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The Molecular Foundry:
A Knowledge-Based User Facility for Nanoscale Science

A Nanoscale Science Research Center
funded by the U.S. Department of Energy
where users come to:

Collaborate with experts in a wide range of
fields

Use state-of-the-art instruments

Learn leading-edge techniques

Free of charges for non proprietary research

U.S. Department of Energy
Nanoscale Science Research Centers
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Scientific Research Themes

Reaffirmed and updated during annual strategic planning

100 nm

Combinatorial
Nanoscience

Functional
Nanointerfaces

Multimodal
Nanoscale
Imaging

Single-Digit
Nanofabrication
and Assembly
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Outlook

SDN: organization of the nanomaterial below 10 nm
Nanofabrication 2D: 6nm features.

Controlling the patterning in 3D: Photonic Crystals
3D Plasmonic

Directed self-assembly of nanoparticles
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What is Single Digit Nano?

Water Glucose Antibody Virus Bacteria Red blood  Frog eggs Tennis ball
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Bridging the atomic quantum world
with larger scale world

We use the term “single-digit nanofabrication and assembly” (SDN) to describe the
structuring and characterization of materials whose key features are defined and resolved

on a scale of 10 nm or less
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Why Single-digit nano resolution?

International Technology Roadmap for
Semiconductors

Protein Crystals assembly

Nanotechnology Eras

0.1 100
N 65 nm 3
45 nm Generation
32 nm
Leare ™S hwzm |
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Evolutionary Revolutionary
CMOS CMos  Exotic 1
. ]
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2000 / 2010 2020
Reasonably | | Nanotubes Really
Familiar Nanowires Different | 2003. M.Bohr

Bertozzi, De Yoreo, Foundry
PNAS 2010

Source : 2003 International Technology Roadmap for Semiconductors

New optical Phenomena

High-light adapted Low-light adapted

Lessons from
nature about solar
light harvesting

van Grondelle Nature
Chemistry 3, 763-774
(2011)

Foundry User: Xiang Zhang et al.
SCIENCE VOL 339 22 2013
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Single Digit Nano

SDN

Imaging Applications
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Outlook

SDN: organization of the nanomaterial below 10 nm
Nanofabrication 2D: 6nm features.

Controlling the patterning in 3D: Photonic Crystals
3D Plasmonic

Directed self-assembly of nanoparticles
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2D Patterning: Bit Pattern Media
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Griffiths, Rhys Alun, et al., Journal of Physics D: Applied Physics 46.50 (2013): 503001

Feature sizes vs. Areal density:

Areal density Bit size Pitch size
1 Tbl/in? 13 nm 25 nm
1.5 Th/in? 10 nm 20 nm
2 Tbl/in? 9 nm 18 nm
5 Tb/in? 6 Nm 11 nm
10 Tb/in? 4 nm 8 nm
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Mask Templates for Nanoimprint Lithography

Rect. bit architecture
(HGST-WD)

Concentric Radial

Template

Nanoimprint Lithography

Template ‘
LML L Resist

Disk Mag. Iay1ér

Albrecht, Thomas R., et al., Magnetics, IEEE Transactions on 51.5 (2015): 1-42. MOLECULAR Ila
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Doubling Frequency - Double Patterning

o Quartz O, plasma Quartz Quartz
(a) BCP on Carbon (b) AlO, structures (€) Pcaatltrzglntlr_zr;sgfr to
Lo/2
H Spacer
Deposition C C
- -
Quartz Quartz e

(f) Etch back and removal
of carbon between

(d) Carbon features (e)S
J pacer ALD metal
trim and had mask oxide deposition

remove spacers
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Carbon Structures trimmed

Quartz

20 nm
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ALD coating — TiIO2 Thermal
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6 nm Patterned Features

Quartz Quartz
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Outlook

SDN: organization of the nanomaterial below 10 nm
Nanofabrication 2D: 6nm features.

Controlling the patterning in 3D: Photonic Crystals
3D Plasmonic

Directed self-assembly of nanoparticles
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Photonic Crystals

Definition 1D

oy

Photonic crystals are structures in which the
refractive index is periodically modulated.

