ATAP Beam-Beam Effects in Circular Colliders

Strong-strong simulation of electron-proton beam-beam interaction in eRHIC

Beam-Beam Effects in Circular Colliders Berkeley, 5-7 February 2018

> G. Bassi, Y. Hao, A. He, Y. Luo, C. Montag, V. Smaluk*, F. Willeke

Electron Ion Collider – eRHIC

BROOKHAVEN

eRHIC

C. Montag

• High-luminosity electron-ion collider based on existing RHIC facility

2

- Electron-proton luminosities of 10³³ 10³⁴ cm⁻²s⁻¹
- Center-of mass energy 30 140 GeV
- Arbitrary spin patterns (up-down) in both beams
- 22 mrad full crossing angle
- Crab cavities
- Flat beams

eRHIC Concept

- Install a 5-18 GeV electron storage ring in existing RHIC tunnel
- 3.8 km circumference
- 381 m tunnel curvature radius

3

C. Montag

e-Au and e-p Energy Combinations

- Large center-of-mass energy range
- Discrete number of individual beam energies

		Hadrons (GeV/u)					
		50	100	275			
	5	p, Au	p, Au				
GeV	7.5	Au					
'suo.	10	\$	р	р			
Electr	15		Au				
	18	Au	Au	р			

Electron Ion Collider – eRHIC

C. Montag

Beam-Beam Performance of Other Colliders

		КЕКВ		PEP-II		TEVATRON		RHIC	HERA		eRHIC	
		e-	e+	e-	e+	p+	p-	рр	p+	e-	p+	e-
Circumference (m)		3016		2200		6280		3834	6336		3884	
Energy (GeV)		8	3.5	9	3.1	980	980	255	920	30	275	10
Bunch intensity (10 ¹⁰)		4.7	6.4	5.2	8	26	9	18.5	7	3	11.1	30.5
Number of bunches		15	85	17	32	36	36	111	180	189	33	30
Beam current (mA)		1188	1637	1960	3026	70	24	257	90	40	458	1260
hor Emittance (nm) ver	or	24	18	48	24	3	1	13	5	20	16	24
	er	0.61	0.56	1.8	1.8	3	1	13	5	3.5	6.1	3.5
hor beta* (cm) ver	or	120	120	50	50	28	28	65	245	60	94	62
	er	0.59	0.59	1.2	1.2	28	28	65	18	26	4.2	7.3
RMS bunch length (cm)		0.65	0.65	1.1	1	50	45	60	8.5	0.83	7	0.43
RMS energy spread (10 ⁻	⁻³)	0.7	0.7	0.61	0.77	0.14	0.14	0.15	0.2	0.91	0.65	0.47
Beam-beam h	or	0.102	0.127	0.07	0.051	0.012	0.012	0.0073	0.0012	0.019	0.014	0.092
parameter (per IP) ver	er	0.09	0.129	0.05	0.073	0.012	0.012	0.0073	0.0009	0.045	0.005	0.083
Luminosity (10 ³³ cm ⁻² s ⁻¹))	2	1	1	2	0.4	131	0.245	0.0)75	2	.9
Full crossing angle (±mr	ad)	1	1		0	(0	0	()	1	1

2 IPs are assumed for eRHIC. If operating with 1 IP, the beam-beam parameters can be larger

eRHIC Machine and Beam Parameters Used for Beam-Beam Simulations

	Unit	protons	electrons	
Circumference	m	3833.845	3833.845	
Energy	GeV	275	10	
Bunch population	1011	1.11	3.05	
Radiation damping time	turns		2000/4000	
Emittance	nm	16/6.1	24.4/3.5	
Beta at IP	m	0.94/0.042	0.62/0.073	
Bunch length	cm	7	1	
Beam-beam parameter		0.014/0.005	0.092/0.083	
Betatron tune		31.310/32.305	34.08/31.06	
Synchrotron tune		0.002	0.025	
Energy spread		0.00065	0.001	
Crab cavity RF frequency	MHz	336	336	
Crossing angle	mrad	22		
Luminosity	10 ³³ cm ⁻² s ⁻¹	2.9		

Weak-Strong and Strong-Strong Simulations

Weak-strong:

- Strong bunch is represented by a rigid Gaussian and weak bunch by macro-particles;
- Exact analytical solution for beam-beam force, time efficient, no numerical noise;
- However not a self-consistent treatment;
- Used to study single particle's long-term stability.

Codes:

- SimTrack: a compact C++ code for particle orbit and spin tracking
 <u>Y. Luo, NIM A (2015) 95-103; Y. Luo e.a., PRSTAB 15, 051004 (2012); Y. Luo e.a., PRSTAB 19, 021001 (2016)</u>
- EPIC: a two-pass weak-strong code to mimic strong-strong simulation with asymmetric bunch length. <u>Y. Hao, Beam-beam effect study in ERL based eRHIC, Ph.D Thesis, Indiana University, 2008</u>
- <u>C. Montag, Beam-beam Simulations with Realistic Crab Crossing for the eRhic Ring-Ring Electron Beam. IPAC-2016.</u>

7

Strong-strong:

- Both bunches are represented by a large number of macro-particles;
- Particle-in-cell method used to solve 2-D Poisson equation;
- Self-consistent treatment, time consuming, with numerical noise;
- Used to study coherent beam-beam motion and its stability.

