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RHIC : Relativistic Heavy lon Collider

Two super-conducting rings: circumference 3.8 km, side by side with 6 sextants
RHIC is capable of accelerating proton up to 275 GeV,

heavy ion up to 100GeV/nucleon
Two detectors: STAR at IP6 , PHENIX at IP8

RHIC operation modes: heavy ion collision, heavy-light ion collision
polarized proton collision, proton-ion collision
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RHIC Run History & Luminosity

http://www.agsrhichome.bnl.gov/RHIC/Runs/ W. Fischer

RHIC energies, species combinations and luminosities (Run-1 to 17) Heavy ions - time evolution of Au+Au
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RHIC Heavy lon Runs

« IBS blows up beam emittance & bunch length | do} PN A
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Counter-measure: Stochastic cooling
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« Operational concerns:
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- luminosity & beam lifetime (bigger N,, smaller emittance, bigger DA)
— luminosity leveling (separation bump, beta* adjusting )
- nharrow vertex collision rate (stronger longitudinal focusing )
- Beam-beam interaction:
- without cooling, BB parameter ~ 0.003
— with cooling, BB parameter ~ 0.01
— mostly interplay between BB and stochastic cooling



Observations: Au lon Run (2011)
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= |IBS-suppression lattices ( with higher integer tunes, first used in 2008 d-Au run,
until 2011 Au-Au run) were used to reduce the transverse IBS rate.

= Stochastic cooling available in RHIC in 2007 (L plane). In 2011, L &V plane
cooling available. In 2012, 3-d cooling implemented.



AU lon Loss Rate
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= This plot shows that the measured particle loss rate, together with the
calculated particle loss rate due to luminosity burn-off ( The total cross section
Au-Au collision at 100 GeV is 218.46 b))

= From the plot, there were a large amount of particle loss (~46% ) whole
store due to non-luminous losses.



Au lon Loss Mechanism (I)
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RF re-bucketing from 28MHz to 197MHz is required for stochastic cooling.
Experimentally, 1) with BB without RF re-bucketing, we only observed ~5% particle
loss rate. 2) With RF re-bucketing without BB, we observed ~10% particle loss rate.
Numerical simulation shows BB interaction does not reduce the dynamic aperture.
Therefore: The non-luminous particle loss rate was linked to RF re-bucketing.



Au lon Loss Mechanism (ll)
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From the wall-current monitor (wcm), we are able to measure the particle populations in
each 197 RF bucket (5ns width) and therefore the longitudinal particle migration.

We noticed that there were particles leaking out of central RF bucket, even with L cooling.
We further found that not all the particles leaking out of the central 197 RF bucket
ended in the adjacent buckets.

Stunningly, we found that the particle loss during migration was very close to the non-
luminous beam loss.



Dynamic Aperture [o]

Off-momentum Dynamic Aperture
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= The reason why the particles got lost during migration was the small off-
momentum aperture ( dp/p0 < 0.0019 ). Simulation shows that the IBS
suppression lattices have smaller off-momentum dynamic apertures.

= Therefore, we decided to adopt the standard lattices (with 1 unit lower integer
tunes) since 2012. These lattices give larger off-momentum dynamic apertures.



Transverse Emittance [um]

With Improved Off-momentum DA

2012 U-U run
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= With the standard lattices, the off-momentum DA was improved. The non-
luminous particle loss were largely eliminated. In the 2012 U-U ion run, 97% of
particle loss were from burn-off.

= In the 2014, 2016 Au-Au runs, more tha 90% of particle loss were from burn-off.



Asymmetric lon Run

2012 Cu-Au Run
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= |In the 2012 asymmetric Cu-Au run, with full cooling speed for both beams, we
observed an enormous Cu beam loss (30%/h) at the beginning of store and a very
bad luminosity lifetime.



Unbalanced IBS & Cooling Rates

= The IBS growth rate is proportional to (N, Z*2r /A), since N, ., ~3 N, , we
have

-1 Nl -1

TIBS.Cu ~ ETIBS,AU'

» The stochastic cooling rate is inversely proportional to N, we have

1
T, R
cooling,Cu ™ 3 cooling,Au"

= The initial Cu beam’s transverse emittance was 30% larger than the Au beam. It
took ~1 hour to cool down Au beam but ~3 hours to cool down Au beam.

= With full cooling power for both beam, the transverse beam sizes differed at IP
with a same beta*=0.7m at IP.