P rope I’tl es Joannopoulos et al., Princeton university press, 2008
Defect in the periodicity of the structure
If the length scale of the modulation is comparable with the *
wavelength of light
' Defect mode in the PBG
Photonic Band Gap (PBG) 100 -
1 . . Defect modes
o I ,‘/\ A | \ J
0.8 o: l // ',v: ; : /\ ‘5& ‘]‘.‘
£ 0 51 V‘. ﬁ | A
g 04 otonic band ga E e “ : (___\/_
s 0.2 Cp:nttre w;eI:nit: g ||’ 7 f Band
t = |‘l 4'1', ;” 9ap 4
4?00 600 860 1060 wavljllggglh (nnl;)l‘()o IéOO 18I00 2000 0 .\\> ‘/" \‘U; j\\\ // .
400 Wavelength (nm) 700
Rahman et al., Optics and photonics journal, 2012 http:/imagebank.osa.org
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Woodpile geometry

E'I‘;I IJT

FCC unit cell for Complete Photonic Band Gap* Unit cell => 4 layers
- Compatible with standard fabrication techniques

Why the woodpile? FCC unit cell

IR - Kyoto University/Noda VIS - Sandia Lab. / Koleske

: d — - " — 2013 . .Q&B.u Koleske et al., Applied Materials MOLECU LAR ﬂ
" ’ CR R L FOUNDRY |

* Ho et al, Solid state communications, 1994




T h e S B A p O I y m e r SBA refractive index variability with annealing time
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SBA Polymer spin coating and

Simplification of fabrication process annealing at 400°C
* http://www.sbamaterials.com
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Results

SEM T View, Milling with FIB

Cursor Width

EHT = 7.00 kV Mag = 53.37 K X 200 nm WD = 5.0 mm Signal A= InLens Date :9 Jun 2015 Time :16:00:37

——
The Molecular Foundry (LBNL) | E— Noise Reduction = Line Int. Done




Transmittance (%)

Optical Characterization

Angular Dependence
Simulations
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100 Scott Dhuey, Stefano Cabrini et al :
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Outlook

SDN: organization of the nanomaterial below 10 nm
Nanofabrication 2D: 6nm features.

Controlling the patterning in 3D: Photonic Crystals
3D Plasmonic

Directed self-assembly of nanoparticles
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Nano Photonic Applications

Enhanced Photocathode for X-ray FEL
High refractive index

materials for
Metasurfaces:
advanced photonic
applications:

Photoemission current (pC/mni")

0.1 1 10 100 1000

Laser intensity (GW/cmz)
_15(;@;90/\@ !
Distance (nm)
Howard Padmore, Advanced Light Source, Schuck and Cabrini;
Sci. Rep. 2, (2012); Phys. Rev. Lett. 110, (2013)

Triggering and
Monitoring Plasmon-
Enhanced Reactions by
Optical Nanoantennas

Alessandri Small 9, 3301-33071 (2013)




Significantly beating the diffraction limit.

vt £y
diffractionilimited spb

3

§

AFM image of CNT with the resolution
spot of optical microscopy compared with
the Bowties focus spot

|
AWeber-Bargioni, S Cabrini et al: “Functional plasmonic antenna scanning probes MOLECULAR |
fabricated by induced-deposition mask lithography”; Nanotechnology 21 (2010) FOUNDRY &




Optical Transformers on an Optical Fiber

FDTD Finite-difference time-domain simulation

Ex @ cT=0.0625um [Mon#5 (0,0,0.25)]
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Hyuck Choo, Eli Yablonovitch et al Nature Photonics, 6, 838-844 (2012)

MOLECULAR Ilﬂ
FOUNDRY




? optical
metal film :
fiber B
surface plasmon
polaritons (SPP
sample

nano-antenna
tip

SCIENCE VOL 338 7 DECEMBER 2012

PL map MoS,

—

Confocal

Offer numerous advantages

*Spatial resolution (gap size)
-Efficient broadband coupling

*Hyperspectral imaging at each point

©  Aysusjul pazijewioN

*NO background signals (scale bar = 1 um)
Nature Communications 2015, 6. 7993

MOLECULAR lla
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Nanoimprinting Optical Transformers on an Optical Fiber

a) EBL exposure b) Si;N, etching c) Si etching with KOH
LEP
SisNy
2%8 nm Si
nm ) 50 nm
500 pum SiNa 500 um

50 nm 50 nm

d) SisN, stripping (mastermold) e) Replica of the pyramid f) Demolding: mold #1

Si Ormostamp

Ormostamp

mold#1

g) Gap Miling h) Replica of campanile: mold#2 i) Final imprint mold#2

Gap

Ormostamp —
- ,Ormostamp

/) Quartz

_mold#] L’/

Ridge
Ormocomp \ Ormocomp

mold #2
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Nanoimprinting Optical Transformers on an Optical Fiber

a) Mold #1 (Ormostamp) b) Gap miling n c) Mold #2 (Ormocomp)

