SN &

Deep Learning for Particle Tracking
a HEP.TrkX update

Steve Farrell

LBL-HEP-ML Meetup

N

f(reereer ‘m
L
e | SIS S Oct 25, 2017

The HL-LHC tracking problem

N\ LAr hadronic end-cap and
\ ", forward calorimeters
\ Pixel detector
| LAr electromagnetic calorimeters
L ’ '
Muon chambers Solenoid magnet | Transition radiation tracker

Semiconductor tracker

» Reconstruct thousands of particle tracks from tens of thousands of spacepoint
“hits” per beam collision in highly granular detectors (100M channels)

 Traditional approach builds triplet “seeds” then a combinatorial Kalman Filter
to build track candidates

* The HEP.TrkX project is exploring various machine learning ideas to try and
tackle this challenging pattern recognition problem

e Collaboration with FNAL and Caltech

Machine learning for tracking

* Applications
 Clustering hits into tracks
» Classifying hits (binary or multi)

 Classifying track candidates
* Fitting tracks
* Representations
 Discrete (image-like) vs. continuous (point-cloud)
« Hit assignments vs. physics quantities
* Engineered vs. learned representations

Image-based approaches

==

- Image segmentation

Image captioning

Vision

O

—

Language

Deep CNN Generating

RNN

A group of people
shopping at an
outdoor market.

There are many
vegetables at the
fruit stand.

* Analogs in well-known
computer vision tasks

« segmentation
* captioning
* object tracking

* Tracks are patterns to
be discovered

e local and hierarchical
structure

« symmetries in the
geometry and physics

» Detector layers might
also be considered
frames of a video

 causally related by
the particle dynamics

“Semantic segmentation” with RNNs, CNNs

 Recurrent networks can
classify pixels layer-by-layer

Output detector layer
predictions

Target track

» extrapolation + state
estimation (like KF)

« Convolutional networks can
classify pixels with
hierarchical pattern finding

Input detector layer
arrays

» extrapolates in all
Target track directions at once

Input track image Stub features Segment features Higher level
features

From CTD-WIT 2017
https://doi.org/10.1051/
epjconf/201715000003

Stub filters

-

Convolutions and pooling >

https://doi.org/10.1051/epjconf/201715000003

Image segmentation on toy 3D data

4
Clecto, /ai'er

« Simple 3D CNN model
* 10 layers, 3x3x3 filters

* no downsampling

Output prediction projections

Lt

20
&
= 15
4

10

25

Input projections

detector layer

0 2 4
detector layer

From CTD-WIT 2017
https://doi.org/10.1051/

epjconf/201715000003

https://doi.org/10.1051/epjconf/201715000003

Image labeling/captioning with CNNs, LSTMs

* Map image to binned track parameter space (multi-label classification task)

Input . 0 Target .0 ' Prediction
60
l 0.9 IO.Q
50 0.8 0.8
? 0.5 0.5
0.7 0.7
40 (] W
_ & 106 & o6
] 0 [] [
% 30 Y 00 {os ¥ o0 {0.5
a ¥ ¥}
k. {04 @© 10.4
20 " 03 0.3
-0.5 -0.5 0.2
10 0.2 :
0.1 0.1
0 - - . " i . -1.0 0.0 -1.0 0.0
0 10 20 30 40 50 60 0O 10 20 30 40 350 60 0 10 20 30 40 350 60
Layer Track intercept Track intercept

Shown at DSHEP 2017: https://github.com/HEPTrkX/heptrkx-dshep17/blob/master/cnn/cnn2d_learning.ipynb

* Produce sequence of discovered track parameters (and uncertainties)

Residual distribution for NN: p=0.004, o=0.174

|||||

o -

(q—’OaEO)a(q’laZl)a"' h

From CTD-WIT 2017: https://doi.org/10.1051/epjconf/201715000003 e

https://github.com/HEPTrkX/heptrkx-dshep17/blob/master/cnn/cnn2d_learning.ipynb
https://doi.org/10.1051/epjconf/201715000003

Non-trivial images

* What if the detector is arranged like this?

Hit volumes ACTS generic HL-LHC detector

1000 - S EEEEEEEEEEEREEEEEREE
800 - : N : - - " g sEEEEEREEEEREREERERERERNGRE O n 1 n u n
Volume
e 7 e)
'g 60041 ., 8
§- e 9 e
= e 12
400 -
« 13 =S —————— |
« 14
2004 +« 16
17] ||”|—”||| ;
18 e ————
0 - - T Y . . ' '
-3000 -2000 -1000 0 1000 2000 3000

Z [mm]

Non-trivial images

* What if the detector is arranged like this?

