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4Previous proposals 

Use adversaries to penalize learning data versus simulation

Louppe et al.

Figure 2: Toy example. (Left) Conditional probability densities of the decision scores at Z = ��, 0,� without
adversarial training. The resulting densities are dependent on the continuous parameter Z, indicating that f is
not pivotal. (Middle left) The associated decision surface, highlighting the fact that samples are easier to classify
for values of Z above �, hence explaining the dependency. (Middle right) Conditional probability densities of
the decision scores at Z = ��, 0,� when f is built with adversarial training. The resulting densities are now
almost identical to each other, indicating only a small dependency on Z. (Right) The associated decision surface,
illustrating how adversarial training bends the decision function vertically to erase the dependency on Z.

where � � 0 is a hyper-parameter controlling the trade-off between the performance of f and its
independence with respect to the nuisance parameter. Setting � to a large value will preferably
enforces f to be pivotal while setting � close to 0 will rather constraint f to be optimal. When the
lower bound is strict, let us note however that there may exist distinct but equally good solutions ✓

f

, ✓
r

minimizing Eqn. 11. In this zero-sum game, an increase in accuracy would exactly be compensated
by a decrease in pivotality and vice-versa. How to best navigate this Pareto frontier to maximize a
higher-level objective remains a question open for future works.

Interestingly, let us finally emphasize that our results hold using only the (1D) output s of f(·; ✓
f

) as
input to the adversary. We could similarly enforce an intermediate representation of the data to be
pivotal, e.g. as in (Ganin and Lempitsky, 2014), but this is not necessary.

5 Experiments

In this section, we empirically demonstrate the effectiveness of the approach with a toy example
and examples from particle physics. Notably, there are no other other approaches to compare to in
the case of continuous nuisance parameters, as further explained in Sec. 6. In the case of binary
parameters, we do not expect results to be much different from previous works.

5.1 A toy example with a continous nuisance parameter

As a guiding toy example, let us consider the binary classification of 2D data drawn from multivariate
gaussians with equal priors, such that

x ⇠ N
✓
(0, 0),


1 �0.5

�0.5 1

�◆
when Y = 0, (12)

x|Z = z ⇠ N
✓
(1, 1 + z),


1 0

0 1

�◆
when Y = 1. (13)

The continuous nuisance parameter Z here represents our uncertainty about the location of the mean
of the second gaussian. Our goal is to build a classifier f(·; ✓

f

) for predicting Y given X , but such
that the probability distribution of f(X; ✓

f

) is invariant with respect to the nuisance parameter Z.

Assuming a gaussian prior z ⇠ N (0, 1), we generate data {x
i

, y
i

, z
i

}N
i=1, from which we train a

neural network f minimizing L
f

(✓
f

) without considering its adversary r. The network architecture
comprises 2 dense hidden layers of 20 nodes respectively with tanh and ReLU activations, followed
by a dense output layer with a single node with a sigmoid activation. As shown in Fig. 2, the resulting
classifier is not pivotal, as the conditional probability densities of its decision scores f(X; ✓

f

) show
large discrepancies between values z of the nuisance parameters. While not shown here, a classifier
trained only from data generated at the nominal value Z = 0 would also not be pivotal.

5

1611.01046
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for values of Z above �, hence explaining the dependency. (Middle right) Conditional probability densities of
the decision scores at Z = ��, 0,� when f is built with adversarial training. The resulting densities are now
almost identical to each other, indicating only a small dependency on Z. (Right) The associated decision surface,
illustrating how adversarial training bends the decision function vertically to erase the dependency on Z.
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minimizing Eqn. 11. In this zero-sum game, an increase in accuracy would exactly be compensated
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input to the adversary. We could similarly enforce an intermediate representation of the data to be
pivotal, e.g. as in (Ganin and Lempitsky, 2014), but this is not necessary.
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In this section, we empirically demonstrate the effectiveness of the approach with a toy example
and examples from particle physics. Notably, there are no other other approaches to compare to in
the case of continuous nuisance parameters, as further explained in Sec. 6. In the case of binary
parameters, we do not expect results to be much different from previous works.
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of the second gaussian. Our goal is to build a classifier f(·; ✓
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) for predicting Y given X , but such
that the probability distribution of f(X; ✓
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) is invariant with respect to the nuisance parameter Z.

Assuming a gaussian prior z ⇠ N (0, 1), we generate data {x
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}N
i=1, from which we train a

neural network f minimizing L
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) without considering its adversary r. The network architecture
comprises 2 dense hidden layers of 20 nodes respectively with tanh and ReLU activations, followed
by a dense output layer with a single node with a sigmoid activation. As shown in Fig. 2, the resulting
classifier is not pivotal, as the conditional probability densities of its decision scores f(X; ✓

f

) show
large discrepancies between values z of the nuisance parameters. While not shown here, a classifier
trained only from data generated at the nominal value Z = 0 would also not be pivotal.

5

1611.01046

What if there is discriminating information in the data that is 
not in the MC?  The resulting classifier will be sub-optimal.
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Use adversaries to penalize learning data versus simulation

Louppe et al.

Figure 2: Toy example. (Left) Conditional probability densities of the decision scores at Z = ��, 0,� without
adversarial training. The resulting densities are dependent on the continuous parameter Z, indicating that f is
not pivotal. (Middle left) The associated decision surface, highlighting the fact that samples are easier to classify
for values of Z above �, hence explaining the dependency. (Middle right) Conditional probability densities of
the decision scores at Z = ��, 0,� when f is built with adversarial training. The resulting densities are now
almost identical to each other, indicating only a small dependency on Z. (Right) The associated decision surface,
illustrating how adversarial training bends the decision function vertically to erase the dependency on Z.

where � � 0 is a hyper-parameter controlling the trade-off between the performance of f and its
independence with respect to the nuisance parameter. Setting � to a large value will preferably
enforces f to be pivotal while setting � close to 0 will rather constraint f to be optimal. When the
lower bound is strict, let us note however that there may exist distinct but equally good solutions ✓

f

, ✓
r

minimizing Eqn. 11. In this zero-sum game, an increase in accuracy would exactly be compensated
by a decrease in pivotality and vice-versa. How to best navigate this Pareto frontier to maximize a
higher-level objective remains a question open for future works.

Interestingly, let us finally emphasize that our results hold using only the (1D) output s of f(·; ✓
f

) as
input to the adversary. We could similarly enforce an intermediate representation of the data to be
pivotal, e.g. as in (Ganin and Lempitsky, 2014), but this is not necessary.

5 Experiments

In this section, we empirically demonstrate the effectiveness of the approach with a toy example
and examples from particle physics. Notably, there are no other other approaches to compare to in
the case of continuous nuisance parameters, as further explained in Sec. 6. In the case of binary
parameters, we do not expect results to be much different from previous works.