2 um

d) Imprint on a fiber

e) Evidence of thin residual layer f) Au evaporation

Ormocomp

Vin T

Keiko Munechika and Aleks Koshelev

J) NIL of campanile on a fiber

.
UV light Fiber
s Thin
< Residual
y 4 T 2 ‘é_ Layer

moid ”2,

k) Side Evaporation of Gold 70 nm

//U\

‘ 130 nm

The imprinted

120 nm Au gap is partially
Evaporation on filled with Au,
two sides

forming a gap
smaller than the
original FIB cut
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Imaging using imprinted Campanile probes

« Manufacturing yield improved > 10 fibers/day
* Imprinted Campaniles used for NSOM measurements by multiple research institutions
» Sub-diffraction features successfully imaged

(a) (b)
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wavelenpQIMECULAR “ﬂ
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High Refractive Index Fresnel Lens on a Optical Fiber

Optical fiber

A. Koshelev, K. Munechika, Stefano Cabrini et al; Optics Letters
Vol. 41, Issue 15, pp. 3423-3426 (2016)
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Hybrid Photonic-Plasmonic Probe

Adiabatic spot size
converter

Cannot efficiently
excite current in
metal; propagates

Campanile

High refractive index
diffractive element

Excites current in

metal; absorbed

alexander koshelev, keiko munechika, stefano cabrini: “Hybrid photonic-plasmonic
near-field probe for efficient light conversion into the nanoscale hot spot” accepted F?)IUEﬁUDLRA$




Prototype Hybrid Photonic-Plasmonic Probe

Field enhancement
100

-2 0 2
X (um)
Cross section of the simulated field enhancement inside
the hybrid probe in the excitation mode at 633 nm i Tt Ao SN -1 IO s s

wavelength. The maximum field enhancement is 105.

8004
_9600—
g The ratio of the hybrid
g probe efficiency at 633 nm
e excitation wavelength to
the efficiency of the
0 : : campanile tip is about
600 700 800 900

Wavelength (nm) 5 4‘0 .

017 Time :17:38:04




Campanile

Rectangular geometry

Transmits only one polarization

One of the polarization is efficiently localized
because it cannot excite electric current in the
perpendicular metal stripe

Pin-Wheel

Could potentially have circular geometry
Potentially Polarization insensitive

Both polarizations efficiently localized due to
inability to excite current in narrow metal

stripes
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Coaxial Plasmonic Nanoresonators
Fabricated by HIL Helium lon Lithography

Ga* FIB He* FIB HIL 8 nm gap

(a) g=30 nm, d=200 nm (FIB) (b) g=30 nm, d=200 nm (HIM)  (c) g=8 nm, d=200 nm (HIM)

Zeiss -ORION PLUS Helium-lon Microscope
available at the BNC lab QB3 Stanley Hall UCB

WM Focwed
Beam of
Hebum tons
Secoadary
%
d) A =545 Q=2.8 (FIB A = HIM f) A= =10 (HIM \\\\ g
(d) A=545 nm, Q=2.8 (FIB) (e) A,,=635 nm, Q=4.6 (HIM) (f) Aee=710 nm, Q=10 (HIM) S\ /2,
1 1 1
b o~ = Areaol
] -] — EXpEriment S — EXpETiMENt
c c =3
9o =) S
5 0.5 8 05 g 0.5
£ £ £ Excited Volume
2 2 2
g 025 g 025 8 025
= = =
~
0 i 0 2 "~ 0 <
450 550 650 750 850 950 450 550 650 750 850 950 450 550 650 750 850 950
Wavelength (nm) Wavelength (nm) Wavelength (nm)

M. Melli, A. Polyakov et al; "Reaching the Theoretical Resonance

100 nm thick g0|d film  Quality Factor Limit in Coaxial Plasmonic Nanoresonators Fabricated
by Helium lon Lithography”; Nano Lett. Vol 13, Issue 6 pp 2687—

2691 (June 2013)
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Pin-Wheel tip on SIN AFM cantilever
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Simulation: comparison of the Field Enhancement
Campanile VS Pin-Wheel

Campanile Pin-wheel

Wavelength = 600.0 nm Wavelength = 600.0 nm
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Comparison of the Field Enhancement
Campanile VS Pin-Wheel

Field enhancement

Parameters:

Gap width 20 nm
Gap-to-detector distance
10 nm

Base width 5.5 um
Height 3.8 um

Gold thickness 120 nm

1800
1600
1400
1200
1000
800
600
400
200
0

Field enhancement

Number of metallic faces

=== 2 (campanile)
== 4 (Pin-wheel)

— 6
— 38

600

700 800
Wavelength, nm

900
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Outlook

SDN: organization of the nanomaterial below 10 nm
Nanofabrication 2D: 6nm features.

