve this

problem is to evaluate bS3(u, v, µh) on a grid, interpolate and then perform the integrations

over u and v. This works well because bS3(u, v, µh) is a smooth function of the angles as

can be seen from Figure 4. Note in particular that the limit v ! 0, in which both angles go

to zero and the two Wilson lines become collinear, is completely smooth. In this limit the

quark and gluon Wilson lines combine and produce the same radiation as a single quark

Wilson line, encoded in the function bS2. The relation

bS3(u, v = 0, µh) = bS2(µh) (2.20)

will lead to important simplifications below. In the right plot, we show the evolution time

dependence of the soft function bS3 for fixed angles. One observes that the function falls

o↵ much faster when the hard partons approach the jet cone. In this configuration, more

soft radiation exits the cone, explaining this suppression.

Interpolating the soft function bS3 gives accurate results, but is not e�cient since the

function depends on the phase-space constraints and thus needs to be recomputed when

one changes the cone angle. It is much more natural to compute the convolution (2.19)

directly in the Monte Carlo code. The simplest way to implement the plus distributions

– 9 –

Complication:                   is a distribution

I: E1 > E2 > E3 II : E1 > E3 > E2 III: E3 > E1 > E2

q(p1)

q̄(p2)

g(p3)

Figure 3. Kinematical configurations in the three di↵erent regions with di↵erent energy ordering.
Particles with the smallest energy are drawn in red.

We used here that the leading-order soft function S
(0)

m is the unit matrix 1 in color space.

The first line contains to the LL result (2.7), and the remaining three lines show the

di↵erent NLO corrections, which are depicted in Figure 2.

The hard functions Hm include the momentum conservation and phase-space con-

straints on the hard partons. For two partons, these constraints render the integrals over

the parton directions trivial. The momentum and jet direction constraints impose that the

vectors n1 and n2 must point along the thrust axis and in opposite directions so that

hH2({n1, n2}, Q, µ)⌦ S2({n1, n2}, Q0, µ)i = �0H2(Q
2
, µ)hS2({n̄, n}, Q0, µ)i , (2.10)

where we have used that also the color structure is trivial for two hard partons. The

function H2(Q2
, µ) is the standard dijet hard function

H2(Q
2
, µ) = 1 +

↵s

4⇡
CF


�8 ln2

µ

Q
� 12 ln

µ

Q
� 16 +

7

3
⇡
2

�
, (2.11)

which arises also for global observables such as the event shape thrust. In the large-Nc

limit, we should replace CF ! Nc/2.

In [8] we have derived an expression for the hard function H
(1)

3
, which corresponds

to the QCD process �
⇤ ! q(p1)q̄(p2)g(p3). By definition H

(1)

3
only depends on angular

information of the three partons, since their energies have already been integrated over.

For convenience we split the phase space integration into di↵erent regions according to

the direction of the thrust axis, which for three-parton final states points in the opposite

direction of the most energetic parton. Due to momentum conservation, the three partons

must be in a plane. Using invariance of the cross section under rotation around the thrust

axis, in Region I only the angles ✓2 and ✓3, between the partons and the thrust axis, are

not fixed.

For convenience we parameterize these angles in terms of two variables u and v each

going from 0 to 1 and defined as

✓̂2 ⌘ tan
✓2

2
= u v, ✓̂3 ⌘ tan

✓3

2
= v, (2.12)

where the variable v is directly related to the larger angle ✓3, while u characterises the

relative size of the angles. Please note that the variables u and v di↵er from the quantities

– 7 –
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H
(1)
3,I (u, v,Q, µ) = CF

(
4 ln2

µ

Q
�

⇡2

6

�
�(u)�(v)� 8 ln

µ

Q
�(u)

✓
1

v

◆

+

+ 8 �(u)

✓
ln v

v

◆

+

+


� ln

µ

Q
F (u, 0) +

2u2

(1 + u)3
� F (u, 0) ln(1 + u)

�
�(v)

✓
1

u

◆

+

+ F (u, 0)�(v)

✓
lnu

u

◆

+

+ F (u, v)