5.1 A toy example with a continous nuisance parameter

As a guiding toy example, let us consider the binary classification of 2D data drawn from multivariate
gaussians with equal priors, such that

x ⇠ N
✓
(0, 0),


1 �0.5

�0.5 1

�◆
when Y = 0, (12)

x|Z = z ⇠ N
✓
(1, 1 + z),


1 0

0 1

�◆
when Y = 1. (13)

The continuous nuisance parameter Z here represents our uncertainty about the location of the mean
of the second gaussian. Our goal is to build a classifier f(·; ✓

f

) for predicting Y given X , but such
that the probability distribution of f(X; ✓

f

) is invariant with respect to the nuisance parameter Z.

Assuming a gaussian prior z ⇠ N (0, 1), we generate data {x
i

, y
i

, z
i

}N
i=1, from which we train a

neural network f minimizing L
f

(✓
f

) without considering its adversary r. The network architecture
comprises 2 dense hidden layers of 20 nodes respectively with tanh and ReLU activations, followed
by a dense output layer with a single node with a sigmoid activation. As shown in Fig. 2, the resulting
classifier is not pivotal, as the conditional probability densities of its decision scores f(X; ✓

f

) show
large discrepancies between values z of the nuisance parameters. While not shown here, a classifier
trained only from data generated at the nominal value Z = 0 would also not be pivotal.

5

1611.01046

What if there is discriminating information in the data that is 
not in the MC?  The resulting classifier will be sub-optimal.

Solution: train directly on (unlabeled) data!
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7New Proposal #1: Weak supervision
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8New Proposal #1: Weak supervisiontwo classes. In the traditional classification paradigm of fully supervised training, the function ffull is
built by minimizing a loss function like the following:

ffull = argmin
f

0:Rn!{0,1}

NX

i=1

` (f 0(x
i

)� t

i

) , (2.1)

where N is the number of labeled data available for training, ` is a loss function with lim
x!0 `(x) = 0,

and t

i

is the true label of example i. A common loss function is the squared error. In order to
provide flexibility and stability, one often modifies the original problem to take f : Rn ! [0, 1] and the
output is interpreted as a probability for an event to be in class 0 or 1. The ideal classifier that one
tries to approximate with Eq. 2.1 is based on the likelihood ratio p(~x|0)/p(~x|1), where p(~x|i) is the
n-dimensional probability density for the feature vector ~x for the class i 2 {0, 1}. Weakly supervised

classification is a new paradigm in which instead of knowing the t
i

, all that is known is the proportion
of events in either class: y =

P
i

t

i

/N . Thus, the weakly supervised fweak is given by

fweak = argmin
f

0:Rn![0,1]`

 
NX

i=1

f

0(x
i

)

N

� y

!
. (2.2)

The argument of Eq. 2.2 is non-convex, with many minima. In particular, the trivial solution f

0(x) =
y results in a loss of zero. However, using multiple batches of data with di↵erent proportions y

k

is su�cient to collapse the solution space, so long as the distribution p(~x|i; k) = p(~x|i), i.e. the
distribution of the discriminating features for a particular class is the same in every batch k. To build
intuition for why there is any hope to solve this problem, consider a case where there are two batches
A and B with proportions y

A

and y

B

. Consider an n-dimensional histogram where the i

th dimension
captures a discretized version of the i

th discriminating feature. If the i

th dimension has m
i

bins, then
the total number of bins in the histogram is M =

P
n

i=1 mi

. One can always rearrange bins so that
instead of an n-dimensional histogram with m

i

bins in the i

th dimension, there is a one-dimensional
histogram with M bins. As visualizing high dimensional histograms can be cumbersome, let h

A

be
one-dimensional histograms with M bins for the batch A and h

B

be the corresponding histogram for
batch B. Then, for each bin i, one can write

h

A,i

= y

A

h1,i + (1� y

A

)h0,i (2.3)

h

B,i

= y

B

h1,i + (1� y

B

)h0,i, (2.4)

where h
X,i

is the content of the ith bin of the histogram h

X

. Except for contrived scenarios, Eq. 2.3 will
have a unique solution for h0,i and h1,i, which are discretized versions of the probability densities p(~x|0)
and p(~x|1). One can then form an (approximately) optimal classifier from the ratio of histograms with
bin contents h0,i/h1,i. If the number of dimensions is large, one can add a further step to use machine
learning to approximate the optimal classifier from h0,i and h1,i. As a result, the problem is completely
solvable. Weakly supervised training combines the classification step with the first step and does so
without binning. Solving Eq. 2.3 ‘by-hand’ is intractable when n is relatively large or the number
of examples is relatively small. It is also complicated when there are more than two batches (over-
constrained). These challenges are all naturally handled by the all-in-one machine learning approach
of weakly supervised classification, as illustrated below.
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learning to approximate the optimal classifier from h0,i and h1,i. As a result, the problem is completely
solvable. Weakly supervised training combines the classification step with the first step and does so
without binning. Solving Eq. 2.3 ‘by-hand’ is intractable when n is relatively large or the number
of examples is relatively small. It is also complicated when there are more than two batches (over-
constrained). These challenges are all naturally handled by the all-in-one machine learning approach
of weakly supervised classification, as illustrated below.
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intuition: 

In the weakly supervised training used in the following examples, f 0 in Eq. 2.2 is parametrized as
a three-layer neural network with three inputs, a hidden layer with 30 neurons, and a sigmoid output.
We use the Adam optimizer [8] in Keras [9] with a learning rate of 0.009 and train for 25 iterations.
As reference, we consider a traditional classifier

ffull = argmin
f

0:Rn![0,1]` (f
0(x

i

)� t

i

) , (2.5)

where t

i

labels the individual instances and f

0 is parametrized as a three-layer neural network with
three inputs, a hidden layer with 10 neurons, and a sigmoid output. Minimization is performed with
stochastic gradient descent in Keras with a learning rate of 0.01 run for 40 iterations. For each training,
both networks are initialized with random weights, following a normal distribution.

Figure 1: Receiver Operator Characteristic (ROC) curves for instance classification, using three
individual features and then combined using a fully supervised network and the weakly supervised
classifier. One performance metric is the Area Under the Curve (AUC) which is the integral of the
ROC curve.

Feature µ0 �0 µ1 �1

1 26 8 18 7
2 0.09 0.04 0.06 0.04
3 0.28 0.04 0.23 0.05

Table 1: Mean (µ) and standard deviation (�) values of the normal distributions for class 0 and 1 of
each feature.