Controlling the patterning in 3D: Photonic Crystals
3D Plasmonic

Directed self-assembly of nanoparticles
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Excitonic systems

Photosynthetic Unit (PSU) Nanocrystal Solids

Photoresistor WX
C o @

N. Kholmicheva et al. Energy Transfer in Quantum Dots
Solids ACS Energy Lett. 2 (2017) 154-160

C. Kagan, E. Lifshitz, E. Sargent, D. Talapin, Building

T. Ritz et al. The Quantum Physics of Devices from Colloidal Quantum Dots Science 353 (2016)
Photosynthesis ChemPhysChem 3 (2002) 243-248 6302 |
MOLECULAR |




CsPbX,; perovskite nanocrystals

Excellent optical properties
Bright photoluminescence (PL)

* High quantum yield of 50-90%

* Narrow emission line widths of 12-42 nm

Tunable bandgap energies over the entire visible spectral region by:

« Compositional control (mixed halide CI/Br and Br/I systems)

* Quantum-size effects

b  CsPb(CI/Br), CsPb(l/Br),
CsPbCl, CsPbBr,
| CsPbBr,
1 eSSV
o
g CsPb(Br/Cl),
o
pd
i CsPbCl,
400 450 500 550 300 500 700 MOLECULAR
Wavelength (nm) Wavelength (nm) Fo U N D RY
L. Protesescu et al. Nano Letters 15 (2015) 3692-

3696



Exciton diffusion via FRET

FRET efficiency:

- Spatial separation ~ R
- Spectral overlap
- Dipole vectors alignment

Forster Resonant Energy Transfer (FRET)

PL (a.u.)

Absorbance (a.u.)

S "
2 \
A
o’ s
-0 \_.
10.6 nm ; M
' \
|—| ; o *. 3.8 nm
—_—

350 400 450 500 550 600
Wavelength (nm)

L. Protesescu et al. Nano Letters 15 (2015) 3692- ;
5050 MOLECULAR a
FOUNDRY |




Nanocrystal monolayer fabrication

| | — Qrganic
ligands
! :

NH,
St substrate ~ 10 nm thick —CH polymer CsPDbBrg

l perovskite

Good affinity between nanocrystal ligands and substrate
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Nanocrystal monolayer fabrication

Prevent nanocrystal degradation during measurement

~ 3 nm thick Al,O5 by ALD

CsPbBr; nanocrystals

~ 10 nm thick —CH polymer

Si substrate l
Good affinity between nanocrystal ligands and substrat
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Excited state ensemble expansion due to
exciton diffusion

Intensitj
y

X

Exciton diffusion
HWHM

~L

Diffusion length
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Exciton diffusion length from PL profile

Monolayer sample

Sparse sample

normalized PL intensity (a.u.)

1.2

.
— mono fit
—— mono
— sparse fit
—— sparse |

—0.2 ] ] ]
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Exciton diffusion length R

Ly = [02(T) - 0%(0)]%: = 194 nm
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Directed assembly of nanocrystals In
patterned trenches

l ' l Trench width = 25 nm
00 I

Nanocrystals are confined inside the trenches MOLECULAR
FOUNDRY. &%%:
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Asymmetric PL of nanocrystals assembled in
patterned trenches
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Nanocrystals confined inside patterned trenches
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Just a few layers
of nanocrystals
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Directed assembly extends the range of
ordered structures

it
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Exciton manipulation: Proposed device

X111

0000600066

0001 90060

==t. 0000
h

Metal electrode

l

Transparent electrode

Perovskite quantum dots stacks

»  Light absorber

»  Guided exciton transport to the TMD heterojunction
»  Nanoscale organization minimizes exciton quenching

Transition-metal dicalchogenide (TMD) heterojunction:

Exciton splitter

Hierarchically organized stable colloidal
guantum dots as highly absorbent antennae

Foerster Resonant Energy Transfer (FRET)
based exciton funnels that move the exitons

Thin film “reaction” center such as 2-D
Transition Metal Dichalcogenide

heterojunctions ;
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Conclusion

Molecular Foundry as User Facility for Science at nanoscale
Organizing material at nanoscale

Nanofabrication 2D: SDN.

New opportunities Controlling the patterning in 3D

Combining top down with bottom up:
Directed self-assembly of nanoparticles
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And thank you for

your attention!

Adam Schwartzberg, Scott Dhuey, Michae MOLECULAR
Elowson, Simone Sassolini, Erika Penzo, FOUNDRY
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