Beam-Beam Effects in CEPC

Y. Zhang, K. Ohmi(KEK), D. Shatilov(BINP) Institute of High Energy Physics, CAS Beam-Beam Effects in Circular Colliders Workshop(LBNL), Berkeley, CA, USA, February 05-07, 2018

Outline

- Introduction
- Codes
- Single-Ring Scheme
- Double-Ring Scheme
- Summary

CEPC

Phase 1: e⁺e⁻ Higgs (Z) factory two detectors, 1M ZH events in ~10yrs Circular Electron Positron Collider (CEPC)

 E_{cm} ≈240GeV, luminosity ~2×10³⁴ cm⁻²s⁻¹, can also run at the Z-pole **Precision measurement of the Higgs boson (and the Z boson) Both goals be satisfied by the same collider layout and hardwares Phase 2: a discovery machine**; pp collision with E_{cm} ≈ 50-100 TeV; ep, HI options **Super proton-proton Collider (SppC)**

CEPC CDR Accelerator Chain

4

CEPC CDR Baseline and Alternative Design

CEPC Baseline Design

Better performance for Higgs and Z compared with alternative scheme, without bottle neck problems, but with higher cost **CEPC Advanced Partial Double Ring Option II**

CEPC Alternative Design

Lower cost and reaching the fundamental requirement for Higgs and Z luminosities, under the condition that sawtooth and beam loading effects be solved

Beam-beam parameter in early machines

J. Seeman, "Observations of the beam-beam interaction", 1985

17.0

30.4

45.6

TRISTAN

LEP

0.040

0.034

0.035

4

4

4

Beam-Beam Parameter at LEP2

• Vertical Beam-Beam Parameter measured at LEP2

R. Assmann

Machine Parameters of the KEKB (June 17 2009)

	LER	HER	
Circumference	3016		m
RF Frequency	508.88		MHz
Horizontal Emittance	18	24	nm
Beam current	1637	1188	mA
Number of bunches	1584 + 1		
Bunch current	1.03 0.750		mA
Bunch spacing	1.84		m
Bunch trains	1		
Total RF volatage Vc	8.0	13.0	MV
Synchrotron tune V_s	-0.0246	-0.0209	
Betatron tune v_x / v_y	45.506/43.561	44.511/41.585	
beta's at IP $oldsymbol{eta}_x^*$ / $oldsymbol{eta}_y^*$	120/0.59	120/0.59	cm
momentum compaction a	3.31 x 10 ⁻⁴	3.43 x 10 ⁻⁴	
Estimated vertical beam size at IP from luminosity $\sigma_{_y}^*$	0.94	0.94	μm
beam-beam parameters Sx75y	0.127/0.129	0.102/0.090	$\mathbf{>}$
Beam lifetime	133@1637	200@1188	min.@mA
Luminosity (Belle CsI)	21.08		10 ³³ /cm ² /sec
Luminosity records per day / 7days/ 30days	1.479/8.428/30.208		/fb

 $\xi_y \sim 0.1$

	Higgs	W	Z	Pre-CDR
Number of IPs	2			2
Energy (GeV)	120	80	45.5	120
Circumference (km)		100		54
SR loss/turn (GeV)	1.73	0.34	0.036	3.1
Half crossing angle (mrad)	16.5			0
Piwinski angle	2.58	4.29	23.8	0
N_e /bunch (10 ¹⁰)	15	5.4	8.0	3.79
			12000	50
Bunch number (bunch spacing)	242 (0.68us)	3390 (98ns)	(25ns+10%ga	
			p)	
Beam current (mA)	17.4	88.0	461	16.6
SR power /beam (MW)	30	30	16.5	51.7
Bending radius (km)	10.6			6.1
Momentum compaction (10 ⁻⁵)		1.11		3.4
$\beta_{IP} x/y (m)$	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.8/0.0012
Emittance x/y (nm)	1.21/0.0031	0.54/0.0016	0.17/0.004	6.12 /0.018
Transverse σ_{IP} (um)	20.9/0.068	13.9/0.049	5.9/0.078	69.97/0.15
$\xi_y/\xi_y/\text{IP}$	0.031/0.109	0.0148/0.076	0.0041/0.056	0.118/0.083
$V_{RF}(GV)$	2.17	0.47	0.1	6.87
f_{RF} (MHz) (harmonic)		650 (216816)		650
Nature bunch length σ_{z} (mm)	2.72	2.98	2.42	2.14
Bunch length σ_{τ} (mm)	3.26	3.62	8.5	2.65
HOM power/cavity (kw)	0.54 (2cell)	0.47(2cell)	2.4	3.6
Energy spread (%)	0.1	0.066	0.038	0.13
Energy acceptance requirement	1 25			2
(%)	1.55			
Energy acceptance by RF (%)	2.06	1.47	1.7	6
Photon number due to	0.20	0.16	0.55	0.23
beamstrahlung	0.29	0.10	0.55	
Lifetime _simulation (min)	100			47
Lifetime (hour)	0.67 (40 min)	2	4	
<i>F</i> (hour glass)	0.89	0.94	0.99	0.68
$L_{\rm max}/{\rm IP}(10^{34}{\rm cm}^{-2}{\rm s}^{-1})$	2.93	7.31	16.6	2.04

