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Numerical Noise in Strong-Strong Beam-Beam Simulation
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Artificial Numerical Emittance Growth Observed in 

Strong-Strong Beam-Beam Simulation

Emittance growth evolution with three numbers of macroparticles
(single slice, nominal LHC parameter) 



Mathematical Model of Strong-Strong Beam-Beam 

Simulation
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• Coupled Poisson-Vlasov Equations
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Particle-In-Cell Based Numerical Beam-Beam Model

chromaticity map, 

damping/fluctuation, 

diagnostic, etc.

Advance momenta using 

beam-beam fields

Field solution on grid

Charge deposition 

on grid

Field interpolation at 

particle positions

Beam-Beam 
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One Step PIC Model for Beam-Beam Force
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Two Beams Might Collide with Different Geometries
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Efficient Green’s Function Method to Solve the Poisson 

Equation for Beam-Beam Force Calculation (1)
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Direct summation of the convolution scales as N4 !!!!

N – grid number in each dimension



Efficient Green’s Function Method to Solve the Poisson 

Equation for Beam-Beam Force Calculation (2)
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Hockney’s Algorithm:- scales as (2N)2log(2N)

- Ref: Hockney and Easwood, Computer Simulation using Particles, McGraw-Hill Book Company, New York, 1985.

Shifted Green function Algorithm:



Good Agreement between the Numerical Solution from the 

Shifted Green Function and the Analytical Solution

Ex

radius

inside the particle domain
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Efficient Green’s Function Method to Solve the Poisson 

Equation for Large Aspect Ratio Beam (3)
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Finite Number of Macroparticle Sampling Results in 

Density Fluctuation on Grid 

Relative deviation of the density from the macroparticle sampling, 

linear deposition on 256 grid points and the analytical function 
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A Random Diffusion Model to Estimate the Numerical 

Noise Induced Emittance Growth
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Test of the Numerical Noise Induced Emittance Growth

Using Nominal LHC Parameters

Numerical parameters

Nm 4106

# turns 1105

# mesh cells 128128

Long. slices 1

Physical parameters

IPs 1

E 7 TeV

 0.5 nm

σz 7.5 cm

p/p 1.110-4

β* 55 cm

ξ 0.015



NI-Emittance Growth vs. # of Macroparticles Agrees Well 

with the Analytical Estimate



NI-Emittance Growth vs. Bunch Intensity Agrees Well 

with the Analytical Estimate



NI-Emittance Growth vs. Emittance Agrees Well with the 

Analytical Estimate



NI-Emittance Growth Shows Independence of Beta*



Numerical Grid Cells also Affects the NI-Emittance



Solving the Poisson’s Eq. Using a Spectral Method
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Spectral Method Shows Good Solution of Electric Fields 

of a Gaussian Distribution

Relative Errors (%)

Beam-Beam Field

Green function solver (128x128)

spectral solver 20 s128 modes

spectral solver 30 s

spectral solver 40 s

spectral solver 20 s32 modes

• Spectral solver yields less errors in the 

core

• Spectral solver yields larger errors near 

the edge

• The error near the edge can be reduced 

by using larger computational domain.

• A smaller number of modes is sufficient.



Spectral Method Produces Correct

Power Spectral of Coherent Modes

- Soft Gaussian model

- Green’s function method (128x128)

- Spectral method (32x32)



Spectral Method Shows Much Less Numerical 

Emittance Growth than the Green’s Function Method

- Green’s function

- Spectral method 



Conclusions and Future Work

• Numerical noise from finite number of marcoparticles causes 

significant artificial emittance growth.

• The NI-emittance growth scales as expected with # of 

macropartilces, bunch intensity and emittance. 

• Using a spectral method, the NI-emittance can be significantly 

mitigated.

 Parallelization

 Extension to 3D

 Extension to fully symplectic model