Figure 1 shows the weakly supervised classifier performance when training with 9 subsets of data
with proportions between 0.2 and 0.4 compared with that of the fully supervised one. Three features,
labeled 1 � 3 are constructed so that the distribution of feature i given class j follows a normal
distribution with mean µ

ij

and standard deviation �

ij

. For reference, the values of µ
ij

and �

ij

used for
the example shown in Fig. 1 are in Table. 1. Both the traditional and weakly supervised classifiers have
the same Receiver Operator Characteristic (ROC) and thus have identical classification performance.

– 3 –

Note that the loss for weakly supervised classification is symmetric with respect to swapping the class
assignment, therefore the classifier output for a given training can give higher values for class 0, while
for a di↵erent training it would give higher value for class 1.

As with any machine learning algorithm with inherent randomness, the performance of a weakly
supervised classifier has a stochastic component. This is quantified by retraining the same network
many times with di↵erent random number seeds in each iteration. The interquartile range (IQR)
over the Area Under the Curve (AUC) values for each training is a measure of the spread due to the
inherent randomness. Figure 2 shows the AUC IQR for the toy example with one proportion fixed
to 0.2 and the second proportion scanned from 0.2 to 0.7. The stability improves as the di↵erence
between the class proportions increases. In addition to the performance varying less as the proportions
are further apart, the overall performance quantified by the median AUC (denoted by hAUCi) also
improves (increases). The improvement in the median AUC is not as dramatic as the reduction in
the AUC IQR, but it does suggest that it is (slightly) easier for the machine learning algorithm when
the proportions are very di↵erent2. This makes sense in the context of the two-step intuition-building
paradigm given above: the algorithm can spend more attention on the classification task if it is easier
to extract the class distributions.

Figure 2: Median (solid triangles) and interquartile range (solid dots) of the AUC as a function
of the di↵erence in proportions �y between the two subsets of the training sample. The proportion
corrisponding to one subset is fixed to 0.2, while the other varies. For each point the AUC is com-
puted 100 times on the same test set with di↵erent trainings, each performed with a random weight
initialization. The maximum AUC for each point is also shown (hollow triangles).

3 Example: quark and gluon jet discrimination

Due to the strength of the strong force, there is a plethora of gluon jets produced at the LHC.
However, many processes result in mostly quark jets. Prominent examples include the identification of
hadronically decaying W bosons [10, 11], jets associated with vector boson fusion [12–14], and multi-
quarks resulting from supersymmetry [15]. The references given here are the small number of public

2
Even when the proportions are within few percents, stable performance can be achieved if multiple (> 2) subsets

with di↵erent proportions can be used for training.

– 4 –
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9New Proposal #1: Weak supervisiontwo classes. In the traditional classification paradigm of fully supervised training, the function ffull is
built by minimizing a loss function like the following:

ffull = argmin
f

0:Rn!{0,1}

NX

i=1

` (f 0(x
i

)� t

i

) , (2.1)

where N is the number of labeled data available for training, ` is a loss function with lim
x!0 `(x) = 0,

and t

i

is the true label of example i. A common loss function is the squared error. In order to
provide flexibility and stability, one often modifies the original problem to take f : Rn ! [0, 1] and the
output is interpreted as a probability for an event to be in class 0 or 1. The ideal classifier that one
tries to approximate with Eq. 2.1 is based on the likelihood ratio p(~x|0)/p(~x|1), where p(~x|i) is the
n-dimensional probability density for the feature vector ~x for the class i 2 {0, 1}. Weakly supervised

classification is a new paradigm in which instead of knowing the t
i

, all that is known is the proportion
of events in either class: y =

P
i

t

i

/N . Thus, the weakly supervised fweak is given by

fweak = argmin
f

0:Rn![0,1]`

 
NX

i=1

f

0(x
i

)

N

� y

!
. (2.2)

The argument of Eq. 2.2 is non-convex, with many minima. In particular, the trivial solution f

0(x) =
y results in a loss of zero. However, using multiple batches of data with di↵erent proportions y

k

is su�cient to collapse the solution space, so long as the distribution p(~x|i; k) = p(~x|i), i.e. the
distribution of the discriminating features for a particular class is the same in every batch k. To build
intuition for why there is any hope to solve this problem, consider a case where there are two batches
A and B with proportions y

A

and y

B

. Consider an n-dimensional histogram where the i

th dimension
captures a discretized version of the i

th discriminating feature. If the i

th dimension has m
i

bins, then
the total number of bins in the histogram is M =

P
n

i=1 mi

. One can always rearrange bins so that
instead of an n-dimensional histogram with m

i

bins in the i

th dimension, there is a one-dimensional
histogram with M bins. As visualizing high dimensional histograms can be cumbersome, let h

A

be
one-dimensional histograms with M bins for the batch A and h

B

be the corresponding histogram for
batch B. Then, for each bin i, one can write

h

A,i

= y

A

h1,i + (1� y

A

)h0,i (2.3)

h

B,i

= y

B

h1,i + (1� y

B

)h0,i, (2.4)

where h
X,i

is the content of the ith bin of the histogram h

X

. Except for contrived scenarios, Eq. 2.3 will
have a unique solution for h0,i and h1,i, which are discretized versions of the probability densities p(~x|0)
and p(~x|1). One can then form an (approximately) optimal classifier from the ratio of histograms with
bin contents h0,i/h1,i. If the number of dimensions is large, one can add a further step to use machine
learning to approximate the optimal classifier from h0,i and h1,i. As a result, the problem is completely
solvable. Weakly supervised training combines the classification step with the first step and does so
without binning. Solving Eq. 2.3 ‘by-hand’ is intractable when n is relatively large or the number
of examples is relatively small. It is also complicated when there are more than two batches (over-
constrained). These challenges are all naturally handled by the all-in-one machine learning approach
of weakly supervised classification, as illustrated below.

– 2 –
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histogram with M bins. As visualizing high dimensional histograms can be cumbersome, let h
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be
one-dimensional histograms with M bins for the batch A and h
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be the corresponding histogram for
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where h
X,i

is the content of the ith bin of the histogram h

X

. Except for contrived scenarios, Eq. 2.3 will
have a unique solution for h0,i and h1,i, which are discretized versions of the probability densities p(~x|0)
and p(~x|1). One can then form an (approximately) optimal classifier from the ratio of histograms with
bin contents h0,i/h1,i. If the number of dimensions is large, one can add a further step to use machine
learning to approximate the optimal classifier from h0,i and h1,i. As a result, the problem is completely
solvable. Weakly supervised training combines the classification step with the first step and does so
without binning. Solving Eq. 2.3 ‘by-hand’ is intractable when n is relatively large or the number
of examples is relatively small. It is also complicated when there are more than two batches (over-
constrained). These challenges are all naturally handled by the all-in-one machine learning approach
of weakly supervised classification, as illustrated below.
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have a unique solution for h0,i and h1,i, which are discretized versions of the probability densities p(~x|0)
and p(~x|1). One can then form an (approximately) optimal classifier from the ratio of histograms with
bin contents h0,i/h1,i. If the number of dimensions is large, one can add a further step to use machine
learning to approximate the optimal classifier from h0,i and h1,i. As a result, the problem is completely
solvable. Weakly supervised training combines the classification step with the first step and does so
without binning. Solving Eq. 2.3 ‘by-hand’ is intractable when n is relatively large or the number
of examples is relatively small. It is also complicated when there are more than two batches (over-
constrained). These challenges are all naturally handled by the all-in-one machine learning approach
of weakly supervised classification, as illustrated below.
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intuition: 