Crab-Waist Compensation

Collision with large Φ is not a new idea

Crab-Waist transformation is !

 $y = \frac{xy'}{2\theta}$

 L_{geometric} gain
 x-y synchro-betatron and betatron resonance suppression

P. Raimondi, 2° SuperB Workshop, March 2006 P.Raimondi, D.Shatilov, M.Zobov, physics/0702033 C. Milardi et al., Int.J.Mod.Phys.A24, 2009 M. Zobov et al., Phys. Rev. Lett. 104, 2010

$\mathsf{DA}\Phi\mathsf{NE}$ Luminosity and Tune Shift

	KLOE (Spt 2005)	FINUDA (Apr 2007)	SIDDHARTA CW (Jun 2009)
Luminosity [10 ³² cm ⁻² s ⁻¹]	1.53	1.6	4.53 (5.0)
l(ele) [A]	1.38	1.50	1.52
l(pos) [A]	1.18	1.1	1
n _b	111	106	105
ϵ_x [mm mrad]	0.34	0.34	0.28
β _x [m]	1.5	2.	0.25
β _y [cm]	1.8	1.9	0.9
Ę	0.0245	0.0291	0.0443 (0.074)

Luminosity as a function of colliding currents *CW-Sextupole* excitation

C. Milardi

Simulation Codes

• LIFETRAC by D. Shatilov (BINP),

Quasi-strong-strong method is used: Self-consistent beam size and dynamic beta/emittance (Gaussian Fit)

• BBWS/BBSS by K. Ohmi (KEK),

Weak-strong simulation with self-consistent σ_z and σ_x , or Strong-strong simulation

- IBB by Y. Zhang (IHEP)
- SAD (KEK)

Simulation of Beamstrahlung

K. Ohmi

$$\Delta s = (z_i - z_{i+1})/2$$

$$\frac{1}{\rho_{xy}} = \frac{\Delta p_{xy}}{\Delta s} \qquad \frac{1}{\rho} = \sqrt{\frac{1}{\rho_x^2} + \frac{1}{\rho_y^2}}$$

$$u_c = \hbar \omega_c = \frac{3\hbar c\gamma^3}{2\rho}$$

$$n_\gamma = \int_0^\infty \frac{dn_\gamma(\omega)}{d\omega} d\omega = \frac{5\sqrt{3}}{6\rho} \Delta s$$

$$\frac{dn_\gamma(\omega)}{d\omega} = \frac{\sqrt{3}\alpha\gamma\Delta s}{2\pi\rho\omega_c} S(\frac{\omega}{\omega_c}) \qquad S(\xi) = \int_{\xi}^\infty K_{\frac{5}{3}}(y) dy$$

Beam halo distribution

14

Beamstrahlung lifetime estimated by the loss particle number

• Lifetime is shorter if loss particle number is counted from very beginning [V. Telnov, Phys. Rev. Letters 110 (2013) 114801]

$$\tau_{BS} \approx \frac{1}{n_{IP} f_{rev}} \frac{4\sqrt{\pi}}{3} \sqrt{\frac{\delta_{acc}}{\alpha r_e}} \exp\left(\frac{2}{3} \frac{\delta_{acc} \alpha}{r_e \gamma^2} \frac{\gamma \sigma_x \sigma_z}{\sqrt{2} r_e N_b}\right) \frac{\sqrt{2}}{\sqrt{\pi} \sigma_z \gamma^2} \left(\frac{\gamma \sigma_x \sigma_z}{\sqrt{2} r_e N_b}\right)^{3/2}$$