✓
1

u

◆

+

✓
1

v

◆

+

)
⇥in(v)

Use slicing method:

Z 1

0
dv


1

v

�

+

bS3(v) =

Z 1

0

dv

v

h
bS3(v)� bS2

i
=

Z 1

v0

dv

v
bS3(v) + ln v0 bS2 +O(v0)

bS3(v = 0) = bS2

Works well for the 3-parton configuration. 
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Alternate scheme:

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4
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0.8
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0.100
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0.150

0.175

Figure 4. Left: Angular dependence of bS3 for fixed evolution time t = 0.08. Note that the angles
✓q and ✓g of the hard partons to the jet axis must be smaller than the cone angle ↵ = ⇡/3 ⇡ 1.04.
Right: Dependence on the evolution time t at fixed angles.

Next, we will discuss how to implement the above expressions into the parton shower code.

We first rewrite the angular integral in the H
(1)

3
contribution as

⌦
H

(1)

3
({n}, Q, µh) ⌦ bS3({n}, µh)

↵
=

Z
1

0

du

Z
1

0

dv
⌦
H

(1)

3
(u, v,Q, µh)bS3(u, v, µh)

↵
, (2.19)

where we have defined bS3(u, v, µh) =
P1

m=3
U3m({n}, µs, µh) ⌦̂1, which is the LL RG

evolution or parton shower soft function. To implement this formula into a Monte Carlo

framework, we will randomly generate u and v and then run the shower bS3(u, v, µh) for the

given configuration. There is, however, one complication, namely that the hard function is

a distribution and can therefore not be integrated point by point. One way to solve this

problem is to evaluate bS3(u, v, µh) on a grid, interpolate and then perform the integrations

over u and v. This works well because bS3(u, v, µh) is a smooth function of the angles as

can be seen from Figure 4. Note in particular that the limit v ! 0, in which both angles go

to zero and the two Wilson lines become collinear, is completely smooth. In this limit the

quark and gluon Wilson lines combine and produce the same radiation as a single quark

Wilson line, encoded in the function bS2. The relation

bS3(u, v = 0, µh) = bS2(µh) (2.20)

will lead to important simplifications below. In the right plot, we show the evolution time

dependence of the soft function bS3 for fixed angles. One observes that the function falls

o↵ much faster when the hard partons approach the jet cone. In this configuration, more

soft radiation exits the cone, explaining this suppression.

Interpolating the soft function bS3 gives accurate results, but is not e�cient since the

function depends on the phase-space constraints and thus needs to be recomputed when

one changes the cone angle. It is much more natural to compute the convolution (2.19)

directly in the Monte Carlo code. The simplest way to implement the plus distributions

– 9 –

bS3(u, v, µh) =
1X

m=3

U3m({n}, µs, µh) ⌦̂1

Smooth function of two angles

Interpolate             , then perform angular convolution bS3(u, v, µh)

���� ���� ���� ���� ����
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�
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�
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��
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Figure 12. Numerical comparison among di↵erent Monte Carlo implementations of the one-loop
hard corrections R

(1)
H

to the gap fraction. The red line corresponds to the interpolation method,
the other two are obtained using the slicing method with di↵erent values of the cuto↵ ⌘cut . Left:
Coe�cient of the single logarithmic part. Right: Non-logarithmic terms.

A.2 One-loop soft functions

At the one-loop level, virtual corrections from soft gluons are scaleless (and therefore vanish

in dimensional regularization), and we only need to include real-emission contributions.

