
Oct 25, 2017

Deep Learning for Particle Tracking
a HEP.TrkX update

Steve Farrell

LBL-HEP-ML Meetup

The HL-LHC tracking problem

• Reconstruct thousands of particle tracks from tens of thousands of spacepoint
“hits” per beam collision in highly granular detectors (100M channels)

• Traditional approach builds triplet “seeds” then a combinatorial Kalman Filter
to build track candidates

• The HEP.TrkX project is exploring various machine learning ideas to try and
tackle this challenging pattern recognition problem
• Collaboration with FNAL and Caltech

2

Machine learning for tracking

• Applications
• Clustering hits into tracks
• Classifying hits (binary or multi)
• Classifying track candidates
• Fitting tracks

• Representations
• Discrete (image-like) vs. continuous (point-cloud)
• Hit assignments vs. physics quantities
• Engineered vs. learned representations

3

Image-based approaches

• Analogs in well-known
computer vision tasks
• segmentation
• captioning
• object tracking

• Tracks are patterns to
be discovered
• local and hierarchical

structure
• symmetries in the

geometry and physics
• Detector layers might

also be considered
frames of a video
• causally related by

the particle dynamics
4

https://arxiv.org/abs/1604.02135

Image segmentation

Image captioning

“Semantic segmentation” with RNNs, CNNs

5

3210

LSTM LSTM LSTM LSTM

FC FC FC FC

Input detector layer
arrays

Target track

Output detector layer
predictions

Target track
3210

• Recurrent networks can
classify pixels layer-by-layer
• extrapolation + state

estimation (like KF)

• Convolutional networks can
classify pixels with
hierarchical pattern finding
• extrapolates in all

directions at once

From CTD-WIT 2017
https://doi.org/10.1051/
epjconf/201715000003

https://doi.org/10.1051/epjconf/201715000003

Image segmentation on toy 3D data

• Simple 3D CNN model
• 10 layers, 3x3x3 filters
• no downsampling

6

Input projections

Output prediction projections

From CTD-WIT 2017
https://doi.org/10.1051/
epjconf/201715000003

https://doi.org/10.1051/epjconf/201715000003

Image labeling/captioning with CNNs, LSTMs

• Map image to binned track parameter space (multi-label classification task)

• Produce sequence of discovered track parameters (and uncertainties)

7

Shown at DSHEP 2017: https://github.com/HEPTrkX/heptrkx-dshep17/blob/master/cnn/cnn2d_learning.ipynb

From CTD-WIT 2017: https://doi.org/10.1051/epjconf/201715000003

CNN LSTM

https://github.com/HEPTrkX/heptrkx-dshep17/blob/master/cnn/cnn2d_learning.ipynb
https://doi.org/10.1051/epjconf/201715000003

Non-trivial images

• What if the detector is arranged like this?

8

ACTS generic HL-LHC detector

Non-trivial images

• What if the detector is arranged like this?

• Construct or bin images in sub-volumes
• E.g., three volumes in barrel, additional images for endcap disks

9

ACTS generic HL-LHC detector

ACTS image segmentation

• LSTM architecture
• seeded single-track

finder
• binary pixel

classification
• barrel layers only
• has mediocre

performance as-is

• basic demonstrator of
how to extend the toy
data case to realistic data
• but otherwise not a

very promising
approach as-is

10

Input projections

Output prediction projections

Target projections

Shown at ACAT 2017

• Represent first 3 barrel layers as an RGB image
• Estimate Z position(s) of the production vertex(es)

• binned output space; classification or multi-label classification

• Can be used to constrain hit combinatorics in hit-triplet (track seed) formation
algorithm
• threshold decision; use only when confident

• Potential online application to speed up track trigger

Vertex finding with CNNs

11

particles hitting
all 3 layers

classifying
position of single

primary vertex

Prediction
huddles around
the correct bin

Julien Esseiva’s bachelor thesis

Shown at ACAT 2017

Vertex finding with CNNs

• Performs ok when finding primary vertex with only handful of pileup vertices
• Mediocre performance at µ=25
• Performs poorly at finding multiple vertices (not shown)
• Probably not good enough yet to be useful

• Room for improvement

12

Average 5 pileup
interactions

Average 25 pileup
interactions

Shown at ACAT 2017

Moving beyond images

• The image formulation brings a number of challenges, particularly when
scaling up to realistic data
• Lossy if binned
• High dimensionality
• High sparsity
• Challenging irregular geometry

• What kinds of ways can you represent spacepoints directly?
• as a point cloud
• as a sequence (really a set), sorted geometrically
• as a set of combinatorial search trees
• as a (directed) graph

• Now things might start to get novel

13

Exploring the tree

• We’ve looked at how LSTMs can
function as a filter algorithm to
learn particle trajectories

• We can put this into a
combinatorial tree search to build
tracks from seeds
• Goal: be smarter about

choosing hits than
Combinatorial Kalman Filter

• Multiple possible approaches to
score nodes
• Predict next-hit location, use

guess to score hits
• Classify track + hit

• Keep top-K candidate nodes and
always explore the best one until
done

14

LSTM
Classifier Score

• Starting simple

• ACTS data with pileup µ=10

• 3 seed layers

• Barrel layers only; cleaning up holes, double hits

• Given correct path so far, train classifier to score 5 closest
hits on the next layer

• Shows 100% test set accuracy on this data with fairly simple 2k
parameter model

• Looks promising!