K. Ohmi

Beamstrahlung lifetime $\tau_{bs} = \frac{\tau_z}{2Af(A)}$ estimated by beam tail A the boundary of mom

A the boundary of momentum acceptance in action f(J) the distribution of action with beam-beam τ_z the longitudinal damping time

dJ f(J) = 1

Beamstrahlung lifetime Comparison of two methods

- Two methods coincides well
- 1e6*1200 turn is accurate enough to estimate 100min lifetime by tail

17

Beam-Beam Code Check – BEPCII (1)

Beam-Beam Code Check (2)

• Beam-Beam Parameter at BEPCII (1.89GeV)

Beam current asymmetry: e+: 90% e-:100%

Single Ring Scheme(PRE-CDR)

• For flat beam, the achieved beam-beam parameter can be defined as $\xi_y = \frac{2r_e \beta_y^0}{N\gamma} \frac{L}{f_0}$

The effective beam-beam parameter is only about 0.045 with design parameters and the saturation is very clear near the design bunch current.

• The bunch length is nearly 3 times of β_y^* , which entails strong hourglass effect.

Beamstrahlung Lifetime

• With $\delta_{max} = 0.02$, Beamstrahlung lifetime estimated by LIFETRAC/BBWS is about 85/250min.

CECP Pre-CDR Review Meeting

Lifetime limited by vertical dynamic aperture

LIFETIME [min]	Aperture by LIFETRAC	Aperture by BBWS
250	50σ _y	42σ _y
20	40σ _y	3 2σ _y

CECP Pre-CDR Review Meeting

Cause of the lifetime difference

• It seems both codes use the quasi-strong-strong model in lifetime simulation. But the details may be different. The strong beam' s parameter is obtained by Gaussian fitting in LIFETRAC. And it is only self-consistent for σ_x and σ_z in BBWS.

Gaussian fit in Lifetrac

	LIFETIME $(\eta = 0.02)$	LIFTIME (40 σ_y)	Luminosity
W/O Gaussian Fit	222 min	202 min	1.5e34
W/ Gaussian Fit	85 min	22 min	1.7e34

Analysis of Dynamic Effect

• In the linear approximation, the dynamics can be treated as 1-D system. If we use the weak-strong picture, it could be found that the new β -function at IP

$$\beta = \frac{\rho_0}{\sqrt{1 + 4\pi\xi_0 \cot\mu_0 - 4\pi^2\xi_0^2}}$$

and the dynamic emittance

$$=\frac{(1+2\pi\xi_0\cot\mu_0)\epsilon_0}{\sqrt{1+4\pi\xi_0\cot\mu_0-4\pi^2\xi_0^2}}$$

where ξ_0 and β_0 are the nominal values.

• We could estimate the strong-strong picture by iteration.

e

β: 0.8m -> 0.28m; (LIEETRAC: 0.274m, BBSS: 0.38m) ε: 6.79nmrad -> 12.1nmrad; (LIFETRAC: 12.5nmrad, BBSS: 10nmrad) $ξ_0$: 0.10 -> 0.16; (LIFETRAC: 0.165)

Analysis of Dynamic Effect (Cont)

- We've obtained the β just at IP, and could continue to calculate the twiss function just after IP using the transfer matrix of half beam-beam kick map
- It is found that $\alpha_{+} = 0.84$ and $\beta_{+} = 0.28$ m just after IP. That is to say the new waist is about 0.14m away from IP and β is about 0.164m at the waist.
- L^{*}~1.5m, it could be estimated that the dynamic beam size is about 2.3 times the nominal value. As we've shown there is no long tail in horizontal direction, the aperture should be about $20\sigma_{x,0}$ at the final focus magnet.
- The estimation may be overestimated since the linear model is used and it is valid only for small oscillation particle.