The soft function consists of a d-dimensional integral with phase-space cuts which ensure

that the real emission is outside the jets (the inside part is again scaleless). The relevant

soft integral is given by

↵s

4⇡
S(1)

m ({n}, Q0, ✏) =

� g
2

s

X

(ij)

Ti,L · Tj,R µ̃
4�d

Z
d
d
k

(2⇡)d�1

ni · nj

ni · k nj · k
�(k2)✓(k0)✓(Q0 � v · k)⇥out(nk), (A.3)

with µ̃ = e
�Eµ

2
/(4⇡) with v

µ = (1, 0, 0, 0) and v · k = k
0. To evaluate the contribution

of the (ni, nj) dipole, we Lorentz transform into a frame where the vectors ni and nj are

back-to-back and the reference vectors take the form

n̂
µ

i
=

M

2
(1, 0, 0, 1) , n̂

µ

j
=

M

2
(1, 0, 0,�1) , v̂

µ =
2

M
(1, 0,�, 0) , (A.4)

where M
2 = 2ni ·nj is the invariant mass of the dipole pair, and � =

p
1�M2/4. In this

frame, we parameterize the integration momentum as

k = k̂T (cosh ŷ, sin �̂, cos �̂, sinh ŷ). (A.5)

With d = 4� 2✏, the integral then reads
Z
d
d
k

n̂i · n̂j

n̂i · k n̂j · k
�(k2)✓(k0)✓(Q0 � k · v̂)⇥out(n̂k) =

⌦d�3

2

Z 1

0

dk̂T

k̂
1+2✏

T

Z 1

�1
dŷ

Z
⇡

0

d�̂ | sin �̂|�2✏
✓(Q0 � k · v̂)⇥out(n̂k) , (A.6)
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LL’ + LO resummation
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Figure 7. Comparison of our results for the interjet energy flow to fixed order (left plot) and to
PYTHIA (right plot).

or even resum, the power corrections to resolve the di↵erence. The first step would be to

include the matching up to NNLO, which would in principle be possible since the fixed-

order results are available [33–35]. In practice it would require some e↵ort since we would

need to compute the fixed-order expansion of our results (including the shower).

In Figure 7, we show an improved numerical result which includes the matching correc-

tion �R(Q0), shown as a black dotted line, and uses the scale choice (4.3) to switch o↵ the

resummation at the end-point. The matching correction is negative and compensates the

large hard corrections near the end-point. The LL0 corrections lead to a larger gap fraction

R(Q0). As mentioned earlier, there is unfortunately no experimental data to which we

can compare our results, but we compare to PYTHIA [36]. While the two results are

similar at very low Q0, PYTHIA is higher at intermediate values. We remind the reader,

that the intermediate values heavily depend on the profile function used to switch o↵ the

resummation.

4.2 Jet mass

Let us now turn to the jet mass ⇢. For interjet energy flow, we considered the integrated

cross section, i.e. all events with energy in the gap below the veto, while we will look

at the di↵erential spectrum in the present case, since this is what was measured by the

LEP experiments. We will however compute the spectrum by taking the derivative of the

integrated cross section, which has the advantage that the spectrum is correctly normalized

if the resummed prediction for the integrated cross section matches the fixed-order result

at large ⇢.

As a first step, we again separately plot the di↵erent ingredients and their scale depen-

dence in Figure 8. In the first three plots we compare NLL to NLL0 with corrections from

the jet, hard and soft functions. The red bands are the NLL result with scale variation,

where we vary either the jet, hard or soft scale by a factor of two around the default values

µh ⇠ Q, µj ⇠ p
⇢Q and µs ⇠ ⇢Q. The blue curves show contributions at NLL0 accuracy

from one of the three ingredients with its associated scale variation. Obviously, the scale

– 18 –

• We match LL’ to LO and use a profile function to switch off resummation
• Hard corrections at large Q0 get cancelled by matching to LO.
• No Exp. data
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Figure 9. Jet-mass distribution compared to PYTHIA results. On the left side we plot our default
result, based on using the profile scale (4.3) and exponentiating the matching corrections. On the
right-hand side, we do not perform these modifications such that we get a negative cross section at
low ⇢ and hit the Landau pole at a nonzero ⇢.

resummed results. We also use the exact color factors in the evolution factors of the global

part (3.15).

The end-point of the jet mass distribution is at ⇢max = 1/3 at O(↵s), corresponding

to a symmetrical configuration of the three partons. We will work with the same profile

function (4.3) to switch o↵ the higher-order terms at the end point. To adapt it to the

present case, we set Q0 = ⇢Q and Qmax = Q/3. For simplicity, we will adopt the canonical

value µj =
p
µs µh in the following and only indirectly vary the jet scale through the

variations of µs and µh, which we vary independently by a factor of two around their

default values.

