

Background Suppression in the MAJORANA Demonstrator

Matt Kramer

Physics 290E April 11, 2018

$0\nu\beta\beta$ in 4,000 words

2017 Apr 11

Physics 290E

F

Why germanium?

- The detector *is* the sample!
 - ⁷⁶Ge undergoes ββ, nat. abundance ~8%
 - "Easily" enriched to >80%
- Can achieve very high purity
 - Intrinisically low bkg
- Incredible energy resolution
 - Few keV possible!
- Fast sampling $\rightarrow \mathsf{PSD}$
 - Filter multi-site events (Compton), alphas, electronic noise...

10³⁰

10²⁹

10²⁸)

10²⁷

10²⁶

10²⁵

10²⁴

2017 Apr 11

10⁻³

 $^{76}\text{Ge}\ T_{1/2}\ 90\%$ Sensitivity [years]

Sensitivity

10³

Background-free

Mod. phys. lett. A 2N(2006), p. 1547(3σ): (1.30-3.55)×1025 years

--- 0.1 counts/ROI/t/y --- 4 counts/ROI/t/y

····· 1 count/ROI/t/y

 10^{25}

To exclude Majorana+IH, need:

- Lots of material (ton-scale)
- Plenty of **time** (few years) •
- **Clean signal**

MAJORANA Demonstrator

- 4,850' underground @ SURF
- ~30 kg of 76Ge
- Goal: Show low background
- Justify ton-scale experiment

For oven-fresh low-background samples:

- Calibrate the hell out of your detector
 - High resolution, good linearity
- Use pure-as-hell materials
- Shield the hell out of your detector
- Ground the hell out of your electronics
- Reject the hell out of bad data
- **Process** the hell out of your waveforms
 - $PSD \rightarrow Background rejection$

Calibration

Regularly study detector response using ²²⁸Th source scans:

- Correct for time-dependence of energy scale
- Correct for position-dependent response (charge capture)
- Determine dead regions

Result: Fantastic resolution & stability

Purity

Use extremely pure, oxygen-free, electroformed copper for:

 Support structures, cryostat, inner shielding

As much as possible, fabricate and assemble underground, in a glovebox

Comprehensive inventory database, parts tracking, surface radiation exposure records

Maintain detector in radon-purged environment

Date, Time	Activity	Location	
Jun 13, 12:06	Delivered	Lead, SD	
Jun 13, 10:37	Out for delivery	Rapid City, SD	
Jun 13, 8:50	At local facility	Rapid City, SD	
Jun 13, 5:00	At local facility	Rapid City, SD	
Jun 12, 21:10	In transit	Denver, CO	
Jun 11, 8:32	In transit	Boise, ID	
Jun 9, 2:50	In transit	Hermiston, OR	
Jun 8, 20:45	Left FedEx origin	Pasco, WA	
Jun 8, 14:23	Picked up	Richland, WA	

Parts Track	Exposure calculation		
Record	Start – End	Movement or Location	Sea-level Equivalent
Type	(Date, Time) – (Date, Time)	(City, State)	Exposure (hours)
Transport	Jun 8, 14:23 PDT – Jun 8, 14:43 PDT	Richland, WA \rightarrow Pasco, WA	0.4
Storage	Jun 8, 14:43 PDT – Jun 8, 20:45 PDT	Pasco, WA	4.6
Transport	Jun 8, 20:45 PDT – Jun 8, 21:30 PDT	Pasco, WA \rightarrow Hermiston, OR	0.9
Storage	Jun 8, 21:30 PDT – Jun 9, 2:50 PDT	Hermiston, OR	6.2
Transport	Jun 9, 2:50 PDT – Jun 9, 8:03 MDT	Hermiston, $OR \rightarrow Boise$, ID	11.2
Storage	Jun 9, 8:03 MDT – Jun 11, 8:32 MDT	Boise, ID	114.9
Transport	Jun 11, 8:32 MDT – Jun 11, 20:42 MDT	Boise, $ID \rightarrow Denver, CO$	95.2
Storage	Jun 11, 20:42 MDT – Jun 12, 21:10 MDT	Denver, CO	133.5
Transport	Jun 12, 21:10 MDT - Jun 13, 3:12 MDT	Denver, $CO \rightarrow Rapid City, SD$	29.8
Storage	Jun 13, 3:12 MDT – Jun 13, 10:37 MDT	Rapid City, SD	21.1
Transport	Jun 13, 10:37 MDT – Jun 13, 11:34 MDT	Rapid City, SD \rightarrow Lead, SD	2.9
Storage	Jun 13, 11:34 MDT – Jun 13, 12:06 MDT	Lead, SD	2.7