Cu Beam Dynamic Aperture [g]

Dynamic Aperture Calculation
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= Left plot shows the calculated Cu beam DA with the actual measured beam

emittances. With full speed cooling for both beams, the Cu beam’s DA first
went down then slowly went up.
= Right plot shows that to maintaining a good Cu beam DA, the emittance

difference between the Cu and Au beams should not be smaller than 50%.




Maximizing Integrated Luminosity
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= Based on the above analysis, we decided to defer the cooling to the Au
beam at the beginning of store to maintain the Cu beam intensity. After
both beam cooled down, we applied full cooling speed to both beams.



Maximizing Integrated Luminosity (l1)
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= By doing that, we minimized the Cu beam loss rate at the beginning of store
and maximized the integrated luminosity per store ( increased by 74% ).

= The regular store length was extended to 14 hours. Almost flat luminosity
lasted several hours.



RHIC Polarized Proton Runs

= Operational concerns:

~ Luminosity and beam lifetimes (increase N, small emittance, good DA)

- Proton polarization and lifetime
= Beam-beam concerns:
- Limited tune space
spin & betatron resonances

— Other complications:

IR non-linearities,

Vertical tune

low beta* lattices,
chromatic effects,

IR 10Hz orbit oscillation,...
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= Large loss at the beginning of store, much slower loss after 1 hour into the store.

= Different equations are used to fit the overall beam intensity at store.

= Experimentally, without BB at store, proton loss only about 1%/hour with fine tuning.
Therefore, the large beam loss was linked to BB interaction.

0.35



IPM measured Emittance (um)

Operational Observations (l1)
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= We observed reduction in emittance and bunch length at the beginning of store. After
1 hour into store, the emittance and the bunch length began to grow with a small rate.

= We link the emittance and bunch length reduction at the beginning of store to the large
particle loss at that time.
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= We found bunches with 1 collision per turn had less beam loss than those bunches
with 2 collisions per turn. We also found the bunch length of bunches with 2 collisions
grow more slowly than the bunch with 1 collision per turn. BB must play a role here.

= Dual RF cavities were used. Into the store, we did not observe the particle population
grow in the adjacent 197MHz RF bucket. Particle loss happened with a large dp/p0.



Parficle Leakage
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= We further found a good linear correlation between the particle loss rate and the
particle leak rate from the central 197MHz RF bucket, no matter at the beginning
of store or 1 hour into the store, no matter which p-p run.



Dynamic aperture (o)

Off- momentum DA
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= Left plot shows off-momentum DA vs. dp/p0. The DA with 1 collision per turn is
slightly better than with 2 collisions per turn.

= Right plot shows DA tune scan with dp/p0=6e-4. The DA with 1 collision per turn
Is 0.5 sigma larger than with 2 collisions per turn in the operation tune range.

= Conclusion:
Beam-beam interaction reduced the off-momentum DA. Particles got lost

with a large dp/p0, either from re-bucketing at beginning of store, or from
IBS into store.



Emittance (um)

Emittance Growth Modeling
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= Emittance and bunch length growth can be largely reproduced by IBS effect with
actual intensity evolution ( see later, we can’'t model intensity evoluation well ).

= Without BB ( therefore without beam loss), the experimental emittance and bunch
length growth can be reproduced by IBS too.



Multi-particle Tracking (1)
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= Multi-particle tracking was used to benchmark the observed longitudinal particle population
distribution. IBS and a hard transverse momentum aperture are included.
= Simulation reproduced the observed longitudinal profiles with and with BB interaction.



Multi-particle Tracking (Il)
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= However, We can’t reproduce the early particle loss rate.

= One reason is a hard momentum deviation limit was used. The actual
particle loss in longitudinal plane is much complicated.

= Secondly, we don’t know how to reproduce the exactly initial longitudinal
particle distribution with RF re-bucketing.



Summary

= We analyzed the mechanism of beam loss in the ion run. After
adopting a new lattice with a better off-momentum DA, the ion
loss was mostly from burn-off. During the asymmetric ion run,
unbalanced beam sizes at IP caused a large beam loss. By
adjusting cooling speeds, we minimized the beam loss and
maximized the integrated luminosity.

= We analyzed and modeled the beam loss, emittance and
bunch length growth in the proton runs. The large beam loss
at beginning of store was due to a limit off-momentum DA
which was reduced by the BB interaction. The observed
emittance and bunch length can be largely reproduced by IBS
with the actual bunch intensity evolution.
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