At very low values of ⇢, the scale µs(Q0) hits the Landau pole at ⇤ = 0.23GeV. Near

the pole the soft corrections become large and negative, resulting in a negative cross section.

To avoid this unphysical behaviour, we replace µs(Q0) ! µs(Q0)+⇤ so that the pole occurs

at ⇢ = 0. We also exponentiate the hard, jet and soft corrections to avoid the negative cross

section. In the left plot of Figure 9 we show our result for the jet mass distribution after

these modifications. In the right plot, we show the result with µs(Q0) = ⇢Q and without

exponentiation. We observe that the soft scale dependence changes sign at a point to the

right of the peak. In this region the soft scale dependence becomes very small. With the

modifications in µs, we end up with quite small scale bands to the right of the peak, which

are likely not an accurate characterization of the true uncertainties. The NLL0 peak in

the right-hand plot is quite a bit higher because the cross section becomes negative below

⇢ = 0.004 and our distributions are by construction normalized. An important feature

of our result is that peak occurs at a very low value ⇢ ⇡ 0.006, which corresponds to

µs ⇡ 0.5GeV so that the peak region is strongly a↵ected by nonperturbative e↵ects. In

Figure 9 we also show the PYTHIA [36] results, both on the parton level (dashed lines)

and including hadronisation. The hadronisation e↵ects shift the peak to the right by about

�⇢ ⇡ 0.006, in accordance to what one expects from non-perturbative e↵ects in the soft
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Figure 10. Jet-mass distribution and comparison to ALEPH data [31] (green dots with error
bars). The black curve represents the LO prediction for jet mass, where its analytical expression is
given in (E.3). The red curve is the NLL resummation result and the band is from scale variation.
The blue curve corresponds to NLL0 +LO results, in which we switched o↵ resummation e↵ects at
large ⇢ using (4.3).

functions [37, 38]. The parton-level PYTHIA result is quite close to the NLL0 result.

In Figure 10 we compare the NLL0 + LO jet mass distribution with ALEPH results

[31], obtained by combining their measurements for the light-jet and the heavy-jet mass

using (1.2) and adding the uncertainties on the individual measurements in quadrature.

One immediately sees that the experimental peak shifted to the right from non-perturbative

e↵ects and the shift is compatible with the PYTHIA hadronization result. We also observe

that the jet mass distribution falls o↵ quite rapidly and to make the region of larger ⇢ visible,

we include also a logarithmic plot in Figure 10. The plot also illustrates what motivated

the profile function (4.3) with n = 4. The choices ensures that we start switching o↵ the

resummation fairly quickly about half-way to the endpoint and go over to the fixed-order

result. The plots show that, compared the LO fixed-order result, resummation greatly

improved the description of the experimental data. On the other hand there is — if at all

— only a relatively narrow region in ⇢ in which both higher-order power corrections and

non-perturbative corrections are small.

For completeness, we show in Figure 11 numerical results for the heavy-jet mass ⇢h

and the light-jet mass ⇢`. The heavy-jet mass is global and provides a reference variable at

the same accuracy, but free from all the complications which arise for the jet mass. From

the di↵erence of the heavy-jet mass and the jet mass we obtain the light-jet mass. This

is more sensitive to the non-global structure and also only has a nontrivial distribution at

O(↵2
s) so that there is no matching at the accuracy we work. The end-point for the NLO

light-jet mass is at ⇢max = 1/6, which is achieved when the four parton momenta form a

tetrahedron, and we use this as the endpoint in our profile function (4.3). From the plot,

one observes that also the heavy-jet distribution is a↵ected by nonperturbative e↵ects in

the peak region, however, the peak is at a larger ⇢ value than for the jet mass itself. Not

surprisingly, the worst description of the data arises for the light-jet mass distribution.