In the weakly supervised training used in the following examples, f 0 in Eq. 2.2 is parametrized as
a three-layer neural network with three inputs, a hidden layer with 30 neurons, and a sigmoid output.
We use the Adam optimizer [8] in Keras [9] with a learning rate of 0.009 and train for 25 iterations.
As reference, we consider a traditional classifier

ffull = argmin
f

0:Rn![0,1]` (f
0(x

i

)� t

i

) , (2.5)

where t

i

labels the individual instances and f

0 is parametrized as a three-layer neural network with
three inputs, a hidden layer with 10 neurons, and a sigmoid output. Minimization is performed with
stochastic gradient descent in Keras with a learning rate of 0.01 run for 40 iterations. For each training,
both networks are initialized with random weights, following a normal distribution.

Figure 1: Receiver Operator Characteristic (ROC) curves for instance classification, using three
individual features and then combined using a fully supervised network and the weakly supervised
classifier. One performance metric is the Area Under the Curve (AUC) which is the integral of the
ROC curve.

Feature µ0 �0 µ1 �1

1 26 8 18 7
2 0.09 0.04 0.06 0.04
3 0.28 0.04 0.23 0.05

Table 1: Mean (µ) and standard deviation (�) values of the normal distributions for class 0 and 1 of
each feature.

Figure 1 shows the weakly supervised classifier performance when training with 9 subsets of data
with proportions between 0.2 and 0.4 compared with that of the fully supervised one. Three features,
labeled 1 � 3 are constructed so that the distribution of feature i given class j follows a normal
distribution with mean µ

ij

and standard deviation �

ij

. For reference, the values of µ
ij

and �

ij

used for
the example shown in Fig. 1 are in Table. 1. Both the traditional and weakly supervised classifiers have
the same Receiver Operator Characteristic (ROC) and thus have identical classification performance.

– 3 –

Note that the loss for weakly supervised classification is symmetric with respect to swapping the class
assignment, therefore the classifier output for a given training can give higher values for class 0, while
for a di↵erent training it would give higher value for class 1.

As with any machine learning algorithm with inherent randomness, the performance of a weakly
supervised classifier has a stochastic component. This is quantified by retraining the same network
many times with di↵erent random number seeds in each iteration. The interquartile range (IQR)
over the Area Under the Curve (AUC) values for each training is a measure of the spread due to the
inherent randomness. Figure 2 shows the AUC IQR for the toy example with one proportion fixed
to 0.2 and the second proportion scanned from 0.2 to 0.7. The stability improves as the di↵erence
between the class proportions increases. In addition to the performance varying less as the proportions
are further apart, the overall performance quantified by the median AUC (denoted by hAUCi) also
improves (increases). The improvement in the median AUC is not as dramatic as the reduction in
the AUC IQR, but it does suggest that it is (slightly) easier for the machine learning algorithm when
the proportions are very di↵erent2. This makes sense in the context of the two-step intuition-building
paradigm given above: the algorithm can spend more attention on the classification task if it is easier
to extract the class distributions.

Figure 2: Median (solid triangles) and interquartile range (solid dots) of the AUC as a function
of the di↵erence in proportions �y between the two subsets of the training sample. The proportion
corrisponding to one subset is fixed to 0.2, while the other varies. For each point the AUC is com-
puted 100 times on the same test set with di↵erent trainings, each performed with a random weight
initialization. The maximum AUC for each point is also shown (hollow triangles).

3 Example: quark and gluon jet discrimination

Due to the strength of the strong force, there is a plethora of gluon jets produced at the LHC.
However, many processes result in mostly quark jets. Prominent examples include the identification of
hadronically decaying W bosons [10, 11], jets associated with vector boson fusion [12–14], and multi-
quarks resulting from supersymmetry [15]. The references given here are the small number of public

2
Even when the proportions are within few percents, stable performance can be achieved if multiple (> 2) subsets

with di↵erent proportions can be used for training.

– 4 –
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10New Proposal #1: Weak supervisiontwo classes. In the traditional classification paradigm of fully supervised training, the function ffull is
built by minimizing a loss function like the following:

ffull = argmin
f

0:Rn!{0,1}

NX

i=1

` (f 0(x
i

)� t

i

) , (2.1)

where N is the number of labeled data available for training, ` is a loss function with lim
x!0 `(x) = 0,

and t

i

is the true label of example i. A common loss function is the squared error. In order to
provide flexibility and stability, one often modifies the original problem to take f : Rn ! [0, 1] and the
output is interpreted as a probability for an event to be in class 0 or 1. The ideal classifier that one
tries to approximate with Eq. 2.1 is based on the likelihood ratio p(~x|0)/p(~x|1), where p(~x|i) is the
n-dimensional probability density for the feature vector ~x for the class i 2 {0, 1}. Weakly supervised

classification is a new paradigm in which instead of knowing the t
i

, all that is known is the proportion
of events in either class: y =

P
i

t

i

/N . Thus, the weakly supervised fweak is given by

fweak = argmin
f

0:Rn![0,1]`
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i=1

f

0(x
i

)

N

� y

!
. (2.2)

The argument of Eq. 2.2 is non-convex, with many minima. In particular, the trivial solution f

0(x) =
y results in a loss of zero. However, using multiple batches of data with di↵erent proportions y

k

is su�cient to collapse the solution space, so long as the distribution p(~x|i; k) = p(~x|i), i.e. the
distribution of the discriminating features for a particular class is the same in every batch k. To build
intuition for why there is any hope to solve this problem, consider a case where there are two batches
A and B with proportions y

A

and y

B

. Consider an n-dimensional histogram where the i

th dimension
captures a discretized version of the i

th discriminating feature. If the i

th dimension has m
i

bins, then
the total number of bins in the histogram is M =

P
n

i=1 mi

. One can always rearrange bins so that
instead of an n-dimensional histogram with m

i

bins in the i

th dimension, there is a one-dimensional
histogram with M bins. As visualizing high dimensional histograms can be cumbersome, let h

A

be
one-dimensional histograms with M bins for the batch A and h

B

be the corresponding histogram for
batch B. Then, for each bin i, one can write

h

A,i

= y

A

h1,i + (1� y

A

)h0,i (2.3)

h

B,i

= y

B

h1,i + (1� y

B

)h0,i, (2.4)

where h
X,i

is the content of the ith bin of the histogram h

X

. Except for contrived scenarios, Eq. 2.3 will
have a unique solution for h0,i and h1,i, which are discretized versions of the probability densities p(~x|0)
and p(~x|1). One can then form an (approximately) optimal classifier from the ratio of histograms with
bin contents h0,i/h1,i. If the number of dimensions is large, one can add a further step to use machine
learning to approximate the optimal classifier from h0,i and h1,i. As a result, the problem is completely
solvable. Weakly supervised training combines the classification step with the first step and does so
without binning. Solving Eq. 2.3 ‘by-hand’ is intractable when n is relatively large or the number
of examples is relatively small. It is also complicated when there are more than two batches (over-
constrained). These challenges are all naturally handled by the all-in-one machine learning approach
of weakly supervised classification, as illustrated below.