Hit volumes ACTS generic HL-LHC detector

1000 A

800 A4
Volume

. 7
6001 . g
wol * 12
. 13
.1

o v 1
P = [
18
0- T

r[mm)]
7]

Lo

~3000 ~2000 ~1000 0 1000 2000 3000

* Construct or bin images in sub-volumes

* E.g., three volumes in barrel, additional images for endcap disks

Layer

Layer

Layer

ACTS image segmentation

10

Input projecl:otions

8 B
6 . . 6
0 ﬂ ' 3
A I . L
) L !
2 2
0 1 0
-1000 -500 0 500 1000 -3
Z [mm] . .
Target projections
10 10
6 . . 6
d g
4 3 a
2 Il 2
0 | 0
-1000 -500 0 500 1000 -3
Z [mm)]
Output prediction projections
10 10
8 l- 8
6 l . 6O
¢ g
a4 3 a
2 II 2
0 | 0
-1000 -500 0 500 1000 -3

Shown at ACAT 2017

T« LSTM architecture

!' * seeded single-track
finder

L * binary pixel
classification

* barrel layers only

* has mediocre
1 performance as-is

e basic demonstrator of
how to extend the toy
data case to realistic data

* but otherwise not a
very promising
approach as-is

10

Vertex flndlng with CNNs Julien Esseiva’s bachelor thesis

* Represent first 3 barrel layers as an RGB image
» Estimate Z position(s) of the production vertex(es)
* binned output space; classification or multi-label classification

Input of the model represented as a RGB picture

Finding the primary vertex - position predicted by the model
10, classifying —pe ete truth
position of single : eee prediction
180 particles hitting o¢ primary vertex
all 3 layers

160

o
=y

200
Prediction

0.4 huddles around

the correct bin
0.2 _> .

confidence

220

binned 2z coordinate of hits

I~
™4
=

260 .;Q
L T T T T T B L T E E T T X E X EXEC IS

10 20 30 40 50 0 50 100 150 200
binned o coordinate of hits binned beam-line (z axis)

» Can be used to constrain hit combinatorics in hit-triplet (track seed) formation
algorithm |y

outer layer
| K 71]

» threshold decision; use only when confident
* Potential online application to speed up track trigger middle layer

Shown at ACAT 2017 i[nncr layer

Vertex finding with CNNs

Finding the primary vertex - minimum confidence of 0.20

1.0

0.8

0.6
o
O
A
0.4
»--» Accuracy over covered events
0.2 I Accuracy

B Error
I Not covered

10 15
uncertainty [mm])

25

Score

Finding the primary vertex - minimum confidence of 0.10

1.0

0.8

0.6

0.4

0.2

0.0

»--» Accuracy over covered events
B Accuracy
B Error

Il Not covered

10 15
uncertainty [mm]

25

Performs ok when finding primary vertex with only handful of pileup vertices

Mediocre performance at y=25

Performs poorly at finding multiple vertices (not shown)

Probably not good enough yet to be useful

 Room for improvement

Shown at ACAT 2017

12

Moving beyond images

* The image formulation brings a number of challenges, particularly when
scaling up to realistic data

 Lossy if binned

* High dimensionality

* High sparsity
* Challenging irregular geometry
* What kinds of ways can you represent spacepoints directly?
e as a point cloud
* as a sequence (really a set), sorted geometrically
* as a set of combinatorial search trees
* as a (directed) graph
* Now things might start to get novel

13

Exploring the tree

« We've looked at how LSTMs can
function as a filter algorithm to
learn particle trajectories

* We can put this into a
combinatorial tree search to build
tracks from seeds

 Goal: be smarter about
choosing hits than
Combinatorial Kalman Filter

* Multiple possible approaches to
score nodes

 Predict next-hit location, use
guess to score hits

 Classify track + hit

» Keep top-K candidate nodes and
always explore the best one until
done

¢ [rad]

- Data 01 - Data
~1151 Filter -50 4 —— Filter
-1.20 4 -100 -
~1.25 - E _150-

~N
~1.30 - ~200 4
-250
-1.35 4
-300
6 8
Layer Layer

« Starting simple
« ACTS data with pileup u=10

» 3 seed layers

» Barrel layers only; cleaning up holes, double hits

» Given correct path so far, train classifier to score 5 closest
hits on the next layer

« Shows 100% test set accuracy on this data with fairly simple 2k
parameter model

* Looks promising!

