Physics 290 468 Birge February 14, 2018

> Advances in the Microwave Cavity Search for Dark Matte Axions

> > *It's the Axion. Embrace it.*

> > > Karl van Bibbe UC Berkeley

Outline

- Some preliminaries on the particle physics & cosmology of the axion
- The microwave cavity search for axionic dark matter
- Where we are today ADMX & HAYSTAC
- Towards improved sensitivity, higher & lower masses

The Axion, Particle Physics & Cosmology

The Axion

The Strong-CP Problem

•
$$\mathcal{L}_{QCD} = \dots + \frac{\theta}{32\pi^2} G\hat{G}$$

Explicitly CP-violating

- But neutron e.d.m.
 Id_nI < 10⁻²⁵ e ⋅ cm
 - $\bar{\theta} < 10^{-10}$
 - Strong-CP preserving

The Axion

The Strong-CP Problem

•
$$\mathcal{L}_{QCD} = \dots + \frac{\theta}{32\pi^2} G\hat{G}$$

Explicitly CP-violating

- But neutron e.d.m.
 Id_nI < 10⁻²⁵ e cm
 - **−** θ̄ **< 10⁻¹⁰**
 - Strong-CP preserving

Peccei-Quinn / Weinberg-Wilczek

- θ a dynamical variable
- T = f_a spontaneous symmetry breaking

- $\overline{\theta}$ dynamically \rightarrow 0 - Remnant oscillation = Axion

Why not just look for an unidentified radio line at which E

Problematically, the lifetime $\tau \sim 10^{60}$ sec for $m_a \sim \mu eV$

The Primakoff Effect P. Sikivie, Phys. Rev. Lett. 51 (1983) 1415

Classical EM

Sea of virtual photons

Primakoff Effect

Axion phenomenology & the canonical limits

Good news – Parameter space is bounded Bad news – All couplings are *extraordinarily* weak

G.G. Raffelt *"Stars as Laboratories for Fundamental Physics"* U. Chicago Press (1996)

preclude $g_{a\gamma\gamma} > 10^{-10} \text{ GeV}^{-1}$

Microwave cavity searches for DM axions

The microwave cavity axion search - Your car radio on steroids

Signal to Noise & detectability

Cavity Bandwidth: $\Delta v_c / v_c = Q^{-1} \sim 10^{-4}$ Axion Bandwidth: $\Delta v_a / v_a \sim \beta^2 \sim 10^{-6}$

Conversion Power:

$$P \sim g_{a\gamma\gamma}^2 \left(\rho_a / m_a \right) B^2 Q_c V C_{nm\ell} \sim 10^{-23} \text{ watt}$$

Signal to Noise Ratio:

$$SNR = rac{P}{kT_S} \sqrt{rac{t}{\Delta v_a}}$$

System Noise Temperature:

$$kT_{\mathcal{S}} = h\nu \left(\frac{1}{e^{h\nu/kT}-1} + \frac{1}{2}\right) + kT_{\mathcal{A}}$$

Note $T_S \approx T + T_A$, for T >> hv

Linear amplifiers are subject to the Standard Quantum

$$T_N > T_{SQL}$$
 where $k_B T_{SQL} = h v$

v [GHz]	m _a [μeV]	T _{SQL} [mK]
0.5	2.1	24
5	20.7	240
20	82.8	960

The SQL can be evaded by

- Squeezed-vacuum state receiver (e.g. GEO, LIGO)
- Single-photon detectors (e.g. qubits, bolometers)

Thirty Years in One Slide

Published Haloscopes

UF / RBF	ADMX @ LLNL	ADMX @ UW	HAYSTAC
1985 - 1990	1995 - 2010	2016 – present	2015 – present
HEMT	HEMT, SQUID	SQUID + dil. fridge	JPA + dil. fridge
f ~ 2.5 GHz	~ 0.5 GHz	~ 0.5 GHz	~ 6 GHz
V ~ 5 L	~ 200 L	~ 150 L	~ 1.5 L
T _{SYS} ~ 5-20 Κ	~ 3 K	~ 500 mK	~ 600 mK
т /т ~100-	~ 50 - 100	~ 10	~ ?