– 21 –

NLL’ resummation for jet mass
(Balsiger, Becher, DYS,’19)

• Peak at            corresponds to              . Non-perturbative effects 
are important and shift the peak

• Partonic PYTHIA is close to NLL’+LO

⇢ ⇠ 0.006

= M2
J/Q

2

µs ⇠ 0.5GeV
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Conclusions and outlook
• First results for non-global observables which go beyond 

leading logarithms

• full one-loop corrections to matching coefficients

• implemented in MC framework

• high order corrections improve results significantly

• Next steps: NNLL resummation for double log observables

• Two-loop anomalous dimension & Monte-Carlo implementation

• More complicated processes at the LHC

• Automation framework. Interface with NLO generators?
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Glauber Phase in Vm

Amplitudes conserve color charge 

• If all particles outgoing             and the sum 
vanishes. No Glauber phases in e+e− ep!

• But sum is non-zero for pp T1 + T2 → T3 + … + Tm 
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σ =
∑

a,b

∫ 1

0
dx1dx2 σ̂ab(Q, x1, x2, µf ) fa(x1, µf) fb(x2, µf ) +O(ΛQCD/Q) (1)

σ =
∑

a,b

∫ 1

0
dx1dx2 Cab(Q, x1, x2, µ)⟨P (p1)|Oa(x1)|P (p1)⟩ ⟨P (p2)|Ob(x2)|P (p2)⟩+O(ΛQCD/Q)

(2)

⟨qa′(x′p)|Oa(x)|qa′(x′ p)⟩ = δaa′ δ(x′ − x)

Cab(Q, x1, x2) = σ̂ab(Q, x1, x2)

Vm =2
∑

(ij)

∫

dΩ(nk)

4π
(Ti,L · Tj,L + Ti,R · Tj,R)W

k
ij

− 2 iπ
∑

(ij)

(Ti,L · Tj,L − Ti,R · Tj,R)Πij (3)

Rm =− 4
∑

(ij)

Ti,L · Tj,R Wm+1
ij Θin(nm+1)

Im [Vm] =− 2π
∑

(ij)

(Ti,L · Tj,L − Ti,R · Tj,R)Πij (4)

Hm ∝ |Mm⟩⟨Mm| (5)

=
αs(µ)

4π
CF

(

−
2

ε2
−

3

ε
+ . . .

)(

−M2

µ2

)−ε

(6)

=
αs(µ)

4π
CF

(

−
2

ε2
−

2

ε

[

ln
M2

µ2
+ iπ

]

−
3

ε
+ . . .

)

(7)

0 = (p1 + k)2 ≈ 2p1 · k (8)

0 = (p2 − k)2 ≈ −2p2 · k (9)

Πij=1 if (ij) both incoming or outgoing

Πij=0 otherwise

contain both amplitudes |Mm({p})⟩ and their conjugate. The color matrices Ti,L act on

the amplitude while Tj,R multiplies the conjugate, for example

(T1,L · T2,L + T3,R · T4,R)Hm = T1 · T2 Hm + Hm T3 · T4 . (1.4)

The color matrices in the virtual part act on the color indices of the m partons of the

amplitude and Ti · Tj =
∑

a T
a
i · T a

j . This is the usual color-space notation. While we

do not indicate this notationally, the color matrices in the real emission matrix Rm are

different. They take an amplitude with m partons and associated color indices and map it

into an amplitude with m+ 1 partons. Explicitly, we have

Ti,L · Tj,RHm = T
a
i Hm T

a
j . (1.5)

and the index a is the color of the emitted gluon. Note that there is no sum over the color

a. The color sum will only be taken at the end after multiplying with the soft function. We

nevertheless like to keep the scalar product notation Ti,L ·Tj,R since it allows us to suppress

the color index, which is one of the advantages of the color-space formalism. However, when

applying the matrix Rm one needs to keep in mind that one changes into new color space

and that subsequent applications of color matrices can act on the new color index.