– 2 –

two classes. In the traditional classification paradigm of fully supervised training, the function ffull is
built by minimizing a loss function like the following:
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where N is the number of labeled data available for training, ` is a loss function with lim
x!0 `(x) = 0,

and t
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output is interpreted as a probability for an event to be in class 0 or 1. The ideal classifier that one
tries to approximate with Eq. 2.1 is based on the likelihood ratio p(~x|0)/p(~x|1), where p(~x|i) is the
n-dimensional probability density for the feature vector ~x for the class i 2 {0, 1}. Weakly supervised

classification is a new paradigm in which instead of knowing the t
i

, all that is known is the proportion
of events in either class: y =

P
i

t

i

/N . Thus, the weakly supervised fweak is given by

fweak = argmin
f

0:Rn![0,1]`

 
NX

i=1

f

0(x
i

)

N

� y

!
. (2.2)

The argument of Eq. 2.2 is non-convex, with many minima. In particular, the trivial solution f

0(x) =
y results in a loss of zero. However, using multiple batches of data with di↵erent proportions y

k

is su�cient to collapse the solution space, so long as the distribution p(~x|i; k) = p(~x|i), i.e. the
distribution of the discriminating features for a particular class is the same in every batch k. To build
intuition for why there is any hope to solve this problem, consider a case where there are two batches
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where h
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is the content of the ith bin of the histogram h
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. Except for contrived scenarios, Eq. 2.3 will
have a unique solution for h0,i and h1,i, which are discretized versions of the probability densities p(~x|0)
and p(~x|1). One can then form an (approximately) optimal classifier from the ratio of histograms with
bin contents h0,i/h1,i. If the number of dimensions is large, one can add a further step to use machine
learning to approximate the optimal classifier from h0,i and h1,i. As a result, the problem is completely
solvable. Weakly supervised training combines the classification step with the first step and does so
without binning. Solving Eq. 2.3 ‘by-hand’ is intractable when n is relatively large or the number
of examples is relatively small. It is also complicated when there are more than two batches (over-
constrained). These challenges are all naturally handled by the all-in-one machine learning approach
of weakly supervised classification, as illustrated below.
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output is interpreted as a probability for an event to be in class 0 or 1. The ideal classifier that one
tries to approximate with Eq. 2.1 is based on the likelihood ratio p(~x|0)/p(~x|1), where p(~x|i) is the
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The argument of Eq. 2.2 is non-convex, with many minima. In particular, the trivial solution f

0(x) =
y results in a loss of zero. However, using multiple batches of data with di↵erent proportions y
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is su�cient to collapse the solution space, so long as the distribution p(~x|i; k) = p(~x|i), i.e. the
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of examples is relatively small. It is also complicated when there are more than two batches (over-
constrained). These challenges are all naturally handled by the all-in-one machine learning approach
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intuition: 

In the weakly supervised training used in the following examples, f 0 in Eq. 2.2 is parametrized as
a three-layer neural network with three inputs, a hidden layer with 30 neurons, and a sigmoid output.
We use the Adam optimizer [8] in Keras [9] with a learning rate of 0.009 and train for 25 iterations.
As reference, we consider a traditional classifier

ffull = argmin
f

0:Rn![0,1]` (f
0(x

i

)� t

i

) , (2.5)

where t

i

labels the individual instances and f

0 is parametrized as a three-layer neural network with
three inputs, a hidden layer with 10 neurons, and a sigmoid output. Minimization is performed with
stochastic gradient descent in Keras with a learning rate of 0.01 run for 40 iterations. For each training,
both networks are initialized with random weights, following a normal distribution.

Figure 1: Receiver Operator Characteristic (ROC) curves for instance classification, using three
individual features and then combined using a fully supervised network and the weakly supervised
classifier. One performance metric is the Area Under the Curve (AUC) which is the integral of the
ROC curve.

Feature µ0 �0 µ1 �1

1 26 8 18 7
2 0.09 0.04 0.06 0.04
3 0.28 0.04 0.23 0.05

Table 1: Mean (µ) and standard deviation (�) values of the normal distributions for class 0 and 1 of
each feature.

Figure 1 shows the weakly supervised classifier performance when training with 9 subsets of data
with proportions between 0.2 and 0.4 compared with that of the fully supervised one. Three features,
labeled 1 � 3 are constructed so that the distribution of feature i given class j follows a normal
distribution with mean µ

ij

and standard deviation �

ij

. For reference, the values of µ
ij

and �

ij

used for
the example shown in Fig. 1 are in Table. 1. Both the traditional and weakly supervised classifiers have
the same Receiver Operator Characteristic (ROC) and thus have identical classification performance.
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Note that the loss for weakly supervised classification is symmetric with respect to swapping the class
assignment, therefore the classifier output for a given training can give higher values for class 0, while
for a di↵erent training it would give higher value for class 1.

As with any machine learning algorithm with inherent randomness, the performance of a weakly
supervised classifier has a stochastic component. This is quantified by retraining the same network
many times with di↵erent random number seeds in each iteration. The interquartile range (IQR)
over the Area Under the Curve (AUC) values for each training is a measure of the spread due to the
inherent randomness. Figure 2 shows the AUC IQR for the toy example with one proportion fixed
to 0.2 and the second proportion scanned from 0.2 to 0.7. The stability improves as the di↵erence
between the class proportions increases. In addition to the performance varying less as the proportions
are further apart, the overall performance quantified by the median AUC (denoted by hAUCi) also
improves (increases). The improvement in the median AUC is not as dramatic as the reduction in
the AUC IQR, but it does suggest that it is (slightly) easier for the machine learning algorithm when
the proportions are very di↵erent2. This makes sense in the context of the two-step intuition-building
paradigm given above: the algorithm can spend more attention on the classification task if it is easier
to extract the class distributions.

