

Searching for Muon to electron conversion: The design of the Mu2e experiment

Richie Bonventre

Physics 290e

Lawrence Berkeley National Lab

The physics of Mu2e

• Mu2e will search for neutrinoless conversion of a muon to an electron in a nuclear environment:

 $\mu^- N \rightarrow e^- N$

- This would violate **charged lepton flavor**, something that has never been seen before
- Any detection of charged lepton flavor violation would be an unambiguous sign of new physics! (SM contribution is $< 10^{-50}$)

Charged Lepton Flavor Violation

- Neutrino oscillation shows that Lepton Flavor is NOT a fundamental symmetry. No reason new physics should conserve it
- Many models of new physics predict contributions to CLFV:

2/46

History

Mu2e goal is a 10⁴ improvement!

Process	Current Limit	Next Generation exp.
$\tau \to \mu \eta$	BR < 6.5 E-8	10 ⁻⁹ - 10 ⁻¹⁰ (Belle II, LHCb)
$\tau \to \mu \gamma$	BR < 6.8 E-8	
$ au ightarrow \mu \mu \mu$	BR < 3.2 E-8	
$\tau \to \mathrm{eee}$	BR < 3.6 E-8	
$K_L \rightarrow e\mu$	BR < 4.7 E-12	
$\mathrm{K^+} \rightarrow \pi^+ \mathrm{e^-} \mu^+$	BR < 1.3 E-11	
$B^0 \rightarrow e\mu$	BR < 7.8 E-8	
${\rm B^+} \rightarrow {\rm K^+e}\mu$	${\sf BR} < 9.1 \; {\sf E}{ m -}8$	
$\mu^+ \rightarrow {\rm e}^+ \gamma$	BR < 4.2 E-13	10 ⁻¹⁴ (MEG)
$\mu^+ \rightarrow \mathrm{e^+e^+e^-}$	BR < 1.0 E-12	10 ⁻¹⁶ (PSI)
$\mu^- \mathrm{N} {\rightarrow} \mathrm{e}^- \mathrm{N}$	$R_{\mu e} < 7.0$ E-13	10 ⁻¹⁷ (Mu2e, COMET)

- τ seems easiest at first
 - Larger mass reduces GIM suppression, most models predict larger BF
 - Larger mass means more possible decay modes
- But lifetime is very short
- Much easier to produce a lot of muons (which is good because we need 10¹⁸!)

$$p + p/n \rightarrow n + p/n + \pi$$

 $\pi \rightarrow \mu + \nu$

Muon CLFV processes: $\mu \rightarrow e\gamma$, $\mu \rightarrow eee$, $\mu N \rightarrow eN$

- $\mu \to e \gamma$
 - Signal is back-to-back monoenergetic electron, gamma at 52.8 MeV $(M_{\mu}/2)$
 - Energy, time, angular coincidence
- $\mu \rightarrow eee$
 - Signal is three electrons with total energy of 105 MeV (M_{μ})
- $\mu N \rightarrow e N$
 - Signal is single monoenergetic electron at 105 MeV

- $\mu \rightarrow {\rm e}\gamma$, $\mu \rightarrow {\rm eee}$
 - Michel decay
 - Radiative muon decay
 - Accidental coincidence
- $\mu N \rightarrow e N$
 - Decay in orbit
 - Cosmic ray induced delta rays
 - Backgrounds from muon production

Michel decay, radiative muon decay, accidental coincidence

- Michel decay: $\mu^+
 ightarrow e^+ \overline{
 u_\mu}
 u_e$
- Radiative muon decay: $\mu^+
 ightarrow e^+ \gamma \overline{
 u_\mu}
 u_e$
- Maximum energy 52.8 MeV, need coincidence to reject
- Accidental coincident gammas from annihilation, electron scattering

Decay in Orbit (DIO)

- Muon conversion energy well above Michel endpoint, but when in orbit nuclear recoil creates tail up to endpoint
- Falling as $(E_{conv} E)^5$, energy resolution is key

Backgrounds from Cosmic rays

- Cosmic rays can create delta rays at energies >= 105 MeV that look identical to signal
- No coincidence for this measurement to allow us to reject it
- Active cosmic veto required!

• Mu2e veto: 4 layers, requires 3 out of 4 coincidence

Backgrounds from muon production

$$ho + N
ightarrow \pi^+
ightarrow \mu^+
u_\mu$$
 vs

$$p + N \rightarrow \pi^- \rightarrow \mu^- \overline{\nu}_\mu$$

- $\mu \to e \gamma$ can use $\mu^+,$ but muon conversion requires μ^- so they can form muonic atoms
 - In addition to forming muonic atoms, they can capture on nucleus producing protons and neutrons
 - Risk of overwhelming detector
- More dangerously, μ^- produced by π^-
 - + $\pi^- {\rm N}{\rightarrow} \,\gamma {\rm N}^*$, γ converts, can be well above 105 MeV

- Beam backgrounds reduced by degrader
 - Pions have half the range in CH_2 compared to muons
- Limit: 7×10^{-13} (90% confidence) on Au

