
Generating 1D Skewers with GANs

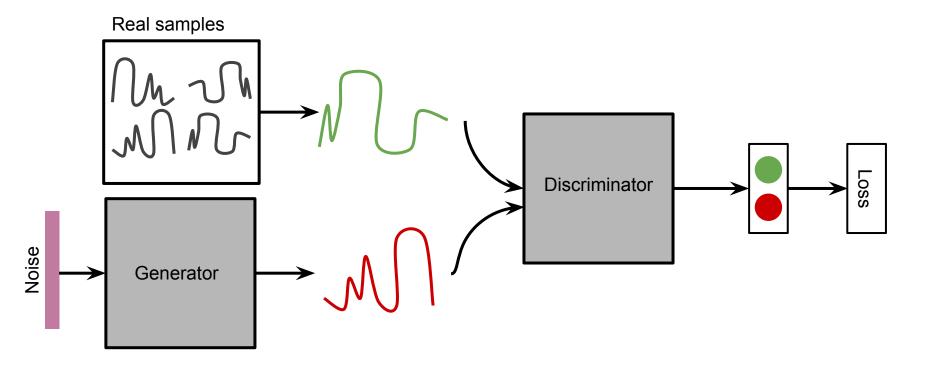
Rachel Thorp LBNL

Premise

- Lyman-α forest simulation generates cubes of baryon densities
- Extract 1D skewers to make data more manageable

Sorini et al., arXiv:1602.08099v1

Model Compression

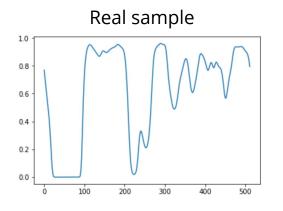

- Original model is computationally intensive
- How can we compress it to just generate skewers?
 - For now: just independent skewers
 - Future: generate a bundle of skewers belonging to a single cube

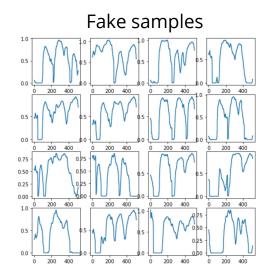
Model Compression

- Original model is computationally intensive
- How can we compress it to just generate skewers?
 - For now: just independent skewers
 - Future: generate a bundle of skewers belonging to a single cube

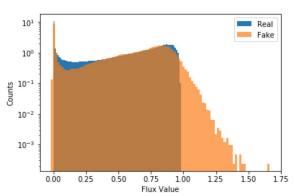
GANs!

Skewer GAN


Implications of 1 dimension


- Most GAN implementations in current literature are on 2D images
- Hyperparameters need to be retuned for new 1D architecture
- Unexpected complication:
 - TensorFlow functionalities are aimed at data with 2+
 Dimensions (even the simplest functions: 2D or 3D)
 - Work around keep 2D data structure, but ignore the second dimension

conv1d conv2d conv2d_backprop_filter conv2d_backprop_input conv2d_transpose conv3d conv3d_backprop_filter_v2 conv3d_transpose


Current Results

• Toy model built with (mostly) reasonable results

Comparing distributions

- TensorFlow model now implemented and running
- Working on selecting the optimal architecture

Future Advances

Technical:

- GANs generally still have trouble converging
 - Implement recent suggestions in field to improve stability:
 - Wasserstein GAN
 - Progressive resolution growth while training GAN

Cosmological:

- Move from independent skewers to bundling skewers in a cube
- Include multiple features in each skewer; learn to reconstruct fields given others from the same skewer
 - **Example:** given *flux* and *velocity* profiles, generate corresponding *temperature* profile