Figure 2: Median (solid triangles) and interquartile range (solid dots) of the AUC as a function
of the di↵erence in proportions �y between the two subsets of the training sample. The proportion
corrisponding to one subset is fixed to 0.2, while the other varies. For each point the AUC is com-
puted 100 times on the same test set with di↵erent trainings, each performed with a random weight
initialization. The maximum AUC for each point is also shown (hollow triangles).

3 Example: quark and gluon jet discrimination

Due to the strength of the strong force, there is a plethora of gluon jets produced at the LHC.
However, many processes result in mostly quark jets. Prominent examples include the identification of
hadronically decaying W bosons [10, 11], jets associated with vector boson fusion [12–14], and multi-
quarks resulting from supersymmetry [15]. The references given here are the small number of public

2
Even when the proportions are within few percents, stable performance can be achieved if multiple (> 2) subsets

with di↵erent proportions can be used for training.

– 4 –
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11New Proposal #1: Weak supervisiontwo classes. In the traditional classification paradigm of fully supervised training, the function ffull is
built by minimizing a loss function like the following:

ffull = argmin
f

0:Rn!{0,1}

NX

i=1

` (f 0(x
i

)� t

i

) , (2.1)

where N is the number of labeled data available for training, ` is a loss function with lim
x!0 `(x) = 0,

and t

i

is the true label of example i. A common loss function is the squared error. In order to
provide flexibility and stability, one often modifies the original problem to take f : Rn ! [0, 1] and the
output is interpreted as a probability for an event to be in class 0 or 1. The ideal classifier that one
tries to approximate with Eq. 2.1 is based on the likelihood ratio p(~x|0)/p(~x|1), where p(~x|i) is the
n-dimensional probability density for the feature vector ~x for the class i 2 {0, 1}. Weakly supervised

classification is a new paradigm in which instead of knowing the t
i

, all that is known is the proportion
of events in either class: y =

P
i

t

i

/N . Thus, the weakly supervised fweak is given by

fweak = argmin
f
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!
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The argument of Eq. 2.2 is non-convex, with many minima. In particular, the trivial solution f

0(x) =
y results in a loss of zero. However, using multiple batches of data with di↵erent proportions y

k

is su�cient to collapse the solution space, so long as the distribution p(~x|i; k) = p(~x|i), i.e. the
distribution of the discriminating features for a particular class is the same in every batch k. To build
intuition for why there is any hope to solve this problem, consider a case where there are two batches
A and B with proportions y

A

and y

B

. Consider an n-dimensional histogram where the i

th dimension
captures a discretized version of the i

th discriminating feature. If the i

th dimension has m
i

bins, then
the total number of bins in the histogram is M =

P
n

i=1 mi

. One can always rearrange bins so that
instead of an n-dimensional histogram with m

i

bins in the i

th dimension, there is a one-dimensional
histogram with M bins. As visualizing high dimensional histograms can be cumbersome, let h

A

be
one-dimensional histograms with M bins for the batch A and h

B

be the corresponding histogram for
batch B. Then, for each bin i, one can write

h

A,i

= y

A

h1,i + (1� y

A

)h0,i (2.3)

h

B,i

= y

B

h1,i + (1� y

B

)h0,i, (2.4)

where h
X,i

is the content of the ith bin of the histogram h

X

. Except for contrived scenarios, Eq. 2.3 will
have a unique solution for h0,i and h1,i, which are discretized versions of the probability densities p(~x|0)
and p(~x|1). One can then form an (approximately) optimal classifier from the ratio of histograms with
bin contents h0,i/h1,i. If the number of dimensions is large, one can add a further step to use machine
learning to approximate the optimal classifier from h0,i and h1,i. As a result, the problem is completely
solvable. Weakly supervised training combines the classification step with the first step and does so
without binning. Solving Eq. 2.3 ‘by-hand’ is intractable when n is relatively large or the number
of examples is relatively small. It is also complicated when there are more than two batches (over-
constrained). These challenges are all naturally handled by the all-in-one machine learning approach
of weakly supervised classification, as illustrated below.
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where N is the number of labeled data available for training, ` is a loss function with lim
x!0 `(x) = 0,
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is the true label of example i. A common loss function is the squared error. In order to
provide flexibility and stability, one often modifies the original problem to take f : Rn ! [0, 1] and the
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The argument of Eq. 2.2 is non-convex, with many minima. In particular, the trivial solution f
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y results in a loss of zero. However, using multiple batches of data with di↵erent proportions y
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is su�cient to collapse the solution space, so long as the distribution p(~x|i; k) = p(~x|i), i.e. the
distribution of the discriminating features for a particular class is the same in every batch k. To build
intuition for why there is any hope to solve this problem, consider a case where there are two batches
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. One can always rearrange bins so that
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histogram with M bins. As visualizing high dimensional histograms can be cumbersome, let h
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be
one-dimensional histograms with M bins for the batch A and h
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be the corresponding histogram for
batch B. Then, for each bin i, one can write
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where h
X,i

is the content of the ith bin of the histogram h

X

. Except for contrived scenarios, Eq. 2.3 will
have a unique solution for h0,i and h1,i, which are discretized versions of the probability densities p(~x|0)
and p(~x|1). One can then form an (approximately) optimal classifier from the ratio of histograms with
bin contents h0,i/h1,i. If the number of dimensions is large, one can add a further step to use machine
learning to approximate the optimal classifier from h0,i and h1,i. As a result, the problem is completely
solvable. Weakly supervised training combines the classification step with the first step and does so
without binning. Solving Eq. 2.3 ‘by-hand’ is intractable when n is relatively large or the number
of examples is relatively small. It is also complicated when there are more than two batches (over-
constrained). These challenges are all naturally handled by the all-in-one machine learning approach
of weakly supervised classification, as illustrated below.
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intuition: 

In the weakly supervised training used in the following examples, f 0 in Eq. 2.2 is parametrized as
a three-layer neural network with three inputs, a hidden layer with 30 neurons, and a sigmoid output.
We use the Adam optimizer [8] in Keras [9] with a learning rate of 0.009 and train for 25 iterations.
As reference, we consider a traditional classifier

ffull = argmin
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) , (2.5)

where t

i

labels the individual instances and f

0 is parametrized as a three-layer neural network with
three inputs, a hidden layer with 10 neurons, and a sigmoid output. Minimization is performed with
stochastic gradient descent in Keras with a learning rate of 0.01 run for 40 iterations. For each training,
both networks are initialized with random weights, following a normal distribution.

Figure 1: Receiver Operator Characteristic (ROC) curves for instance classification, using three
individual features and then combined using a fully supervised network and the weakly supervised
classifier. One performance metric is the Area Under the Curve (AUC) which is the integral of the
ROC curve.