* Need to train on samples with wrong path as well

14

Hit sequence to track assignment

pPo,P1,---3PN

ToyT1ye-4,

—

'N

1000

P =

(r, ¢, 2)

Discrete Accuracy

P = (ptrklaptrk2a e ,ptrkMax)

« Sort all hits in an event according to position

e
(=]

e
1]

o
@
A

(=]
~

o
(-]

o
W

0.4 4

Accuracy vs # of tracks

—_—

i

i

vvvvvvvvvvvvvvvvvvvvvvvvvvv

101 2 3 45 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26

Number of tracks

* Feed hits into a few layers of bi-directional recurrent net (GRU)

* Output is a set of assignment probabilities to track groups

* Ordering of output track categories is similarly sorted as hits

* Requires assumed maximum number of tracks
» Assignment matrix is trivially block-identity if tracks never “cross”

/'

» So the model must focus learning on when to swap assignment order

» Accuracy doesn’t seem to scale well to high occupancy (yet?)

Track 0 | Track 1
Hit 0 0
Hit 1 0
Hit 2 1 0
Hit 3 0 1

15

Graph formulation

 Hits on the detector can be arranged in a
graph, with edge weights that quantify
compatibility

community on methods for deep learning
on such structured data

 There has been a fair bit of buzz in the ML —/

* http://geometricdeeplearning.com/
» Geometric deep learning: going beyond >< ‘

Euclidean data Single track hit

\/ classification

* Neural Message Passing for Quantum

Chemistry
« Semi-Supervised Classification with \
Graph Convolutional Networks 2 e e e
* There are a variety of possible applications I‘
* hit classification (binary or muilti) \/ ’* ’ class.?il;inc?t]iton
* hit segment classification S SR N
* hit clustering /‘ .°°-. . ".3'.

16

http://geometricdeeplearning.com/
https://arxiv.org/abs/1611.08097
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1609.02907

Graph neural networks

* There are several approaches to define architectures
 Laplacian spectral graph convolution (no time to discuss in detail)
» and several simplified parametrized forms
« Spatial kernel methods

« But the common idea is that a “patch” operation calculates new features for a node by doing a
weighted averaging over its neighbor’s features

« A simple graph NN “layer” might look like:
/
X' =o(AXW + B)

* Alis N x N adjacency (“similarity”) matrix, possibly normalized in some way
« Xis N x D node features (D features per node)
* Wis D x D’ learned weight matrix
* Bis N x D’ learned bias matrix
* How to get rich
* Downsampling via graph coarsening
» Residual/shortcut connections
» Learnable adjacency, e.g. parametrized by some kernel function
» Multiple adjacencies for modeling distinct types of node relations (edge features)
 Alternate between layers that calculate edge features and node features

17

Hit classification with GNNs

1.0

Binary classification of hits to find one seeded

target track with 2D toy data .

Inputs
* Node features: (r, X, is_seed) 8

0.4 1

« Edge weights: 1 if hits on adjacent layers and

segment defines an allowed line (contained -

In detector), otherwise 0

0.0

Architecture

+ Graph layers of the form: X' = o(X W7 + D TAXW, + B)

* D is the diagonal degree matrix
(normalizes A), o is a RelL.U

* |Input features also stacked onto every
hidden graph layer

Performance not very good :(

 Binary similarity not capturing any useful
information

* Model needs help at distinguishing neighbors

Model inputs and target labels

0.6 1

e 0
® 1
4+ seed

0.0

1.0

0.8 +

0.6 1

0.4 4

0.2 1

0.0

2.5 5.0 7.5
R

10,0 125 15.0

Model prediction

00 25 50 75 100 125 15.0

R

1.0

0.8

0.6

0.4

0.2

0.0

18

Alternative segment-graph formulation

s1 s2

h1 h2
s1 s2 h3

hits are nodes

segments are edges »

segments are nodes
hits are edges

* We can build a “dual” graph which swaps the nodes and edges

» For the tracking problem, then, it's a graph that relates and learns on the
segments between hits

« Segments connect to other segments through hits, and we can define
similarity in terms of the compatibility of the segments

* e.g., the change in direction

19

Segment classification with GNNs

Binary classification of segments to connect adjacent hits
* |In this case | considered all segments between adjacent layer hits

Inputs
* Node features: (r1, r2, x1, x2, slope)

* Edge weights: Gaus(delta-slope, 0.05) if segments are connected through
adjacent layer, otherwise 0

Architecture similar to before, but | didn’t shortcut the inputs to hidden layers

Performance is great if | make the gaussian kernel sharp enough

* The correct adjacent segment needs to dominate

Adjacency matrix Predicted segments

* 96% accuracy 0

« 2k parameters N
With a sharp enough
adjacency, though, the
problem is triviall &

0.4

024 \\\
) L 0.0 4—r v v o .l T T T 2

0 10 20 30 40 50 60 0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 290

Reflecting on GNNs so far

« Some of this looks promising, and graph NNs may be a useful approach
* but | wouldn’t say these are “good” results (yet)

 Limitations are becoming apparent

* Basic graph-convolutional architectures do a weighted average over
neighbors

* |sotropic kernels using one similarity measure
« So it's hard to capture the specific relationship between one hit and another
* How might they be improved?
* Anisotropic, learned kernels
* Alternating graph representations: hits, segments
« 277

* This has only been a brief first look. There’s a fair bit of investigating yet to do.