Improving over SINDRUM II

- Muons stopped in aluminum have 864 ns lifetime
- Use pulsed proton beam!
 - Beam flash and pions occur immediately following the proton beam arrival
 - Can wait longer for the muons to decay

Reducing beam backgrounds in Mu2e

- 700 ns delay followed by 1 μ s livegate
- Extinction factor (ratio of out-of-time protons to in-time protons) of 10⁻¹⁰ is needed

Mu2e Proton Beam

- 8 GeV 8 kW proton beam using protons from booster
- Resonantly extracted to get pulses of 4×10^7 protons separated by 1.7 μ s

Achieving required beam extinction

- Beam from delivery ring starts with 10^{-4} extinction
- 2 AC dipoles coupled with collimators expected to bring extinction to $10^{-12}\,$

Achieving required beam extinction

- Curved solenoid to eliminate neutrals, sign and momentum select
- Slow low energy muons hit stopping target and form muonic atoms
- Detector downstream of stopping target, in flat field
- Graded field solenoids (magnetic mirrors) to greatly increase efficiency

- Curved solenoid to eliminate neutrals, sign and momentum select
- Slow low energy muons hit stopping target and form muonic atoms
- Detector downstream of stopping target, in flat field
- Graded field solenoids (magnetic mirrors) to greatly increase efficiency

- Curved solenoid to eliminate neutrals, sign and momentum select
- Slow low energy muons hit stopping target and form muonic atoms
- Detector downstream of stopping target, in flat field
- Graded field solenoids (magnetic mirrors) to greatly increase efficiency

- Curved solenoid to eliminate neutrals, sign and momentum select
- Slow low energy muons hit stopping target and form muonic atoms
- Detector downstream of stopping target, in flat field
- Graded field solenoids (magnetic mirrors) to greatly increase efficiency

Magnetic mirror

- In solenoid constant B field, $p_T = qBR$, particle follows helical path
- Magnetic moment $\mu = \frac{v_T^2}{2B}$ adiabatic invariant
- p_T increasing but no work being done so $p_{||}$ must decrease
- Eventually can reverse directions

Detecting the electron energy

- Need energy resolution of 0.1% at 105 MeV to reject DIO background
- Needs to deal with very high rate, survive beam flash
- $\bullet \ \rightarrow$ Magnetic field and tracking detector to get momentum
 - Calorimeter to distinguish electrons and muons

- Straw tracker: large, low mass, highly segmented
- Track reconstructed from:
 - position of hit straws
 - radial position of track in each straw
 - longitudinal position of track along each straw

Straw drift trackers

- Straw cathode and wire anode with high voltage applied
- Gas ionized by charged particles ($\sim 100 \ e^-$ per cm)
- Electrons and ions produced by charged particle drift to anode and cathode respectively
- Velocity mostly constant over a large range of E field
- Not nearly enough charge produced to be detected

Straw drift trackers

- Electric field for a cylindrical capacitor $\propto \frac{1}{r}$
- close enough to the wire electrons accelerated enough to produce secondary ionization, avalanche
- At low gain, output proportional to initial ionzation
- As gain increases, may go to streamer or Geiger mode
 - Can add quenching gas to stop this (organic compound that absorbs to vibrational modes etc)

Transverse position measurement with drift time

- Charge drifts to wire with nearly constant velocity, relatively slowly (v ${\sim}50\mu m/ns)$
- Drift time is a measure of DOCA between track and wire
- Mu2e requires ${\sim}100~\mu{\rm m}$ resolution

Transverse position measurement with drift time

- Precise track reconstruction using radial position
- Reconstruct must solve "left-right" ambiguity

Longitudinal position measurement with time division

- Once charge drifts to wire it must propagate along it to electronics
- If time of arrival measured at both ends of straw, can measure longitudinal position
- Propagation speed is nearly speed of light, need very precise time measurement
- Mu2e requires ${\sim}4$ cm resolution ${\rightarrow}$ 200*ps*

- Constrained by magnetic field, size, cost of cryostat
- p(GeV/c) = 0.3 B(T)R(m), so 1 Tesla field → 0.7 m maximum radius for 105 MeV/c

- Annular shape, noninstrumented inner radius allows beam flash and DIOs through
 - DIO peak is 52.8 MeV/c, 0.35m maximum radius
 - Tracker has nothing within 0.38m radius
- 97% of DIO produces no hits in tracker

- Ambient vacuum, 20000 very thin straws holding 1 atmosphere of ArCO₂
- straws perpendicular to beam axis, rotate direction for stereo position information

- Straws are 5 mm diameter, 15 $\mu {\rm m}$ thick walls
- Held at tension, no support structure inside active volume
- 25 μ m tungsten wire at 1425V

- Curved gas manifold 3D printed plastic
- Fixtures for precise alignment of straws, wires, panels
- X-ray scan of wire position

Expected signal from a straw tube

- Signal on wire is actually induced charge: $i_{ind} = E_v qv$
- Most of the electrons produced very close to wire
- Measured current signal is actually induced by ions drifting all the way back to cathode
- lons drift slowly, signal has sharp rising edge and long tail