Feature µ0 �0 µ1 �1

1 26 8 18 7
2 0.09 0.04 0.06 0.04
3 0.28 0.04 0.23 0.05

Table 1: Mean (µ) and standard deviation (�) values of the normal distributions for class 0 and 1 of
each feature.

Figure 1 shows the weakly supervised classifier performance when training with 9 subsets of data
with proportions between 0.2 and 0.4 compared with that of the fully supervised one. Three features,
labeled 1 � 3 are constructed so that the distribution of feature i given class j follows a normal
distribution with mean µ

ij

and standard deviation �

ij

. For reference, the values of µ
ij

and �

ij

used for
the example shown in Fig. 1 are in Table. 1. Both the traditional and weakly supervised classifiers have
the same Receiver Operator Characteristic (ROC) and thus have identical classification performance.
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Note that the loss for weakly supervised classification is symmetric with respect to swapping the class
assignment, therefore the classifier output for a given training can give higher values for class 0, while
for a di↵erent training it would give higher value for class 1.

As with any machine learning algorithm with inherent randomness, the performance of a weakly
supervised classifier has a stochastic component. This is quantified by retraining the same network
many times with di↵erent random number seeds in each iteration. The interquartile range (IQR)
over the Area Under the Curve (AUC) values for each training is a measure of the spread due to the
inherent randomness. Figure 2 shows the AUC IQR for the toy example with one proportion fixed
to 0.2 and the second proportion scanned from 0.2 to 0.7. The stability improves as the di↵erence
between the class proportions increases. In addition to the performance varying less as the proportions
are further apart, the overall performance quantified by the median AUC (denoted by hAUCi) also
improves (increases). The improvement in the median AUC is not as dramatic as the reduction in
the AUC IQR, but it does suggest that it is (slightly) easier for the machine learning algorithm when
the proportions are very di↵erent2. This makes sense in the context of the two-step intuition-building
paradigm given above: the algorithm can spend more attention on the classification task if it is easier
to extract the class distributions.

Figure 2: Median (solid triangles) and interquartile range (solid dots) of the AUC as a function
of the di↵erence in proportions �y between the two subsets of the training sample. The proportion
corrisponding to one subset is fixed to 0.2, while the other varies. For each point the AUC is com-
puted 100 times on the same test set with di↵erent trainings, each performed with a random weight
initialization. The maximum AUC for each point is also shown (hollow triangles).

3 Example: quark and gluon jet discrimination

Due to the strength of the strong force, there is a plethora of gluon jets produced at the LHC.
However, many processes result in mostly quark jets. Prominent examples include the identification of
hadronically decaying W bosons [10, 11], jets associated with vector boson fusion [12–14], and multi-
quarks resulting from supersymmetry [15]. The references given here are the small number of public

2
Even when the proportions are within few percents, stable performance can be achieved if multiple (> 2) subsets

with di↵erent proportions can be used for training.

– 4 –
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12New Proposal #1: Weak supervision

results that mention quark/gluon tagging, but there many more analyses that would benefit from a
tagger if a robust technique existed.

The weakly supervised classification strategy is particularly useful for quark/gluon tagging because
the fraction of quark jets for a particular set of events is well-known from parton distribution functions
and matrix element calculations while useful discriminating features have not been computed to high
accuracy and simulations often mis-model the data. To illustrate this concrete example, quark and
gluon jets are simulated and a weakly supervised classifier is trained on the generated event sample.
Unlike real data, in the simulated sample, we also know per-event labels which are used to additionally
train a fully supervised classifier. Events with 2 ! 2 quark-gluon scattering (dijet events) are simulated
using the Pythia 8.18 [16] event generator. Jets are clustered using the anti-k

t

algorithm [17] with
distance parameter R = 0.4 via the FastJet 3.1.3 [18] package. Jets are classified as quark- or gluon-
initiated by considering the type of the highest energy quark or gluon in the full generator event
record that is inside a 0.3 radius of the jet axis. For simplicity, one transverse momentum range is
considered: 45 GeV < pT < 55 GeV. Additionally, there is a pseudo-rapidity requirement that mimics
the usual detector acceptance for charged particle tracking: |⌘| < 2.1. Heuristically, gluons have twice
as much strong-force charge as quark jets, resulting in more constituents and a broader radiation
pattern. Therefore, the following variables are useful for quark/gluon discrimination: the number of
jet constituents n, the first radial moment in pT (jet width) w, and the fraction of the jet pT carried
by the leading anti-kT R = 0.1 subjet f0. The constituents i considered for computing n and w are
the hadrons in the jet with pT > 500 MeV.

(a) (b)

Figure 3: Comparison of ROC curves for quark/gluon jet discrimination using a fully supervised clas-
sifier or a weakly supervised classifier. In (a) the fully and weakly supervised classifiers are trained on
identical simulated data and evaluated on a test sample drawn from the same population. The weakly
supervised classifier matches the performance of the fully supervised one. The curves corresponding
to the three input observables used as discriminant are shown as reference. In (b), the fully supervised
classifier (blue line) is trained on a labeled simulated training sample. The weakly supervised classifier
(red line) is trained on an unlabeled pseudo-data training sample. In both cases, the performance is
evaluated on the same pseudo-data test sample. The ratios to the performance of a fully supervised
classifier trained on a labeled pseudo-data sample are shown in the bottom pad.

A weakly supervised classifier with one hidden layer of size 30 is trained by considering 12 bins
of the distribution of the absolute di↵erence in pseudorapidity between the two jets [19]. The propor-

– 5 –
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M
1

and M
2

defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f
1

> f
2

, an optimal classifier trained to

distinguish M
1

from M
2

is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f
1

pS + (1� f
1

) pB
f
2

pS + (1� f
2

) pB
=

f
1

LS/B + (1� f
1

)

f
2

LS/B + (1� f
2

)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f
1

> f
2

, since

@LS/B
LM1/M2

= (f
1

� f
2

)/(f
2

LS/B � f
2

+ 1)2 > 0. If f
1

< f
2

, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f
1

and f
2

are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
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Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood
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(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,
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An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f
1

and f
2

are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M
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2

defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f
1

> f
2

, an optimal classifier trained to

distinguish M
1

from M
2

is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:
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, since
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)/(f
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LS/B � f
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+ 1)2 > 0. If f
1

< f
2

, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f
1

and f
2

are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M
1

and M
2

defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f
1

> f
2

, an optimal classifier trained to

distinguish M
1

from M
2

is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
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=
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which is a monotonically increasing rescaling of the likelihood LS/B as long as f
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, since
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)/(f
2

