Numerical Noise in Strong-Strong Beam-Beam Simulation

Ji Qiang

Accelerator Modeling Program, ATAP, LBNL

ICFA Beam Dynamics Workshop on Beam-Beam Effects in Circular Colliders, Feb. 5-7, Berkeley, 2018.

ENERGY Office of Science

Outline

- Introduction
- Computational model of strong-strong beam-beam simulation
- Characterization of the numerical noise induced
 emittance growth
- A new method to mitigate the numerical noise
- Conclusions and future work

Artificial Numerical Emittance Growth Observed in Strong-Strong Beam-Beam Simulation

Mathematical Model of Strong-Strong Beam-Beam Simulation

Coupled Poisson-Vlasov Equations

 $L:f_1(\mathbf{r},\mathbf{p}) = 0$ $L:f_2(\mathbf{r},\mathbf{p}) = 0$ $\nabla^2 \phi_1 = \int \int \int f_2(r, p) d^3 p$ $\nabla^2 \phi_2 = \iint f_1(r, p) d^3 p$ $L = \frac{\partial}{\partial t} + \dot{r}\frac{\partial}{\partial r} + \dot{p}\frac{\partial}{\partial p}$

Particle-In-Cell Based Numerical Beam-Beam Model

One Step PIC Model for Beam-Beam Force

Two Beams Might Collide with Different Geometries

Efficient Green's Function Method to Solve the Poisson Equation for Beam-Beam Force Calculation (1)

$$\phi(r) = \int G(r, r') \rho(r') dr'$$

$$\phi(r_i) = h \sum_{i'=1}^{N} G(r_i - r_{i'}) \rho(r_{i'})$$

$$G(x, y) = -\frac{1}{2} \log(x^2 + y^2)$$

Direct summation of the convolution scales as N⁴ !!!! N – grid number in each dimension

Efficient Green's Function Method to Solve the Poisson Equation for Beam-Beam Force Calculation (2)

Hockney's Algorithm:- scales as (2N)²log(2N)

- Ref: Hockney and Easwood, *Computer Simulation using Particles*, McGraw-Hill Book Company, New York, 1985.

$$\phi_c(r_i) = h \sum_{i'=1}^{2N} G_c(r_i - r_{i'}) \rho_c(r_{i'})$$

$$\phi(r_i) = \phi_c(r_i) \text{ for } i = 1, N$$

Shifted Green function Algorithm:

$$\phi_F(r) = \int G_s(r,r')\rho(r')dr'$$
$$G_s(r,r') = G(r+r_s,r')$$

Good Agreement between the Numerical Solution from the Shifted Green Function and the Analytical Solution

Office of ACCELERATOR TECHNOLOGY & ATA

S. DEPARTMENT OF

Efficient Green's Function Method to Solve the Poisson Equation for Large Aspect Ratio Beam (3)

ACCELERATOR TECHNOLOGY & ATAF

ENERGY Office of Science

 E_v

Finite Number of Macroparticle Sampling Results in Density Fluctuation on Grid

Relative deviation of the density from the macroparticle sampling, linear deposition on 256 grid points and the analytical function

A Random Diffusion Model to Estimate the Numerical Noise Induced Emittance Growth

$$\overset{\text{a}e}{\overset{d}e} \frac{de}{\overset{\circ}{\theta}} \overset{\circ}{\overset{\circ}{\overset{\circ}{\theta}}} \overset{\circ}{\overset{\circ}{\theta}} \overset{\circ}{\overset{\circ}{\theta}} \frac{D_{sim}}{e}$$

Test of the Numerical Noise Induced Emittance Growth Using Nominal LHC Parameters

Numerical parameters		
		Physica
N _m	4×10°	IPs
# turns	1×10 ⁵	E
# mesh cells	128×128	Е
Long. slices	1	σ_z
		δρ/ρ
		β*
		C

U.S. DEPARTMENT OF

Office of

Science

parameters

7 TeV

0.5 nm

7.5 cm

1.1×10⁻⁴

55 cm

0.015

ACCELERATOR TECHNOLOGY & ATAF

ς

NI-Emittance Growth vs. # of Macroparticles Agrees Well with the Analytical Estimate

NI-Emittance Growth vs. Bunch Intensity Agrees Well with the Analytical Estimate

NI-Emittance Growth vs. Emittance Agrees Well with the Analytical Estimate

NI-Emittance Growth Shows Independence of Beta*

Numerical Grid Cells also Affects the NI-Emittance

Solving the Poisson's Eq. Using a Spectral Method

 ρ^l

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = -4\pi\rho,$$

Office of **Science**

U.S. DEPARTMENT OF

$$\rho(x, y) = \sum_{l=1}^{N_l} \sum_{m=1}^{N_m} \rho^{lm} \sin(\alpha_l x) \sin(\beta_m y)$$
$$\phi(x, y) = \sum_{l=1}^{N_l} \sum_{m=1}^{N_m} \phi^{lm} \sin(\alpha_l x) \sin(\beta_m y),$$
$$\rho^{lm} = \frac{4}{ab} \int_0^a \int_0^b \rho(x, y) \sin(\alpha_l x) \sin(\beta_m y) dx dy$$
$$\phi^{lm} = \frac{4}{ab} \int_0^a \int_0^b \phi(x, y) \sin(\alpha_l x) \sin(\beta_m y) dx dy,$$

AT

AT.

where
$$\alpha_l = l\pi/a$$
 and $\beta_m = m\pi/b$.

$$\phi^{lm} = \frac{4\pi\rho^{lm}}{\gamma_{lm}^2}$$

where
$$\gamma_{lm}^2 = \alpha_l^2 + \beta_m^2$$

Spectral Method Shows Good Solution of Electric Fields of a Gaussian Distribution

Beam-Beam Field

A smaller number of modes is sufficient

ACCELERATOR TECHNOLOGY & ATA

-4

-2

0

Spectral Method Produces Correct Power Spectral of Coherent Modes

Spectral Method Shows Much Less Numerical Emittance Growth than the Green's Function Method

ACCELERATOR TECHNOLOGY & ATAF

Office of

Science

Conclusions and Future Work

- Numerical noise from finite number of marcoparticles causes significant artificial emittance growth.
- The NI-emittance growth scales as expected with # of macropartilces, bunch intensity and emittance.
- Using a spectral method, the NI-emittance can be significantly mitigated.
- Parallelization
- Extension to 3D
- Extension to fully symplectic model