- Need to amplify signal, measure time of arrival at both ends of each straw, measure current pulse size
- Want ${\sim}100~\text{ps}$ time resolution for time division
- Needs to recover quickly after large proton hits
- Operating within cryostat, needs limited power usage, footprint
- Needs to be rad hard to survive

Preamplifiers

- Amplify signal, shape so that get best timing resolution and signal to noise ratio
- Low pass filter: too high a bandwidth just increases noise without improving signal resolution

- Output of preamps discriminated and digitized with firmware TDC
- Outputs also shaped, analog summed into ADC, 50 MHz samples read out by FPGA
- FPGA pushes TDC and ADC data over optical links to DAQ

FPGA TDC

- Maximum clock frequency limits resolution of simple time measurement in FPGA (400 MHz \rightarrow 2.5 ns)
- Subdivide between clock ticks using delay chain
- In FPGA, limited by minimum cell delay, routing differences, temperature variations

FPGA TDC: Tricks to improve resolution

- Use specialized carry-adder cells in FPGA
- Auto-calibrate bin widths using pseudo-random test pulser
- Combine results of multiple edges (wave union TDC) or multiple delay chains to average over larger bins
- Able to improve our TDC resolution to < 70 ps

LBL Tracker prototype

Radiation Tolerance

- Single even upsets: a single particle causes a bit to flip, corrupting data or even FPGA design
 - Tested using 88' cyclotron, initial Altera FPGAs failed
 - Switched to Microsemi FPGAs
 - All flash memory, much larger charges required to flip
- Total Ionizing Dose: long term effects
 - SEU immunity comes at cost of increased TID susceptibility
 - Tested using X-ray linac, cell delays increase
 - Newer FPGA line more resistant to these effects

Readout and Trigger

- 4Gb \times 200 connection from front end to DAQ, \sim 16 Gbps on average from tracker
- Want <7 Pb/year to disk, requires $\sim 100x$ rejection
- No easy signal to trigger on (1 μ s window following beam pulse, exponential decay signal)
- Need to do quick track reconstruction, keep only hits that could be part of ${\sim}105~{\rm MeV}$ electron track

Readout and Trigger

- 4Gb \times 200 connection from front end to DAQ, \sim 16 Gbps on average from tracker
- Want <7 Pb/year to disk, requires $\sim 100x$ rejection
- No easy signal to trigger on (1 μ s window following beam pulse, exponential decay signal)
- Need to do quick track reconstruction, keep only hits that could be part of ${\sim}105~{\rm MeV}$ electron track

Track Reconstruction

- Find peaks hit in time distribution
- Filter background hits (protons / Compton electrons)
- Least squares helix fit, followed by iterative Kalman Filter track fit

Calorimeter

- Muons with correct momentum can look like 105 MeV electrons to tracker, need a way to reject
- Two annular disks separated by half a "wavelength" (70cm) of electron's helical path
 - Maximize probability to hit at least one disk
- Each disk contains 860 Csl crystals read out by SiPMs
- 5% energy, 0.5 ns time, 1 cm position measurement independent of straw tracker

Expected backgrounds for 3 year run

Category	Background process		Estimated yield (events)
Intrinsic	Muon decay-in-orbit (DIO)		0.199 ± 0.092
	Muon capture (RMC)		$0.000 \substack{+0.004 \\ -0.000}$
Late Arriving	Pion capture (RPC)		0.023 ± 0.006
	Muon decay-in-flight (µ-DIF)		< 0.003
	Pion decay-in-flight (π -DIF)		$0.001 \pm {<}0.001$
	Beam electrons		0.003 ± 0.001
Miscellaneous	Antiproton induced		0.047 ± 0.024
	Cosmic ray induced		0.082 ± 0.018
		Total	0.36 ± 0.10

- $\bullet\,$ Fewer than ${\sim}0.5$ background events expected over entire run
- + 3.6 x 10^{20} protons on target over 3 years $\rightarrow \sim 10^{18}$ stopped muons

Sensitivity

- Single event sensitivity: $R_{\mu e} < 3 \times 10^{-17}$
- Typical SUSY prediction of $10^{-15} \rightarrow \sim \! 50$ signal events

Backup

Civil construction

Stopping Target Monitor measures capture rate

- Muons cascade to 1s state emitting x-rays
- HPGe detector monitor these x-rays to measure capture rate
- Normalization of measurement $R_{\mu e} = \frac{\mu^- + A(Z,N) \rightarrow e^- + A(Z,N)}{\mu^- + A(Z,N) \rightarrow \nu_{\mu} + A(Z-1,N)}$

Stopping Target Monitor measures capture rate

- Muons cascade to 1s state emitting x-rays
- HPGe detector monitor these x-rays to measure capture rate
- Normalization of measurement $R_{\mu e} = \frac{\mu^- + A(Z,N) \rightarrow e^- + A(Z,N)}{\mu^- + A(Z,N) \rightarrow \nu_{\mu} + A(Z-1,N)}$

Extinction Monitor located downstream of production target

Extinction Monitor located downstream of production target

Spectrometer Magnet: Repurposed dipole magnet bends out low energy elections generated by muons stopping in the upstream silicon

CLFV Effective Lagrangian

Determining model with CLFV