• Need to train on samples with wrong path as well

Hit sequence to track assignment

• Sort all hits in an event according to position
• Feed hits into a few layers of bi-directional recurrent net (GRU)
• Output is a set of assignment probabilities to track groups

• Ordering of output track categories is similarly sorted as hits
• Requires assumed maximum number of tracks

• Assignment matrix is trivially block-identity if tracks never “cross”
• So the model must focus learning on when to swap assignment order

• Accuracy doesn’t seem to scale well to high occupancy (yet?)
15

bi-GRU

bi-GRU

bi-GRU

FC

Track 0 Track 1
Hit 0 1 0
Hit 1 0 1
Hit 2 1 0
Hit 3 0 1

Graph formulation

• Hits on the detector can be arranged in a
graph, with edge weights that quantify
compatibility

• There has been a fair bit of buzz in the ML
community on methods for deep learning
on such structured data
• http://geometricdeeplearning.com/
• Geometric deep learning: going beyond

Euclidean data
• Neural Message Passing for Quantum

Chemistry
• Semi-Supervised Classification with

Graph Convolutional Networks
• There are a variety of possible applications

• hit classification (binary or multi)
• hit segment classification
• hit clustering

16

Single track hit
classification

Segment
classification

http://geometricdeeplearning.com/
https://arxiv.org/abs/1611.08097
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1609.02907

Graph neural networks
• There are several approaches to define architectures

• Laplacian spectral graph convolution (no time to discuss in detail)
• and several simplified parametrized forms

• Spatial kernel methods
• But the common idea is that a “patch” operation calculates new features for a node by doing a

weighted averaging over its neighbor’s features
• A simple graph NN “layer” might look like:

• A is N x N adjacency (“similarity”) matrix, possibly normalized in some way
• X is N x D node features (D features per node)
• W is D x D’ learned weight matrix
• B is N x D’ learned bias matrix

• How to get rich
• Downsampling via graph coarsening
• Residual/shortcut connections
• Learnable adjacency, e.g. parametrized by some kernel function
• Multiple adjacencies for modeling distinct types of node relations (edge features)
• Alternate between layers that calculate edge features and node features

17

Hit classification with GNNs

• Binary classification of hits to find one seeded
target track with 2D toy data

• Inputs
• Node features: (r, x, is_seed)
• Edge weights: 1 if hits on adjacent layers and

segment defines an allowed line (contained
in detector), otherwise 0

• Architecture
• Graph layers of the form:

• D is the diagonal degree matrix
(normalizes A), σ is a ReLU

• Input features also stacked onto every
hidden graph layer

• Performance not very good :(
• Binary similarity not capturing any useful

information
• Model needs help at distinguishing neighbors

18

Alternative segment-graph formulation

• We can build a “dual” graph which swaps the nodes and edges
• For the tracking problem, then, it’s a graph that relates and learns on the
segments between hits

• Segments connect to other segments through hits, and we can define
similarity in terms of the compatibility of the segments
• e.g., the change in direction

19

hits are nodes
segments are edges

segments are nodes
hits are edges

h1 h2 h3s1 s2

s1 s2

• Binary classification of segments to connect adjacent hits
• In this case I considered all segments between adjacent layer hits

• Inputs
• Node features: (r1, r2, x1, x2, slope)
• Edge weights: Gaus(delta-slope, 0.05) if segments are connected through

adjacent layer, otherwise 0
• Architecture similar to before, but I didn’t shortcut the inputs to hidden layers
• Performance is great if I make the gaussian kernel sharp enough

• The correct adjacent segment needs to dominate
• 96% accuracy
• 2k parameters

Adjacency matrix Predicted segments

Segment classification with GNNs

20

With a sharp enough
adjacency, though, the

problem is trivial!

Reflecting on GNNs so far

• Some of this looks promising, and graph NNs may be a useful approach
• but I wouldn’t say these are “good” results (yet)

• Limitations are becoming apparent
• Basic graph-convolutional architectures do a weighted average over

neighbors
• Isotropic kernels using one similarity measure

• So it’s hard to capture the specific relationship between one hit and another
• How might they be improved?

• Anisotropic, learned kernels
• Alternating graph representations: hits, segments
• ???

• This has only been a brief first look. There’s a fair bit of investigating yet to do.

21

Conclusion

• HEP.TrkX is chugging along trying crazy things
• Moving away from image-like construction, trying more novel formulations
• We’re working on getting focused, however

• Working towards common targets
• Porting ideas to realistic ACTS data

• We currently suffer from low manpower
• only 2-3 “active” researchers as far as I can tell

• Areas of work I still think are promising
• Image-based techniques localized to detector sections
• ML-assisted combinatorial tree search
• Graph-based neural networks

22

Backup

23

Track fitting with LSTM

24

GNNs with PyTorch

25

GNNs with PyTorch

26

