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The HL-LHC tracking problem

• Reconstruct thousands of particle tracks from tens of thousands of spacepoint 
“hits” per beam collision in highly granular detectors (100M channels) 

• Traditional approach builds triplet “seeds” then a combinatorial Kalman Filter 
to build track candidates 

• The HEP.TrkX project is exploring various machine learning ideas to try and 
tackle this challenging pattern recognition problem 
• Collaboration with FNAL and Caltech
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Machine learning for tracking

• Applications 
• Clustering hits into tracks 
• Classifying hits (binary or multi) 
• Classifying track candidates 
• Fitting tracks 

• Representations 
• Discrete (image-like) vs. continuous (point-cloud) 
• Hit assignments vs. physics quantities 
• Engineered vs. learned representations
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Image-based approaches

• Analogs in well-known 
computer vision tasks 
• segmentation 
• captioning 
• object tracking 

• Tracks are patterns to 
be discovered 
• local and hierarchical 

structure 
• symmetries in the 

geometry and physics 
• Detector layers might 

also be considered 
frames of a video 
• causally related by 

the particle dynamics
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https://arxiv.org/abs/1604.02135

Image segmentation

Image captioning



“Semantic segmentation” with RNNs, CNNs
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• Recurrent networks can 
classify pixels layer-by-layer 
• extrapolation + state 

estimation (like KF) 

• Convolutional networks can 
classify pixels with 
hierarchical pattern finding 
• extrapolates in all 

directions at once

From CTD-WIT 2017 
https://doi.org/10.1051/
epjconf/201715000003

https://doi.org/10.1051/epjconf/201715000003


Image segmentation on toy 3D data

• Simple 3D CNN model 
• 10 layers, 3x3x3 filters 
• no downsampling
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Input projections

Output prediction projections

From CTD-WIT 2017 
https://doi.org/10.1051/
epjconf/201715000003

https://doi.org/10.1051/epjconf/201715000003


Image labeling/captioning with CNNs, LSTMs

• Map image to binned track parameter space (multi-label classification task) 

• Produce sequence of discovered track parameters (and uncertainties)
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Shown at DSHEP 2017: https://github.com/HEPTrkX/heptrkx-dshep17/blob/master/cnn/cnn2d_learning.ipynb

From CTD-WIT 2017: https://doi.org/10.1051/epjconf/201715000003

CNN LSTM

https://github.com/HEPTrkX/heptrkx-dshep17/blob/master/cnn/cnn2d_learning.ipynb
https://doi.org/10.1051/epjconf/201715000003


Non-trivial images

• What if the detector is arranged like this?
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ACTS generic HL-LHC detector



Non-trivial images

• What if the detector is arranged like this? 

• Construct or bin images in sub-volumes 
• E.g., three volumes in barrel, additional images for endcap disks
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ACTS generic HL-LHC detector



ACTS image segmentation

• LSTM architecture 
• seeded single-track 

finder 
• binary pixel 

classification 
• barrel layers only 
• has mediocre 

performance as-is 

• basic demonstrator of 
how to extend the toy 
data case to realistic data 
• but otherwise not a 

very promising 
approach as-is
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Input projections

Output prediction projections
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Shown at ACAT 2017



• Represent first 3 barrel layers as an RGB image 
• Estimate Z position(s) of the production vertex(es) 

• binned output space; classification or multi-label classification 

• Can be used to constrain hit combinatorics in hit-triplet (track seed) formation 
algorithm 
• threshold decision; use only when confident 

• Potential online application to speed up track trigger

Vertex finding with CNNs
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Julien Esseiva’s bachelor thesis

Shown at ACAT 2017



Vertex finding with CNNs

• Performs ok when finding primary vertex with only handful of pileup vertices 
• Mediocre performance at µ=25 
• Performs poorly at finding multiple vertices (not shown) 
• Probably not good enough yet to be useful 

• Room for improvement

12

Average 5 pileup 
interactions

Average 25 pileup 
interactions

Shown at ACAT 2017



Moving beyond images

• The image formulation brings a number of challenges, particularly when 
scaling up to realistic data 
• Lossy if binned 
• High dimensionality 
• High sparsity 
• Challenging irregular geometry 

• What kinds of ways can you represent spacepoints directly? 
• as a point cloud 
• as a sequence (really a set), sorted geometrically 
• as a set of combinatorial search trees 
• as a (directed) graph 

• Now things might start to get novel
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Exploring the tree

• We’ve looked at how LSTMs can 
function as a filter algorithm to 
learn particle trajectories 

• We can put this into a 
combinatorial tree search to build 
tracks from seeds 
• Goal: be smarter about 

choosing hits than 
Combinatorial Kalman Filter 

• Multiple possible approaches to 
score nodes 
• Predict next-hit location, use 

guess to score hits 
• Classify track + hit 

• Keep top-K candidate nodes and 
always explore the best one until 
done
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LSTM
Classifier Score

• Starting simple 

• ACTS data with pileup µ=10 

• 3 seed layers 

• Barrel layers only; cleaning up holes, double hits 

• Given correct path so far, train classifier to score 5 closest 
hits on the next layer 

• Shows 100% test set accuracy on this data with fairly simple 2k 
parameter model 

• Looks promising! 

