

I D E A FUSION

# Long-Term Simulation of Beam-Beam Dynamics with GHOST

#### Balša Terzić

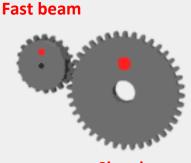
Department of Physics, Old Dominion University Center for Accelerator Studies (CAS), Old Dominion University

Old Dominion University: K. Arumugam, R. Majeti, S. Sangam, C. Cotnoir, D. Ranjan, M. Zubair, A. Godunov Jefferson Lab: V. Morozov, Y. Roblin, H. Zhang, F. Lin, E. Nissen, T. Satogata

Beam-Beam Effects in Circular Colliders Workshop, LBNL, February 7, 2018

# Outline

- Motivation and challenges of beam-beam simulations of JLEIC
  - Computational requirements
  - "Gear change" scheme for beam synchronization
- GHOST code development
  - Outline of the implementation (tracking and collision)
  - Simulating "gear change"
- GHOST status report


### **Computational Requirements**

- Perspective: At the current layout of the JLEIC
   1 hour of machine operation time ≈ 400 million turns
- Requirements for long-term beam-beam simulations of JLEIC

  High-order symplectic particle tracking
  Speed
  Beam-beam collision
  "Gear change" for beam synchronization

# Implication of "Gear Change"

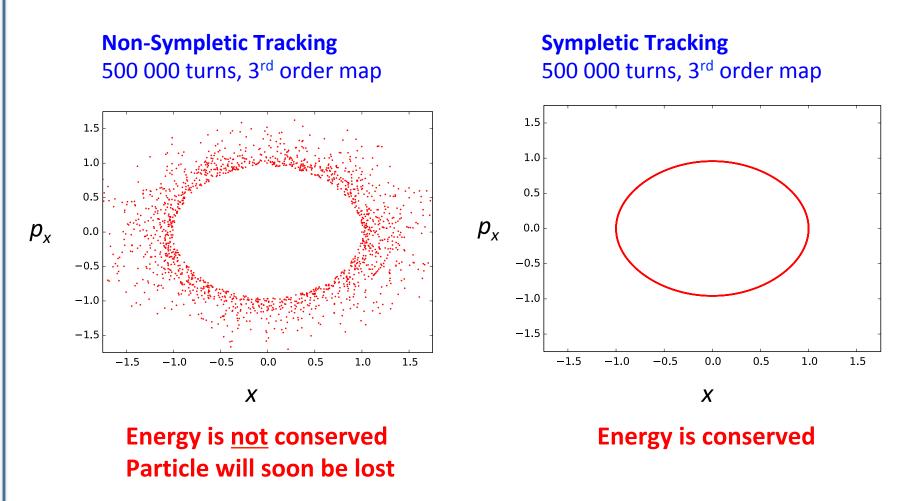
- Beam synchronization highly desirable
  - Smaller magnet movement
  - Smaller RF adjustment



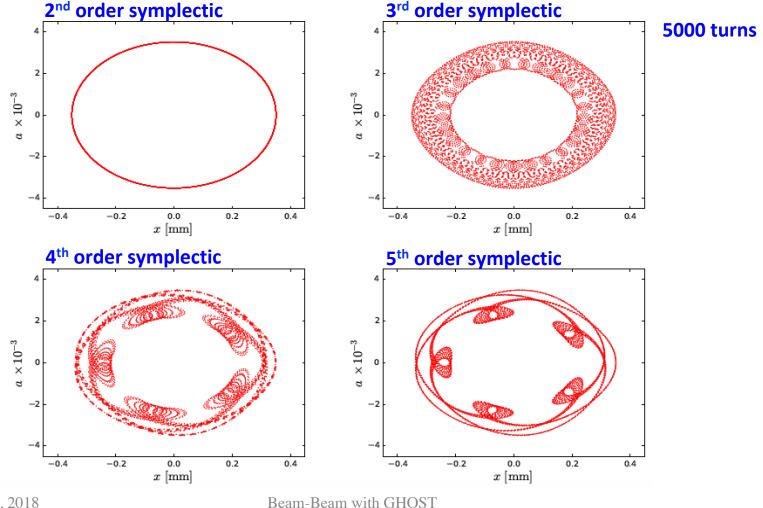
Slow beam

- Detection and polarimetry highly desirable
  - Cancellation of systematic effects associated with bunch charge and polarization variation – great reduction of systematic errors, sometimes more important than statistics
  - Simplified electron polarimetry only need average polarization, much easier than bunch-by-bunch measurement
- Dynamics?
  - Possibility of an instability needs to be studied further (Hirata & Keil 1990; Hao *et al.* 2014)

