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This work has been done during my
last 6 months at DESY, 30 years ago.
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I thought that this work would be my 
best work (more than ABCI and TMCI).

But, it has been forgotten since I moved 
to LBNL and started new work here.

This work is an attempt to calculate 
analytically particle distributions under 
the beam-beam interaction using the 
renormalization technique of the 
quantum field theory, even when the 
particle motions are chaotic.
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Introduction

• The beam-beam interaction has been extensively 
studied in terms of Hamiltonian analysis of single 
particle dynamics. 

• The Hamiltonian analysis may predict orbits of regular 
particle motion, and may give us some criterions (e.g. 
Chirikov’s resonance overlap) for estimating the onset 
of chaotic behavior of particle orbit. 

• However, since the method is posed in terms of the 
behavior of a particle trajectory, it breaks down when 
the particle motion becomes chaotic. 
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Statistical Theory

• What is needed is a more statistical theory for 
dynamics of, not single particle, but ensemble of 
many particles where the chaos may be described by 
statistical terms.

• That theory would allow us to calculate particle 
distributions in the presence of the beam-beam 
interaction.

• These quantities are straight linked with a beam 
blowup and particle losses. 
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Three Premises

• Fokker-Planck equation for the evolution of the particle 
distribution

• “Strong-weak" beam-beam interaction

• One-dimensional

• Warning
• This talk is quite theoretical due to its nature.
• If you still have a fresh memory of what you have 
learned on the quantum field theory at school, you can 
follow it (I cannot anymore).

• Only the outline of the theory is presented in this 
conceptual talk, but the concrete solutions exist for 
numerical evaluations.

• At the end, I show some comparisons with simulations
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Crux of the Problem

• Fokker-Plank equation for the particle distribution P:

• = the azimuthal position in the ring

• =Fokker-Plank operator including all the effects (beam-beam, 
synchrotron radiation and so on)

• If we can find the Green function which satisfies

the solution is
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Initial distribution

Done! Simple!



Ring



Exact Green Function

• The exact Green function G includes all the orbit distortion 
effects and provides the exact transition probability of 
particle orbit, at any preceding moment, no matter whether 
the particle motion is chaotic or not. 

• Too difficult to find it.

• Let us evaluate G with the perturbation method.

• One important rule in choice of the perturbation method. 
• The method has to guarantee that a perturbation solution of 

any order will be smaller than the lower-order ones so that 
the perturbation expansion series converges.

• It is not so obvious.
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Other View: Diagonalization of System

• The first step to solve unknow particle distribution 𝑃 is to 
expand it by a complete set of known functions or modes 𝑓𝑛:

• 𝑃 = 𝑃0 + 𝑐1𝑓 + 𝑐2𝑓 + ⋯ ,

• The second step is to make an “interaction matrix” for the 
expansion coefficients 𝑐𝑚:

• 𝑐𝑚 =  𝑘=−∞
∞ 𝑀𝑚𝑘 𝑐𝑘

• If we can diagonalize the interaction matrix, the problem is 
basically solved:
• Eigenvalues, eigenfunctions, and all others follow.

• But, some systems are so complicated that it is not easy to 
diagonalize the interaction matrix.
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Renormalization Theory

• Instead of pursuing the exact solution, let us find an 
approximate solution with good accuracy and the possibility 
to improve the accuracy by including more higher-order 
correction terms.

• The crux of the procedure is to move significant off-diagonal 
terms to diagonal terms in the matrix until remaining off-
diagonal terms are all insignificant and thus negligible.

• The theory is originally motivated to avoid the small 
denominator singularities at the centers of resonances by 
including orbit distortion of resonant particles due to other 
resonances.

• But, it is most powerful when resonances strongly interact to 
each other, and the system can be no longer approximated 
by a collection of isolated resonances.
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Renormalization Procedure

• Let us write down the Fokker-Planck eq. for the particle
distribution P in a slightly explicit form:

• L: Fokker-Plank operator except the beam-beam

• LB: Operator for beam-beam as a function of potential U

• Decompose P into

• <P>: Average over the azimuthal angle  in phase space

• P: Remaining part fluctuating around <P>
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Fourier Decomposition

• Due to the periodic boundary condition in ,

  : the beam-beam parameter

• Averaging the Fokker-Plank Eq. over  and Fourie 
decomposition lead equations for <P> and P:
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Mode coupling term from other modes Pk-l

Beam-beam interaction
matrix operator



Unperturbed Green Function

• Equation for P can be further Fourier composed in :

• Here, the unperturbed Green function       satisfies

2018/2/8 Chin 13



Mode Coupling Term Skn

2018/2/8 Chin 14

• The mode coupling term becomes important in two cases:

1. Very weak synchrotron radiation

• The unperturbed green function is approximately given by

• If we ignore the mode coupling term Skn,

Unperturbed betatron tune

Nonlinear detuning term

Diverges at the center of 
resonance                                  
=0



Resonance Singularity

• The singularity emerges since we have 

assumed that resonant particles receive 

only a part of beam-beam kick which 

creates the resonance. 