The most important qualification for a fusion scientist is the gift of immortality. Richard F. Post LLNL (1918-2015)

Ditto, Dark Matter !

-

-

-

I × T

11 * 11

3

Axion Dark Matter eXperiment (ADMX)

UW, UF, LLNL, UCB, NRAO, Sheffield, FNAL, LANL, PNNL, ...

Even at $T_{SYS} \sim 3K$ ADMX was the world's quietest radio receiver

The Breakthrough Technology: Microstrip SQUID amplifiers

ADMX Gen.2 preliminary result – DFSZ reached

The situation 30 years later – We need to pick up the pace!

Motivation & philosophy

Concept born at Sikivie festschrift in 2010

HAYSTAC

- Serves both as Data Pathfinder & Innovation Test-bed in the 10-50 µeV mass range
- Develop new cavity & amplifier technologies in the 3-12 GHz range
- Small, agile platform that can be quickly reconfigured to try new things
- Work with the greatest degree of

BTW, the drawing on Steve Lamoreaux's blackboard was our

The team

Yale University

Steve Lamoreaux, Yulia Gurevich, Ling Zhong, Ben Brubaker, Sid Cahn

UC Berkeley

Karl van Bibber, Maria Simanovskaia, Samantha Lewis, Jaben Root, Saad Al Kenany, Kelly Backes, Nicholas Rapidis, Isabella Urdinaran, Tim Shokair

CU Boulder/JILA

Konrad W. Lehnert, Daniel Palken, William F. Kindel, Maxime Malnou, M.A. Anil

Lawrence Livermore National Lab

Gianpaolo Carosi

HAYSTAC

Integration at Yale

HAYSTAC

Josephson Parametric Amplifier

Microwave Cavity (copper)

³He/⁴He Dilution Refrigerator

9.4 Tesla, 10 Liter Magnet

Microwave cavity (Berkeley/LLN HAYSTACT

- Cu body with off-axis tuning rod
- Tunable over 3.6 5.8 GHz
- **Q**_c ~ 20,000
- Stepping motors and Kevlar lines used for motion

JPA (Colorado/JILA)

Josephson Parametric **Amplifier composed of SQUIDs**

Tunable from 4.4-6.5 GHz with 20 dB of gain

coils for cancellati on of fringe fields

One of the myriad of challenges: Magnetic shielding of the JPA

Bias Current (mA)

"It takes a licking & keeps on ti (*Timex watch commercial, 1950's*)

- Experienced a magnet quench in early March 2016
- Surprisingly little damage
- Repairs completed, experiment back

Experiment rebuilt with much less mass of copper

What the data looks like

HAYSTAC

 $T_{sys} \sim 3 \times T_{sql}$ for first run; 'hot rod' implicated, thermal link improved $T_{sys} \sim 2 \times T_{sql}$ for second run in 2017

Results from 2016-17 runs B. Brubaker et al., Phys. Rev. Lett. 118 (2017) 00 HAYSTAC

PRL Editor's Suggestion & APS Highlight

See also S. Al Kenany et al., Nucl. Instr. Meth. Res. Sec. A 854 (2017) 11

Innovations: Deeper, Higher, Lower

Squeezed-vacuum state receiv HAYSTAC

"Accelerating dark-matter axion searches with quantum information technology" (S. Girvin, K. Lehnert & students), arXiv:1607.02529v1 Evading the Standard Quantum Lin $kT_S = hv \left(\frac{1}{e^{hv/kT} - 1} + \frac{1}{2}\right) + kT_A$

As one reduces losses in the system, the sensitivity optimizes for overce the cavity, thus broadening the bandwidth & increasing the scan rates and the scan rates and the scan rates are structured.