## **GHOST: Outline**


- GHOST: Gpu-accelerated High-Order Symplectic Tracking Designed and developed from scratch
- GHOST resolves computational bottlenecks by:
  - Using one-turn maps for particle tracking
  - Employing Bassetti-Erskine approximation for collisions
  - Implementing the code on a massively-parallel GPU platform
- Why GPUs?
  - Ideal for "same instruction for multiple data" (particle tracking)
  - Best when no communication required (tracking; collision)
  - Moore's law still applies to GPUs (no longer for CPUs)
- Two main parts:
  - 1. Particle tracking

#### 2. Beam collisions


February 7, 2018

Beam-Beam with GHOST

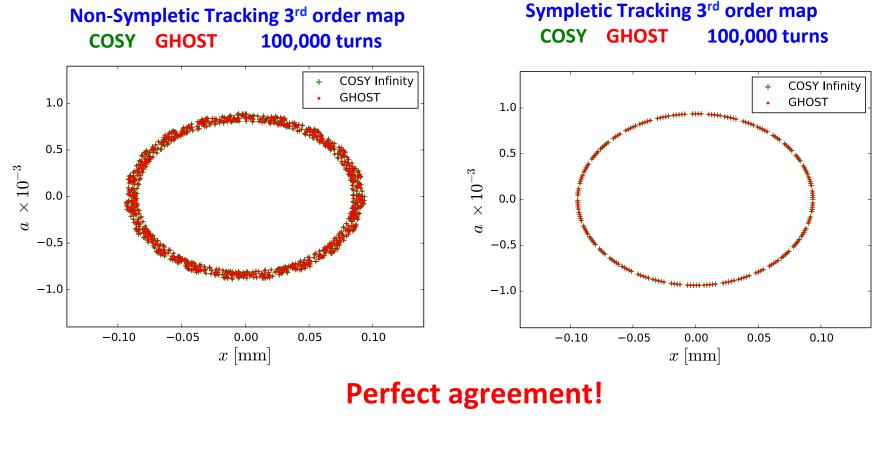
• Symplectic tracking is essential for long-term simulations



• Higher-order symplecticity reveals more about dynamics

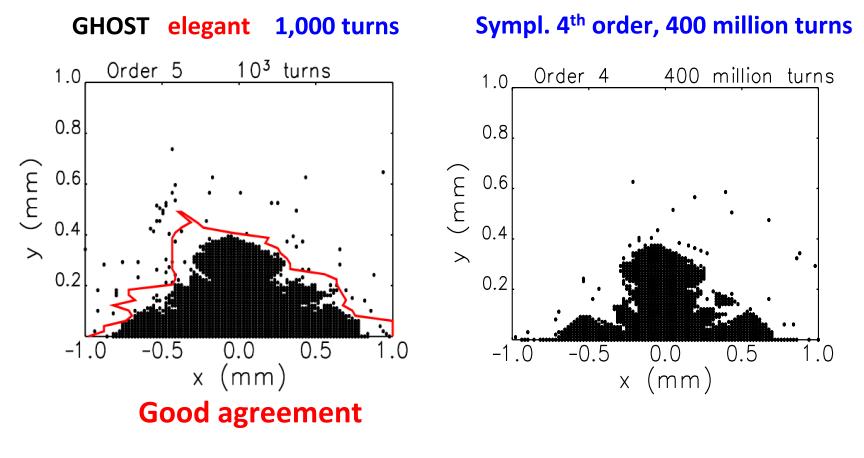


- Symplectic tracking in GHOST is the same as in COSY Infinity (Makino & Berz 1999)
- Start with a one-turn map