Note that the terms in the second line of (2.6) are purely imaginary. An imaginary

part is present whenever i and j are both incoming or both outgoing partons and the

prefactor is Πij = 1 in these cases and zero otherwise. The presence of this phase-factor

can be understood by analyzing the UV divergences of the soft loop integral
∫

ddk
1

k2 + i0

ni · nj

(ni · k + η + i0)(−ni · k + η + i0)
, (1.6)

where η regularizes the collinear and soft singularities. This integral gets two contributions.

Cutting the gluon propagator, one obtains a phase-space integral whose divergence gives

rise to the angular integral in the first line of Vm, while cutting the two eikonal propagators

yields the imaginary part in the second line. This imaginary part is called the Glauber or

Coulomb phase, since it arises from a region of phase-space where kµ ≈ kµ
⊥
.

The imaginary part can be simplified using color conservation
∑

i Ti = 0. For con-

creteness, consider the process 1 + 2 → 3 + · · ·+m. We then have

∑

(ij)

Ti · Tj Πij = 2T1 · T2 +
m
∑

i=3

Ti · (−T1 − T2 − Ti) (1.7)

= 2T1 · T2 + (T1 + T2) · (T1 + T2)−
m
∑

i=3

C2
i (1.8)

= 4T1 · T2 + C2
1 + C2

2 −
m
∑

i=3

C2
i (1.9)

The constant imaginary part arises both from the generators Ti,L acting on the amplitude

and the generators Ti,R acting on the conjugate amplitude. These terms cancel in the

anomalous dimension. In case where one or both incoming particles are color-neutral the

– 2 –

⇧ij = 1
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Jet radius resummation

After taking small R limit, small-angle soft emissions can not resolve 
the color structure inside initial states. Super-leading logs are power 
suppressed by jet radius R

Q0        Q⌧ RQ0       Q0       RQ       Q⌧ ⌧ ⌧

• Exclusive jet cross section: 
• e+e-: 
• pp: threshold resummation (Liu, Moch & Ringer `15); qT resummation 

(Buffing, Kang, Lee & Liu `17)

(Becher, Neubert, Rothen & DYS `15, Chien, Hornig & Lee `15)  

Hm+2({n, n̄, n}, Q) ! H(Q)Jm({n}, RQ)
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Figure 1. The relation between shower time t, hard scale µh and soft scale µs. We stop the lines
in the plot when µs reaches 1GeV.

coupling constants ↵s(µh) and ↵s(µs). At leading logarithmic accuracy, we only need these

functions at leading power in ↵s. The soft functions then become trivial Sm = 1 and all

higher-multiplicity hard functions are suppressed, Hm ⇠ ↵
m�k
s Hk. The cross section thus

simplifies to

d�
LL(Q,Q0) =

1X

m=k

⌦
Hk({n}, Q, µh) ⌦ Ukm({n}, µs, µh) ⌦̂1

↵
, (2.8)

where the evolution factor can be evaluated with the leading-order expression for the

anomalous dimension �
H . We note that the Born-level cross section is given by

d�0(Q,Q0) =
⌦
Hk({n}, Q, µh)

↵
. (2.9)

This demonstrates that the starting point of the evolution is the tree-level cross section, as

we have indicated earlier. The additional piece of information needed is the color structure

since the evolution changes the colors. The paper [32] has modified the MadGraph code

in such a way that it provides the full color information. We will focus on the large-Nc

limit below and use the color information which MadGraph provides for showering its

tree-level events. We will come back to this point later.

It is convenient to rewrite the exponent of the evolution matrix (2.6) at leading order

in RG-improved perturbation theory in the form

Z
µh

µs

dµ

µ
�
H

nm =

Z
↵(µh)

↵(µs)

d↵

�(↵)

↵

4⇡
�
(1)

nm =
1

2�0
ln

↵(µs)

↵(µh)
�
(1)

nm . (2.10)

Using the one-loop anomalous-dimension matrix �
(1)

nm yields leading logarithmic accuracy

in the evolution. The prefactor

t =
1

2�0
ln

↵(µs)

↵(µh)
=

↵s

4⇡
ln

µh

µs

+O(↵2

s) (2.11)
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