large flat blanks. This stock is sized for the variety of parts to be manufactured. Any storage or transportation of material is logged as a history entry.

Individual parts are created from parent stock. Some parts, like tie rod bottom nuts, need to leave the shielding of the underground facility for processing, such as parylene coating, and this transportation is tracked to estimate exposure to cosmic rays.

The cleaning, parylene coating, or other process undergone by completed parts is also recorded. When parts are assembled, an assembly record is created in the database and the components linked.

Grounding

Keeping it quiet:

- Custom, low-noise readout electronics
- Robust grounding scheme to isolate electronics from environment

2017 Apr 11

Livetime rejection

Reject periods of noise/instability (microphonics)

- LN₂ filling, construction, etc.

Reject events where multiple detectors trigger within 4 μs

- $\beta\beta$ decays are localized!
- Reject 1s after muon
- Give cosmogenics a chance to decay

Waveform processing

First, filter out noiseinduced nonphysical waveforms

 99.9% efficiency for true physics events

Use **trapezoidal filter** to go from "decaying step functions" to Gaussian-like pulses

- Amplitude ∝ energy

Further background removal using **pulse shape discrimination**...

PSD: Single-site events

- Already reject multi-detector events
- What about single-detector, multiple-site (e.g. Compton)?

Use time structure of pulses to discriminate!

Physics 290E

2017 Apr 11

14 of 18

PSD: Removing surface α's

- Charge trapping for α events \rightarrow Energy degradation \rightarrow Filth and grime in $0v\beta\beta$ window
- "Delayed charge recovery" very apparent in waveform!

PSD cut based on tail slope:

- ~100% a rejection
- 99% efficiency for bulk events

Background budget

0

Counts/(5 keV kg yr)

10

Ē

10²

10

0

 10^{-1}

Counts/(5 keV kg yr)

Physics 290E

16 of 18

Results!

Data set	Window counts	BI $\times 10^{-3}$	ROI (keV)	ROI BG (counts)
DS0	11	$24.3^{+8.4}_{-7.0}$	3.93	0.120
DS1	3	$04.6^{+3.5}_{-2.9}$	4.21	0.035
DS2	0	< 12.3	4.34	0.000
DS3	0	< 3.6	4.39	0.000
DS4	0	< 12.7	4.25	0.000
DS5a	10	$08.0^{+3.1}_{-2.6}$	4.49	0.125
DS5b	0	< 1.9	4.33	0.000
Total	24	$06.7^{+1.4}_{-1.4}$	4.32	0.288
DS1-4,5b	3	$01.6^{+1.2}_{-1.0}$		0.036

Conclusion

- MAJORANA has achieved their background goals while demonstrating the best energy resolution of any existing 0vββ experiment
- Background level of 4.0^{+3.1}_{-2.5} c/FWHM·t·yr is consistent with the 2.9^{+1.8}_{-1.2} achieved by GERDA, MAJORANA's "rival" in the ⁷⁶Ge arena
- Now that feasibility has been proven, MAJORANA and GERDA have joined forces to build the LEGEND ton-scale experiment!

Thanks!

Care to learn more?

- Recent results: 10.1103/PhysRevLett.120.132502 (arXiv: 1710.11608)
- Andrew Lopez @ DPF '17
- Steve Elliot @ Neutrino '16
- Vic Gehman, UVA seminar