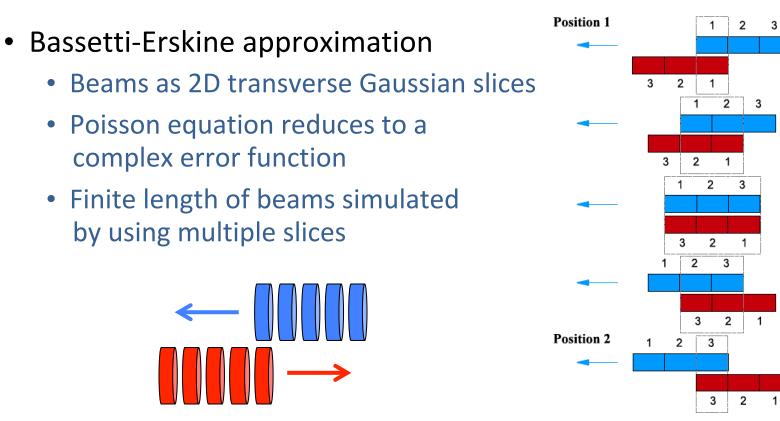

$$x = \sum_{\alpha\beta\gamma\eta\lambda\mu} \mathcal{M}(x|\alpha\beta\gamma\eta\lambda\mu) x^{\alpha} a^{\beta} y^{\gamma} b^{\eta} l^{\lambda} \delta^{\mu}$$

• Symplecticity criterion enforced at each turn

$$(\boldsymbol{q}_f, \boldsymbol{p}_i) = \mathbf{J} \nabla F_2(\boldsymbol{q}_i, \boldsymbol{p}_f) \qquad \mathbf{J} = \begin{bmatrix} 0 & -\mathbf{I} \\ \mathbf{I} & 0 \end{bmatrix}$$
  
Initial coordinates  $(\boldsymbol{q}_i, \boldsymbol{p}_i)$  Final coordinates  $(\boldsymbol{q}_f, \boldsymbol{p}_f)$ 


- Involves solving an implicit set of non-linear equations
  - Introduces significant computational overhead

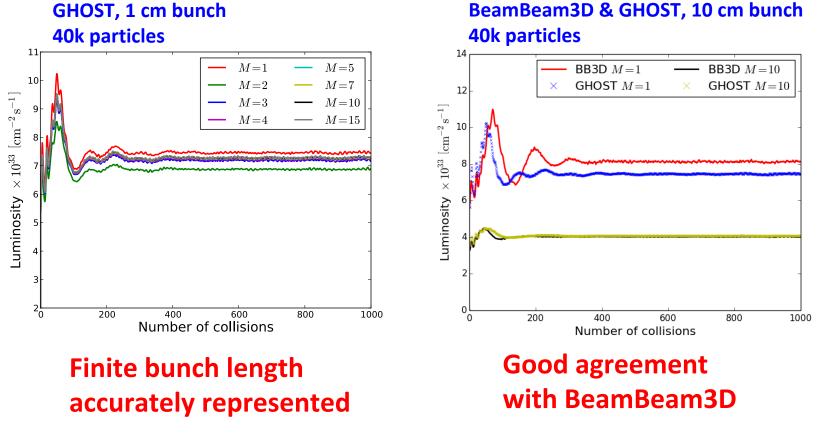
 Symplectic tracking in GHOST is the same as in COSY Infinity (Makino & Berz 1999)




Beam-Beam with GHOST

- Dynamic aperture comparison to elegant (Borland 2000)
- 400 million turn simulation (truly long-term)

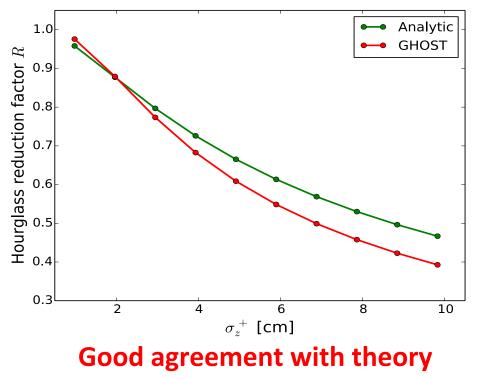



## **GHOST: Beam Collisions**



- We generalized a "weak-strong" formalism of Bassetti-Erskine
  - Include "strong-strong" collisions (each beam evolves)
  - Include various beam shapes (originally only flat beams)