• Need to train on samples with wrong path as well



Hit sequence to track assignment

• Sort all hits in an event according to position 
• Feed hits into a few layers of bi-directional recurrent net (GRU) 
• Output is a set of assignment probabilities to track groups 

• Ordering of output track categories is similarly sorted as hits 
• Requires assumed maximum number of tracks 

• Assignment matrix is trivially block-identity if tracks never “cross” 
• So the model must focus learning on when to swap assignment order 

• Accuracy doesn’t seem to scale well to high occupancy (yet?)
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Graph formulation

• Hits on the detector can be arranged in a 
graph, with edge weights that quantify 
compatibility 

• There has been a fair bit of buzz in the ML 
community on methods for deep learning 
on such structured data 
• http://geometricdeeplearning.com/ 
• Geometric deep learning: going beyond 

Euclidean data 
• Neural Message Passing for Quantum 

Chemistry 
• Semi-Supervised Classification with 

Graph Convolutional Networks 
• There are a variety of possible applications 

• hit classification (binary or multi) 
• hit segment classification 
• hit clustering
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Single track hit 
classification

Segment 
classification

http://geometricdeeplearning.com/
https://arxiv.org/abs/1611.08097
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1609.02907


Graph neural networks
• There are several approaches to define architectures 

• Laplacian spectral graph convolution (no time to discuss in detail) 
• and several simplified parametrized forms 

• Spatial kernel methods 
• But the common idea is that a “patch” operation calculates new features for a node by doing a 

weighted averaging over its neighbor’s features 
• A simple graph NN “layer” might look like: 

• A is N x N adjacency (“similarity”) matrix, possibly normalized in some way 
• X is N x D node features (D features per node) 
• W is D x D’ learned weight matrix 
• B is N x D’ learned bias matrix 

• How to get rich 
• Downsampling via graph coarsening 
• Residual/shortcut connections 
• Learnable adjacency, e.g. parametrized by some kernel function 
• Multiple adjacencies for modeling distinct types of node relations (edge features) 
• Alternate between layers that calculate edge features and node features
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Hit classification with GNNs

• Binary classification of hits to find one seeded 
target track with 2D toy data 

• Inputs 
• Node features: (r, x, is_seed) 
• Edge weights: 1 if hits on adjacent layers and 

segment defines an allowed line (contained 
in detector), otherwise 0 

• Architecture 
• Graph layers of the form: 

• D is the diagonal degree matrix 
(normalizes A), σ is a ReLU 

• Input features also stacked onto every 
hidden graph layer 

• Performance not very good :( 
• Binary similarity not capturing any useful 

information 
• Model needs help at distinguishing neighbors
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Alternative segment-graph formulation

• We can build a “dual” graph which swaps the nodes and edges 
• For the tracking problem, then, it’s a graph that relates and learns on the 
segments between hits 

• Segments connect to other segments through hits, and we can define 
similarity in terms of the compatibility of the segments 
• e.g., the change in direction
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• Binary classification of segments to connect adjacent hits 
• In this case I considered all segments between adjacent layer hits 

• Inputs 
• Node features: (r1, r2, x1, x2, slope) 
• Edge weights: Gaus(delta-slope, 0.05) if segments are connected through 

adjacent layer, otherwise 0 
• Architecture similar to before, but I didn’t shortcut the inputs to hidden layers 
• Performance is great if I make the gaussian kernel sharp enough 

• The correct adjacent segment needs to dominate 
• 96% accuracy 
• 2k parameters

Adjacency matrix Predicted segments

Segment classification with GNNs
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With a sharp enough 
adjacency, though, the 

problem is trivial!



Reflecting on GNNs so far

• Some of this looks promising, and graph NNs may be a useful approach 
• but I wouldn’t say these are “good” results (yet) 

• Limitations are becoming apparent 
• Basic graph-convolutional architectures do a weighted average over 

neighbors 
• Isotropic kernels using one similarity measure 

• So it’s hard to capture the specific relationship between one hit and another 
• How might they be improved? 

• Anisotropic, learned kernels 
• Alternating graph representations: hits, segments 
• ??? 

• This has only been a brief first look. There’s a fair bit of investigating yet to do.
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Conclusion

• HEP.TrkX is chugging along trying crazy things 
• Moving away from image-like construction, trying more novel formulations 
• We’re working on getting focused, however 

• Working towards common targets 
• Porting ideas to realistic ACTS data 

• We currently suffer from low manpower 
• only 2-3 “active” researchers as far as I can tell 

• Areas of work I still think are promising 
• Image-based techniques localized to detector sections 
• ML-assisted combinatorial tree search 
• Graph-based neural networks
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Backup
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Track fitting with LSTM
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GNNs with PyTorch
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GNNs with PyTorch
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