LS/B � f
2

+ 1)2 > 0. If f
1

< f
2

, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f
1

and f
2

are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Figure 2. The AUC for the LLP and CWoLa methods as a function of the signal fraction f1, for
training sizes Ntrain of (a) 100 events, (b) 1k events, and (c) 10k events. Here, the complementary
signal fraction is f2 = 1� f1. By construction, the AUC for full supervision is independent of f1. The
horizontal dashed line indicates the fully-supervised AUC with infinite training statistics. For Ntrain

su�ciently large and f1 su�cient far from 0.5, all three methods converge to the optimal case.

on the number of training events and the signal fraction f
1

. The full supervision does not

depend on the signal composition of M
1

and M
2

as it is trained directly on labeled signal and

background examples. As expected, the performance is poor when the number of training
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Figure 2. The AUC for the LLP and CWoLa methods as a function of the signal fraction f1, for
training sizes Ntrain of (a) 100 events, (b) 1k events, and (c) 10k events. Here, the complementary
signal fraction is f2 = 1� f1. By construction, the AUC for full supervision is independent of f1. The
horizontal dashed line indicates the fully-supervised AUC with infinite training statistics. For Ntrain

su�ciently large and f1 su�cient far from 0.5, all three methods converge to the optimal case.
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Figure 3. The AUC for LLP and CWoLa as a function of the (possibly incorrect) signal fraction
provided for training. By construction, CWoLa does not depend on the input fraction and LLP is
only sensitive to provided signal fraction information when that fraction is near 50%.

examples is small or f
1

is close to f
2

(so the e↵ective number of useful events is small). As

f
1

! f
2

, the two mixtures become identical and there is thus no way to distinguish M
1

and

M
2

; in the context of LLP, this corresponds to attempting to solve a degenerate system of

equations. With su�ciently many training examples and/or well-separated fractions f
1

and

f
2

, the techniques trained with M
1

and M
2

converge to the fully supervised case, as expected

from Theorem 1.

One advantage of CWoLa over the LLP approach is that the fractions f
1

and f
2

are

not required for training. In Fig. 3, we demonstrate the impact on the AUC for LLP when

the wrong fractions are provided at training time. Here, the true fractions are f
1

= 80%

and f
2

= 20%, but di↵erent fractions f
1,wrong

= 1 � f
2,wrong

are used to calculate Eq. (3.3).

For f
1,wrong

far from 50%, there is little dependence on the fraction used for training. This

insensitivity is likely due to the preservation of monotonicity to the full likelihood with small

perturbations in f , as discussed in detail in Ref. [38].

With this one-dimensional example, the estimate for the optimal classifier under each

of the three schemes is computable directly. It is often the case that ~x is highly multi-

dimensional, though, in which case a more sophisticated learning scheme may be required.

We investigate the performance of CWoLa in a five-dimensional space in the next section.

4 Realistic example: Quark/gluon jet discrimination

Quark- versus gluon-initaited jet tagging [43–51] is a particularly important classification

problem in high energy physics where training on data would be beneficial. This is be-

– 9 –

What if you give 
the wrong label?
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CWoLa: Ntrain = 25000

pp ! H ! qq̄/gg

Pythia 8.183p
s = 13 TeV

mH = 500 GeV

(a)

CWoLa: Ntrain = 150000

pp ! H ! qq̄/gg

Pythia 8.183p
s = 13 TeV

mH = 500 GeV

(b)

Figure 4. Training performance of the CWoLa method on two mixed samples with f1 = 1 � f2
quark fraction. Shown are the range of AUC values obtained from 10 repetitions of training the neural
network on (a) 25k events and (b) 150k events for 10 epochs.

Quark and gluon jets are simulated from the decay of a heavy scalar particle H with

mH = 500 GeV in either the pp ! H ! qq̄ or pp ! H ! gg channel. Production, decay,

and fragmentation are modeled with Pythia 8.183 [70]. Jets are clustered using the anti-kt
algorithm [71] with radius R = 0.6 implemented in Fastjet 3.1.3 [72]. Only detector-stable

hadrons are used for jet finding. Since the gluon color factor CA is larger than the quark

color factor CF by about a factor of two, gluon jets have more particles and are “wider” on

average as measured by the angularities listed above.

To classify quarks and gluons with either the CWoLa or fully-supervised method, we

use a simple neural network consisting of two dense layers of 30 nodes with rectified linear

unit (ReLU) activation functions connected to a 2-node output with a softmax activation

function. All neural network training was performed with the Python deep learning library

Keras [73] with a Tensorflow [74] backend. The data consisted of 200k quark/gluon

events, partitioned into 20k validation event, 20k test events, and the remainder used as

training event samples of various sizes. He-uniform weight initialization [75] was used for

the model weights. The network was trained with the categorical cross-entropy loss function

using the Adam algorithm [76] with a learning rate of 0.001 and a batch size of 128.

In Fig. 4, we show the performance of CWoLa training for quark/gluon classification using

mixed samples of di↵erent purities. These mixed samples of 25k and 150k training events were

generated by shu✏ing the pure samples into two sets in di↵erent proportions. Performance is

measured in terms of the classifier AUC. The behavior resembles that found in the toy model

– 11 –
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Figure 5. Quark/gluon discrimination performance in terms of (a) ROC curves and (b) SI curves.
Shown are results for the dense net trained on 150k pure samples, and then with CWoLa on f1 = 80%
versus f2 = 20% mixed samples, as well as the input observables individually. The classifier trained
on the mixed samples achieves similar performance to the classifier trained on the pure samples, with
improvement in performance over the input observables.

of Fig. 2, with more training data resulting in increased robustness to sample impurity. It is

remarkable that such good performance can be obtained even when the signal/background

events are so heavily mixed.

In Fig. 5, we show ROC and significance improvement (SI) curves for 150k training

events, where SI is a curve of ✏q/
p
✏g at di↵erent ✏q values [50]. Results are given for the

fully-supervised classifier trained on pure samples and the CWoLa classifier trained on mixed

samples with f
1

= 80% and f
2

= 20%, along with the curves of the input observables.

Both the fully-supervised and CWoLa dense networks achieve similar performance, with the

expected improvement over the individual input observables. This suggests that the proof

of CWoLa optimality in Theorem 1 is achievable in practice, though many more studies are

needed to demonstrate this in a wider range of contexts.

5 Conclusions

We introduced the CWoLa framework for training classifiers on di↵erent mixed samples of

signal and background events, without using true labels or class proportions. The observation

that the optimal classifier for mixed samples of signal and background is also optimal for pure

samples of signal and background, proven in Theorem 1, could be of tremendous practical

– 12 –
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19Future outlook

LLP: non-trivial to train, applies to any number of samples, 
small dependence on knowledge of fractions.

CWoLa: easy to train, only works for 2 samples, no 
dependence on fractions, can’t directly compute ROC

We have developed two methods for training 
classifiers directly on (unlabeled) data.

The performance has been demonstrated in 
‘simple’ cases - we are now working on applying 

these techniques in more complex scenarios.
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