### **GHOST Benchmarking: Collisions**


- Code calibration and benchmarking
  - Convergence with increasing number of slices M
  - Comparison to BeamBeam3D (Qiang, Ryne & Furman 2002)

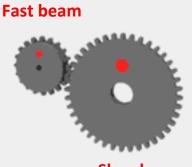


February 7, 2018

#### **GHOST Benchmarking: Hourglass Effect**

• When the bunch length  $\sigma_z \approx \beta^*$  at the IP, we observe a geometric reduction in luminosity – the *hourglass effect* (Furman 1991)



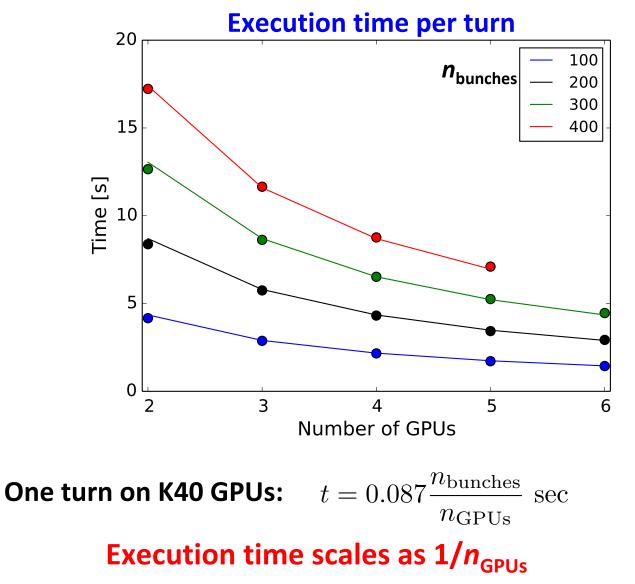

#### GHOST, 128k particles, 10 slices

February 7, 2018

Beam-Beam with GHOST

# "Gear Change" with GHOST: Approach

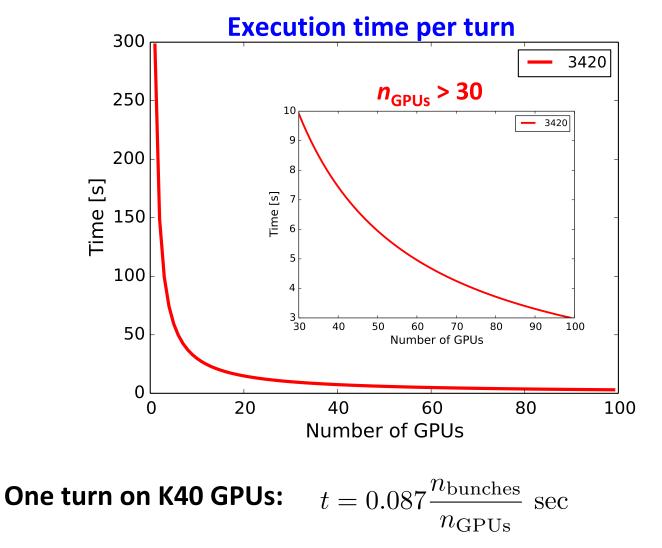
- "Gear change" provides beam synchronization for JLEIC
  - Collision of beams with different number of bunches (n<sub>1</sub>, n<sub>2</sub>) in each ring (JLEIC: n<sub>1</sub> ≈ 3420)
  - If  $n_1$  and  $n_2$  are mutually prime, all combinations of bunches collide
  - Initially:  $n_1 = n_2 + 1$ ; more flexibility: general n, m