Pretzel scheme

- the phase advance between parasitic crossing point should be a integer number of 2*Pi,
- Designed for 50 bunches/beam, every 4pi phase advance has one collision point
- >Horizontal separation is adopted to avoid big coupling
- $10\sigma_x$ separation is assumed in horizontal direction
- 50 bunches per beam, 100 parasitic crossings totally

$$\left(\xi_x, \xi_y\right) = \frac{Nr_e}{2\pi\gamma} \frac{(\beta_x, \beta_y)(x^2 - y^2)}{(x^2 + y^2)^2} , \text{ It could be estimated that}$$
$$\xi_x = 0.0007/pc, \ \xi_{x,total} = 0.07$$

Tune Scan with PCs on/off

32

Different Separation: $10\sigma_x$ vs $15\sigma_x$

Double Ring Scheme

Tune Scan(Higgs)

The error bar shows the turn-by-turn luminosity difference.

K. Ohmi and etal., DOI:10.1103/PhysRevLett.119.134801

X-Z instability @(0.535,0.61)

Crab Waist Strength (Higgs)

Piwinski Angle ~ 3

Beam-Distribution: Beam-Beam + Linear Arc

1000 particles 5000 half-turn

BB@IP with real Lattice

BB@IP with real Lattice : **Beamstrahlung**

BB@IP with real Lattice : Beamstrahlung , SR in Magnet(B/Q...)

SR at IP

1e3 particles

1e5 half-turn

Different Observation Point

IP

INJ

Bootstraping

Np $\propto \frac{\alpha_p \sigma_\delta \sigma_z}{\beta_r^*}$ (K. Oide)

D. Shatilov

8.0e10 * 8.0e10

Z: different collision path

Z: bunch current limit using bootstrapping

Width of safe Qx ~ 0.003

blowup of $\frac{\sigma_x}{\sigma_0}$ <1.1, Limit of bunch population

Summary

- Beam-beam code has been developed and cross checked for large Piwinski angle collision and beamstrahlung effect
- Single Ring Scheme: Large momentum acceptance requirement and DA requirement, complicated Pretzel Scheme ($20\sigma_x \times 50\sigma_y \times 0.02$)
- The beam-beam effect is evaluated by comparing with built machines and is considered reasonable
- Crosstalk between lattice & BB is studied at Higgs Energy
- Limit of bunch population by beam-beam interaction
 - Beamstrahlung lifetime
 - If X-Z instability is suppressed
 - If Asymmetric Collision is OK
 - If there exist large enough stable working point space

Backup Slides

Main Parameters of CEPC (ver. 140416)

Main parameters

Beam energy [E] Circumference [C] Luminosity [L] SR power/beam [P] NIP nв

momentum compaction factor $[\alpha_p]$ Energy acceptance Ring[n] Beam current [I] mΑ Bunch population [N_e] emittance-horizontal $[\varepsilon_x]$ m∙rad coupling factor $[\kappa]$

120	Beam length SR [$\sigma_{s,SR}$]
53.6	Betatron function at IP-vertica
1.82E+34	Betatron function at IP-horizo
50	Beam-beam parameter [ξ_x]
2	Beam-beam parameter [ξ _y]
50	RF voltage [Vrf]
4.15E-05	RF frequency [frf]
0.02	Synchrotron oscillation tune
16 .60	SR loss/turn [U₀]
3.71E+11	Energy spread SR $[\sigma_{\delta. SR}]$
6.79E-09	Transverse damping time [n _x]
0.003	Longitudinal damping time [$n_{\!\epsilon}$]
	120 53.6 1.82E+34 50 2 50 4.15E-05 0.02 16.60 3.71E+11 6.79E-09 0.003

0.00226 m 0.0012 IP-vertical [β_v m] IP-horizontal m **8.**0 0.104 0.074 GV 6.87 0.7 GHz on tune $[v_s]$ 0.206 GeV 3.01 % 0.13 79.70 turns g time [n_ɛ] 39.85 turns

Beam Distribution: by=1.5mm Lattice + Beamstrahlung + SR Fluctuation

Beam Lifetime: by=1.5mm Lattice + Beamstrahlung + SR Fluctuation

100min, DA requirement: 7.5 σ_x , 12.5 σ_y , 0.0135

Achieved DA: ~15 σ_x , ~15 σ_y , ~0.015

By=1mm, 100MV, Z-Bootstraping

W:

bootstraping

 ν_{x}