Codes:

- BBSS (K.Ohmi, KEK)
 K.Ohmi, Simulation of beam-beam effects in a circular e+e- collider. Phys. Rev E 62, 5 (2000).
- BeamBeam3D (J.Qiang, LBNL) https://web.fnal.gov/collaboration/COMPASS/Documents/scidac08beambeam.pdf

eRHIC Weak-Strong Beam-Beam Simulations Beam size vs betatron tunes

Y.Luo

horizontal

vertical

eRHIC Weak-Strong Beam-Beam Simulations Luminosity vs betatron tunes

Electron tune scan, 50k turns

Relative luminosity:

$$L/L_0$$
, $L_0 = 2.9 \cdot 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

Proton tune scan, 1M turns

Relative luminosity decay:

 $\Delta L / L_{ini}, \quad \Delta L = L_{fin} - L_{ini}$ L_{ini} – first 10k turns, L_{fin} – last 10k turns

Electron Ion Collider – eRHIC

eRHIC Weak-Strong Beam-Beam Simulations Frequency maps Y.Luo

Electron tune footpint

ð

Proton tune footpint

2048 turns $\xi_x = 0.092, \ \xi_y = 0.083$ $\xi_x = 0.014, \ \xi_y = 0.005$ 0.16 0.325 |∆Q|< 10⁻⁶ 10⁻⁶<|∆Q|< 10⁻⁵ 10⁻⁵<|∆Q|< 10⁻⁴ l∆Ql< 10⁻⁶ 10⁻⁶<l∆Ql< 10⁻⁵ 10⁻⁴<l∆Ql< 10⁻³<l∆Ql 0.14 0.32 0.12 ð 0.315 0.1 0.31 0.08 0.06 0.305 0.06 0.08 0.1 0.12 0.14 0.16 0.305 0.31 0.315 0.32 0.325 Qx Qx

10

BBSS Strong-Strong Code: convergence studies

11

G.Bassi

Optimal simulation parameters have been determined for the strong beam-beam simulations by comprehensive convergence studies of the BBSS code.

The optimal parameters have been found to be:

- 1 million macroparticles for both proton and electron beams.
- 15 longitudinal slices for the proton beam 2 longitudinal slices for the electron beam (ratio $\approx \sigma_{z,p}/\sigma_{z,e} = 7$).
- Transverse mesh size: 128×128 grid points.

Horizontal beam size vs electron tunes

G.Bassi, A.He

Electron Ion Collider – eRHIC

Horizontal beam centroid vs electron tunes

G.Bassi, A.He

Electron Ion Collider – eRHIC

Vertical beam size vs electron tunes

(uuuus

G.Bassi, A.He

Electron Ion Collider – eRHIC

Vertical beam centroid vs electron tunes

G.Bassi, A.He

eRHIC Strong-Strong Beam-Beam Simulations Luminosity

G.Bassi, A.He BBSS

Relative luminosity, 10k turns

 $L_0 = 2.9 \cdot 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

Relative luminosity, 50k turns

Y.Hao

BeamBeam3D

16

eRHIC Coherent Instability Strong-Strong Simulations: BBSS, head-on collision Nominal intensity is factor of 2 lower G.Bassi, A.He than the coherent instability threshold

eRHIC Beam-Beam Limit BBSS and SimTrack Simulations

- Synchrotron radiation
- Coupling of oscillations
- Equilibrium between excitation and damping determines $\xi_{\rm lim}$

G.Bassi, Y.Luo

electrons:
$$Q_{x0} = 0.08$$
, $Q_{y0} = 0.06$
protons: $Q_{x0} = 0.310$, $Q_{y0} = 0.305$

Summary and Conclusion

- Coherent and incoherent beam-beam effects are studied using weak-strong (SimTrack) and strong-strong codes (BBSS and BeamBeam3D).
- Optimal simulation parameters have been determined for the strong beam-beam simulations by comprehensive convergence studies of the BBSS code.
- Optimal tune working points have been found using weak-strong and strongstrong simulations:

 $Q_x = 0.31, Q_y = 0.305$ for protons $Q_x = 0.08, Q_y = 0.06$ for electrons

- Threshold intensity of the coherent instability has been found using strong-strong simulations: $N_p = 2.2 \cdot 10^{11}$ (2 times larger than nominal).
- Two simulation codes (BBSS and SimTrack) show that the beam-beam limit exceeds the nominal intensity almost 2 times.
- For the nominal eRHIC parameters, neither significant emittance growth nor coherent instability was observed in the simulation results at the optimal working points (head-on collision, single interaction point).

More Beam-Beam Studies

More results of beam-beam simulations for eRHIC are presented in the following talks:

- Beam-beam Beam-beam interaction with crossing angles
- Beam-beam effects with multiple interactions points in eRHIC
- Effects of electron bunch replacement in eRHIC
- Proton beam emittance growth due to strongly disrupted electron beam in eRHIC

- Filling patterns for 2 interaction regions
- Parasitic beam-beam effects
- Radiation damping time + beam-beam
- Numerical effects in strong-strong beam-beam simulation
- Crossing collision + crab cavities

Thank you for your attention!

Beam-Beam Effects

Electromagnetic fields of a colliding beam act on particles like a very special electromagnetic lens:

- highly non-linear (forces depend on the particle distribution);
- time-dependent (the particle distribution is changed due to beam-beam interaction).

Beam-beam effects result in:

- shifting betatron tunes;
- changing effective beta function at the interaction point (dynamic beta);
- changing transverse emittance of the beams;
- coherent instabilities;
- decreasing luminosity.

Studying and modeling beam-beam effects:

- field-particle interaction + non-linear dynamics + multi-particle dynamics.
- analytical approach is limited to simplified cases.
- computer simulation is the main tool.