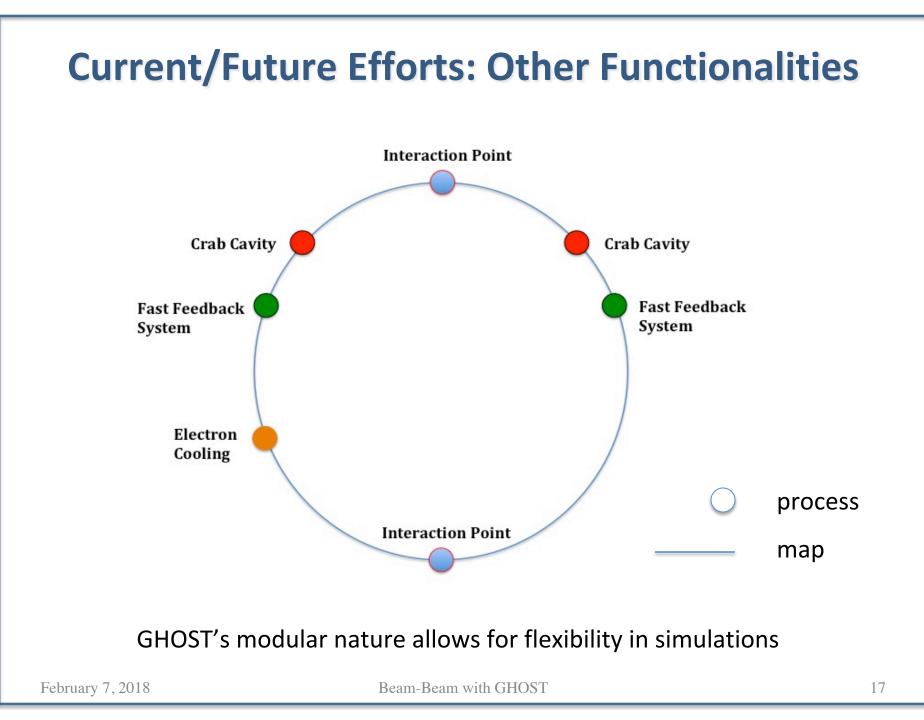



Slow beam

- Broken symmetry: from 1 x 1 to *n* x (*n*+1)
- The computational load is alleviated with GPUs
  - *n*<sub>2</sub> collisions happen concurrently highly parallelizable
  - information for all bunches is stored large memory load
- Collide multiple bunch pairs on a predetermined schedule
  - *n*<sub>bunch</sub> different pairs collide at each turn <u>highly parallelizable</u>

February 7, 2018


## "Gear Change" with GHOST: n x (n-1)




February 7, 2018

Beam-Beam with GHOST

## "Gear Change" with GHOST: n x (n-1)





### **GHOST: Status Report**

- Stage 1: Particle tracking
- ✓ High-order, symplectic tracking optimized on GPUs
- Benchmarked against COSY: Exact match
- 400 million turn tracking-only simulation completed
- Stage 2: Beam collisions and "gear change"
- ✓ Single-bunch collision implemented on multiple GPUs
- $n \ge (n-1)$  collision implemented on a multiple GPU (arbitrary n)
- ✓ General *n* x *m* collision implemented on a single GPUs (soon multi-GPU)
- Stage 3: Benchmarking and simulations (underway)
  - Multiple-bunch validation, checking, benchmarking and optimization
  - Systematic simulations of JLEIC and "gear change"
  - Other collision methods: fast multipole
  - Synchrotron radiation, space charge, electron cooling, multiple IPs, IBS

# **Backup Slides**

# **Benchmarking GHOST**

- Benchmarking GHOST with other codes (currently underway)
  - 1. Systematically compare to BeamBeam3D and Guinea Pig
  - 2. Conduct convergence studies
  - 3. Reproduce the hourglass effect for the aggressive JLEIC design
- Gear change simulations
  - 1. Simulate "gear change" effects for low number of bunches (Reproduce 11-10 as in Hao *et al*. 2014)
  - Scale up to full JLEIC parameters (3420/3419, 3420/3418, ... bunches)