Lehnert group has built squeezed-state receivers; achieved $T_{SYS} \sim \frac{1}{4} T_{F}$ [F. Mallet *et al.*, PRL 106 (2011) 220502]. Integration in HAYSTAC this y

Rydberg single-quantum detection (S. Matsuki et al., Kyoto)

The blackbody spectrum has been measured at 2527 MHz a factor of ~2 below the standard quantum limit (~120mK)

Cavity R&D at Berkeley HAYSTAC

High vibration isolation designed by Al Kenany

Berkelev

UNIVERSITY OF CALIFORNI

Bead Perturbation Technique for Electric Field Profiling

Example: Two-level mixing HAYSTA of TM_{010} and TE modes

A TM₀₃₀ cavity based on a Dielectric Bragg Resonate HAYSTAC

Dielectric shell Tuning rod (cam pivot)

UNIVERSITY OF CALIFORNIA

0.375" OD x 7 rods

Offset	Frequency	Form factor	Q factor
0.4800"	9.82 GHz	0.47	29550

0.375" OD x 7 rods				
Offset	Frequency	Form factor	Q factor	
0.6050"	10.27 GHz	0.50	27215	
			$ \begin{array}{c} 1.5 \times 10^{7} \\ 1.5 & 10^{7} \\ 0.5 & 0 \\ -1 & -2 \\ 2 \times 10^{7} \\ 1 & 1 \\ 2 & -1 \\ -2 \\ -1 & -2 \\ \end{array} $	-1 0 1 2
Berke	ley			x position (inches)

 \sim

Mechanical motion

HAYSTAC

Bane of the search – thicket of TE-TM₀₁₀ mode crossings

PBG Fixed-Frequency Prototyr HAYSTAC

Slotted cavities – even simpler HAYSTAC

- An undergraduate project
- Simple idea: TM surface currents in barrel are axial, TE are circumferential
- Cut longitudinal slots in the barrel to frustrate TE modes
- Simulation optimizes the width & depth of slots
- TE modes completely

Excluded g_{Ayy} vs. m_A with all experimental & observational constraints

Final observations

Progress over the past thirty years has been solid.

- The axion search is the one experiment where sensitivity is *not* the problem, but mass coverage – both in extent and in speed – continues to be. We have not turned the corner yet.
- The goal posts have moved; we have much more ground to cover than we thought a decade ago: at least neV to meV.
- The state of R&D is excellent; there is now a critical mass community to tackle the problems, and the agencies are to be thanked for their increased support.
- Darticularly notoworthy are the parallel initiatives by

And profound gratitude to our sponsors

The National Science Foundation

The US Department of Energy

The Heising-Simons Foundation

When shall the axion be found? And then what?

And should the axion posses fine-structure, it would constitute a "movie" of the formation of our Milky Way galaxy

Modulation of fine structure may enable precision geolocation without GPS

Late-infall axions pass through our position with specific velocities

Axionic phase space in a Sikivie infall model

Sikivie infall model (II)

Modulation of one infall line

Annual Modulation: Earth's orbit around Sun

Daily Modulation: Earth's spin on its axis

Frequency

Backup Slides

Primakoff effect (1951)

Problem: How to accurately measure the lifetime of the neutral pion, $\tau_{\pi0}$ which was known to be very short?

Primakoff – experiment (1965): τ ~ 8.7 x 10⁻¹⁷ sec

The Florida Experiment – Williamson Hall c. 1989

Development of cavities with thin film coatings of Type-II superconductors, e.g. $Nb_xTi_{1-x}N$ by RF plasma deposition

RF plasma deposition technology pioneered by Ka-Ngo Leung Thin films of the desired stoichiometry, thickness and transition temperature have been successfully made – RF cavity prototype is next

Higher Frequencies – Open Resonators (Orpheus, MADMAX)

Lower Frequencies – Lumped Parameter Oscillators

Final provocative thought ("Throw deep, Mr. Presid