21

Conclusion

 HEP.TrkX is chugging along trying crazy things
* Moving away from image-like construction, trying more novel formulations
* We're working on getting focused, however
* Working towards common targets
* Porting ideas to realistic ACTS data
* We currently suffer from low manpower
* only 2-3 “active” researchers as far as | can tell
* Areas of work | still think are promising
* Image-based techniques localized to detector sections
* ML-assisted combinatorial tree search

» Graph-based neural networks

22

Backup

23

Track fitting with LSTM

class TrackFilterer(nn.Module):

def _ init__ (self, input_dim=3, hidden_dim=5, output_dim=2, n_lstm_layers=1):
super (TrackFilterer, self). init ()

self.lstm = nn.LSTM(input_dim, hidden_dim, n_lstm_layers, batch_first=True) o
self.fc = nn.Linear(hidden_dim, output_dim) 2
-
def forward(self, x):
input_size = x.size()
Initialize the lstm hidden state
h = (create_tensor_var(self.lstm.num_layers, input_size[0), self.lstm.hidden_size),
create_tensor_var(self.lstm.num_layers, input_size[0], self.lstm.hidden_size))
X, h = gself.lstm(x, h)
Flatten layer axis into batch axis so FC applies independently across layers.
x = (self.fc(x.contiguous().view(~-1, x.size(~1)))
.view(input_size([0), input_size[l), ~1))
return x
)
e
-
10 4 0 Training set 0 Training set
1 Test set 1 Test set
0.04
84
0.03 1
6 4
0.02 1
44
3
2 0.014 L -
_J N ~
0 — . S —— 000 r—m—r
~0.4 -0.2 0.0 0.2 0.4 ~100 <75 <50 -25 O 2% S0 75 100

Error i @ [rod) Error in 2 [mm)

150 == Filter
1.45 -
1.40 -
1.35 -
1.30 -

o
~

-1.15 1

-1.20 4

-1.25 4

-1.30 4

-1.35 4

260
255 1 === Filter
2.50 4
245 4
240 4
2.35 1

o4
~

—— Data
- Filter

Z [mm)
¥ 808 3

o

o
~
-
-
®

Layer

—e— Data
-50 4 —— Filter

-100 4
-150 4

2z [mm]

=200 4
=250 1
-300 A

o
N
P
-3
(<]

Layer

Z [mm)
R

Layer

24

GNNs with PyTorch

class GraphConvSelfInt(nn.Module):

mnmnn

A graph convolution module with separate explicit self-interaction terms.

This module takes an input tensor of node features X and adjancency
matrix A and applies a linear transformation of the form

X*W1l + A*X*W2 + b

where (W1, W2) and b are learned weights and biases.

mmnn

def

def

__init (self, input dim, output dim):

super (GraphConvSelfInt, self). init ()
self.node mod = nn.Linear(input dim, output dim)
self.neighbor mod = nn.Linear(input dim, output dim, bias=False)

forward(self, x, a):
node term = repeat module(self.node mod, X)
neighbor term = repeat module(self.neighbor mod, torch.matmul(a, x))

return node term + neighbor term

25

GNNs with PyTorch

class GCNBinaryClassifier(nn.Module):

monn

A simple graph-convolutional network for binary classification of nodes.

This model applies a feature extractor to each node,
followed by a number of graph conv layers,
followed by a node classifier head.

mon

def init (self, input dim, hidden dims, gc_ type=GraphConvSelfInt):

super (GCNBinaryClassifier, self). init ()

Feature extractor layer

self.feature extractor = nn.Linear(input dim, hidden dims[0])

Graph convolution layers

n gc layers = len(hidden dims) - 1

self.gc layers = nn.ModuleList([gc_type(hidden dims[i], hidden dims[i+1])
for 1 in range(n_gc layers)])

Node classifier

self.classifier = nn.Linear(hidden dims[-1], 1)

def forward(self, x, a):
Apply feature extraction layer
X = F.relu(repeat module(self.feature extractor, x))
Apply graph conv layers
for gc in self.gc_ layers:
X = F.relu(gc(x, a))
Apply node classifier
return repeat module(self.classifier, x).squeeze(-1)

26