#### **JLEIC Design Parameters Used**

| Quantity                  | Unit                              | e <sup>–</sup> beam   | p beam                      |  |
|---------------------------|-----------------------------------|-----------------------|-----------------------------|--|
| Energy                    | GeV                               | 5                     | 60                          |  |
| Collision frequency       | MHz                               | 750                   |                             |  |
| Particles per bunch       | 10 <sup>10</sup>                  | 2.5                   | 0.416                       |  |
| Beam current              | Α                                 | 3.0                   | 0.5                         |  |
| Energy spread             | $10^{-3}$                         | 0.71                  | 0.3                         |  |
| rms bunch length          | mm                                | 7.5                   | 10                          |  |
| Horiz. bunch size at IP   | $\mu$ m                           | 23.4                  |                             |  |
| Vertical bunch size at IP | μm                                | 4.7                   |                             |  |
| Horiz.1 emit. (norm.)     | $\mu$ m                           | 53.5                  | 0.35                        |  |
| Vertical emit. (norm.)    | $\mu$ m                           | 10.7                  | 0.07                        |  |
| Horizontal $\beta^*$      | cm                                | 10                    |                             |  |
| Vertical $\beta^*$        | cm                                |                       | 2                           |  |
| Vertical beam-beam        |                                   | 0.029                 | 0.0145                      |  |
| tune shift                |                                   |                       |                             |  |
| Damping time              | turns                             | 1516                  | $\approx 2.4 \times 10^6$   |  |
|                           |                                   | (6.8 ms)              | $(\approx 11000 \text{ s})$ |  |
| Synchrotron tune          |                                   | 0.045                 | 0.045                       |  |
| Ring length               | m                                 | 1340.92               |                             |  |
| Peak luminosity           | $\mathrm{cm}^{-2}\mathrm{s}^{-1}$ | $0.562 	imes 10^{34}$ |                             |  |
| Reduction (hourglass)     |                                   | 0.957                 |                             |  |
| Peak luminosity           | $\mathrm{cm}^{-2}\mathrm{s}^{-1}$ | 0.538                 | $8 \times 10^{34}$          |  |
| with hourglass effect     |                                   |                       |                             |  |

## Speedup

|         |          |           | 6Slic | es 1Turn           |           |         |             |   |
|---------|----------|-----------|-------|--------------------|-----------|---------|-------------|---|
| Npart   | CPU      |           |       | GPU                |           |         | Speedup CPU |   |
|         | Tracking | Collision | Trac  | king               | Collision |         |             |   |
|         |          |           |       |                    |           |         |             |   |
| 1000    |          |           | 0.    | 644768             | 15.4794   |         | 0.85        |   |
| 10000   | 1.02157  | 129.49    |       | 1.04451            | 17.9388   |         | 7.22        |   |
| 100000  | 5.86016  | 1287.17   |       | 5.91194            | 29.8827   |         | 43          |   |
| 1000000 | 54.5349  | 12851     |       | 54.8268            | 147.746   |         | 86          |   |
|         |          |           | 10k   | 10k Particles      |           | 6Slices |             |   |
| Nturn   | CPU      |           |       | GPU                |           |         | Speedup CPU |   |
|         | Tracking | Collision | Trac  | king               | Collision |         |             |   |
| 1       | 1.04202  | 129.479   |       | 1.03523            | 17.823    |         | 7.26        |   |
| 10      | 0.953088 | 131.204   |       | 0.96128            | 17.7718   |         | 7.38        |   |
| 100     | 0.965376 | 143.975   | 0.    | 961472             | 17.4446   |         | 8.25        |   |
| 1000    | 0.951872 | 119.376   | 0.    | 989312             | 12.4215   |         | 9.61        |   |
|         |          |           | 1Mil  | 1Million Patricles |           | 1Turn   |             |   |
| Nslices | CPU      |           |       | GPU                |           |         | Speedup CP  | U |
|         | Tracking | Collision | Trac  | king               | Collision |         |             |   |
| 1       | 54.473   | 2235.67   |       | 54.8347            | 30.738    |         | 72          |   |
| 2       | 54.4848  | 4396.9    |       | 54.7464            | 54.4933   |         | 81          |   |
| 3       | 54.4546  | 6480.04   |       | 54.7209            | 75.2644   |         | 86          |   |
| 4       | 54.4835  | 8612.99   |       | 54.8068            | 99.6275   |         | 86          |   |
| 5       | 54.5129  | 10708.2   |       | 54.7883            | 125.001   |         | 86          |   |
| 6       | 54.4469  | 12843.6   |       | 54.7732            | 147.913   |         | 87          |   |