• In reality, particles receive the total kick of beam-beam force 
which generate all the resonances. 

• By the random kicks from other resonances, the particle 
tunes are fluctuating and not strictly locked at the resonance 
tune. 

• Therefore, the resonance singularity may be avoided in the 
real system even in the absence of the quantum fluctuation.
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5 October 2017 – Space Charge 2017 # 16

Space Charge breaks Integrability

With space charge:
• ‘Time independence’ of Danilov & Nagaitsev theory is broken
• Both zero-current invariants now fluctuate significantly at 2 frequencies
• Some ensemble properties still appear to be approximately maintained

• we don’t yet understand how meaningful this may be
• Bounded motion + nonlinear decoherence may be all that is required

Singe-particle invariants are broken Ensemble average is better behaved
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Results with the Compensated Lattice

• Phase advance around the ring is now corrected with the 
new compensated lattice.

• This leads to much better behavior of the first invariant (the 
Hamiltonian).



Strong Coupling between 
Resonances

• In this case, the particle motion 

between the resonances may be chaotic. 

• Apparently, the exact Green's function will be very
different from       which expresses regular orbits of resonant 
particles. 

• It cannot be constructed in terms of       by calculating 
higher-order correction terms from the mode-coupling term  
Skn, since the chaotic motion cannot be described by 
combination of regular motion. 

• If one tries, then the expansion series will not converge.
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Renormalized Green's Function

• Let us introduce the renormalized Green’s function:

• : Renormalization correction operator to be determined

• Then, 

• Decompose the mode coupling term Skn to 
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: Proportional to

: The rest



Incoherent Noise

• Identify (since both are proportion to      )

• Then, we have

• By the definition,        does not depend on       and thus acts 
as an incoherent noise to

• Resonances can still cause changes in other resonances 
through       , but they are not coupled by 
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Direct Interaction Approximation

• A resonance Pk1n1 can cause a change in another resonance 
Pk2n2 through the mode-coupling term Sk2n2.

• The change in Pk2n2 can act back to the resonance Pk1n1 
through the mode-coupling Sk1n1 and Pk1n1 will be changed.

• This self-interaction should be identified as      , since its 
strength depends on Pk1n1 proportionally.

• Only the direct interaction between resonances is considered 
in the present theory.
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Renormalization Correction Term

• The explicit form

• The physical interpretation

• The particle subject to the Green's function gkn in the (k,v) 
resonance is scattered by the field U-l  and is effected by the 
resonance gk-l n-n

• Then, it is scattered again by the field Ul to emerge at the initial 
resonance gkn .

• Since the particle comes back to the initial resonance, the 
above trajectory going through other resonance should be 
included in the transition probability of the particle orbit
subject to the (k,v) resonance, namely the renormalized 
Green's function gkn for the renormalized resonance.
2018/2/8 Chin 22

The second order in the beam-beam parameter

U-l i

gkn
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Ul



Feynman Diagrams
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Hartree-Fock approximation for 
self-energy of a fermion



Solution

• The solution Pkn can be decomposed to two terms:

• The renormalized Green’s function gkn has no small 
denominator problem anymore.

• The incoherent part is formally one –order of magnitude 
smaller in  than the coherent part.

• Let us neglect the incoherent part hereafter.
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Closed Set of Equations

• Now, each mode Pkn couples only with <P>, no longer with 
other modes.

• Thus, the equations for <P> and Pkn are closed:
• Once we know <P>, we can calculate Pkn, and vice versa.

• These equations can be solved with rough approximations.

• I skip what follows, but we can derive concrete solutions.
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Comparison with Simulations Relevant 
to LEP at 50GeV

• No chaotic case for =0.04
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No Chaotic Case for =0.06
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Very Chaotic Case for =0.17
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The RMS Beam Size for Large 
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Conclusions

• Despite of some rough approximations for the renormalized
Green's function, the theory exhibits reasonably good agreements
with computer simulations.

• To try to explain a beam blowup by looking at the distortion of 
particle orbit lies on the same line as the Hamiltonian analysis. 

• However, by describing the orbit distortion in terms of the Green's 
function, we gain more capacity in the theory where statistics 
comes in. 

• At the same time, the physical mechanism of a beam blowup, due 
to either chaos or regular resonances, is explicit in the theory.

• The present one-dimensional strong-weak beam picture is still 
unpractical for application to real machines, but the extension to 
the two dimensional strong-strong case is nearly impossible.

• Hopefully, somebody will solve this problem to advance the theory.
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