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Laser-driven plasma-based accelerators (LPAs): ultra-high gradient
(tens of GV/m) provides compact source of energetic, fs, kA
electron beams

* GeV electron beams in cm-scale plasmas using LPAs
LPA-based linear collider design considerations

* operational plasma density

* beam distribution

* LPA staging toward high energy

Beam-beam effects in LPA-based linear colliders

* Beam-beam interaction effects determine the operational
plasma density (determine required laser technology)



High-energy physics application of LPAs

= “Livingston Plot” Saturation of accelerator tech.

* Practical limit reached for conventional
accelerator technology (RF metallic structures)

* Gradient limited by material breakdown
- e.g., X-band demonstration ~100 MV/m
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= Largest cost driver is acceleration
] gt AL (0 e ~50 MV/m implies ~20 km/TeV
* Facility costs scale roughly with facility size

M. Tigner, DOES ACCELERATOR-BASED PARTICLE (and power consumption{

PHYSICS HAVE A FUTURE? Phys. Today (2001) . . o
| | | | I * >50% cost in main linacs (e.g., ILC)
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LPA application: Lepton Collider
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Any future linear TeV (>TeV) collider is a
massive (ultra-massive) project

* require >order of magnitude increase in
acceleration gradient

Ultra-high gradient requires structures to
sustain high fields:

e Dielectric structures: ~I GV/m
* Plasmas:~10 GV/m
High gradients require high peak power:
 Beam driven
e Laser driven

Significant progress worldwide in LPAs in
the last 20+ years

Critical developments:
* Better understanding of LPA physics

* Development of laser technology (CPA)
for high peak power delivery
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Any future linear TeV (>TeV) collider is a
massive (ultra-massive) project

* require >order of magnitude increase in
acceleration gradient

Ultra-high gradient requires structures to
sustain high fields:

e Dielectric structures: ~I GV/m
* Plasmas:~10 GV/m
High gradients require high peak power:
 Beam driven
e Laser driven

Significant progress worldwide in LPAs in
the last 20+ years

Critical developments:
* Better understanding of LPA physics

* Development of laser technology (CPA)
for high peak power delivery



Laser-plasma accelerators:

compact sources (>10 GV/m) of fs e-beams

Esarey, Schroeder, Leemans, Rev. Mod. Phys. (2009)

» Accelerating field: characteristic size of plasma wave field, driven by the ponderomotive force
of a resonant laser pulse with relativistic intensity (>10'8 W/cm?2) propagating in underdense plasma:

B~ (M) & (96 V/m) /nglem™3

€

e Eg,for ~1018cm-3, gradient ~100 GV/m

» Bunch duration:
* Accelerating bucket ~ plasma wavelength

" @ Pbunct
A0S . S 0‘

Electron plasma density

* Beam charge (set by beam loading, plasma density): ~I-100 pC

* Beam duration (set by trapping physics and density): ~1-10 fs } = ~1-10 kA peak current
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Laser-plasma accelerator (LPA) experimental

demonstration of GeV electron beam at LBNL

Ti:Sapphire laser:

0.8 micron wavelength
2 ] pulse energy

46 fs duration

Plasma source:
H-discharge capillary
number density = 3x10/8 cm-3
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Leemans et al., Nature Phys. (2006); Nakamura et al., Phys. Plasmas (2007)



Plasma-based linear collider concepts

Leemans & Esarey, Physics Today (2009)
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» Collider based on laser-driven
plasma acceleration: Cani
r

RF gun Drive beam accelerator

RF separator

bunch compressor . o
Drive beam distribution |
A

Beam Delivery and IR
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» Collider based on beam-driven
plasma acceleration (PWFA):

main beam
e- injector

main beam
¢+t 1njector

Figure 1: Concept for a multi-stage PWFA-based Linear Collider. Seryi et al., PAC Proc (2009) 7



Limits to energy gain in laser-plasma accelerator (LPA):
diffraction, dephasing, depletion

Electron plasma density

» . 4 clectron 6
suastete 1y S

Limits to single stage energy gain: mc2 Afy ~ q(mcwp / B)Lint

= Laser Diffraction: ~ Rayleigh range (typically most severe)

» Controlled by transverse plasma density tailoring (plasma channel) and/or relativistic self-
guiding and ponderomotive self-channeling

= Beam-Wave Dephasing: Slippage between e-beam and plasma wave
» Controlled by longitudinal plasma density tailoring (plasma tapering)

= Laser Energy Depletion: Rate of laser energy deposition of into plasma wave

Ldeplete X n_3/2>\_2



Plasma density scalings

" laser-plasma interaction (depletion) length:
3 /12 —3/2

Lace ~ Ap/AL xn /
" Accelerating gradient:

E ~ Eg = (mecwp/€) x v/n
= Energy gain:

W ~ (mcwy/e) Lace x 1/n
For high-energy applications, laser depletion

(and reasonable gradient) necessitates staging
laser-plasma accelerators

e-beam energy gain (MeV)
o
o
o

N
LN

\\0 LBNL 2014 1

. Ay x —

\\\ / n
\ .

- @ N
Texas 2013 N
\\LBNL 2006

N, @

\\ .
LLNL 2010 Q
N\

MPQ 2010"~@

. U.Mich 2008
LOA 20008

APRI 2008 ‘\
‘ \
LOA 2004 K%

N
LBNL 2004“\

RAL 2009

N
RAL 2004 s

N\
.

5x101%10®  5x101%10™
plasma density, n, (cm-3)




Plasma density scalings

= Laser-plasma interaction (depletion) length: ~ 5000 _\\\ | | | |
> @ LBNL 2014 1
Lace ~ Ap /A7 o n™3/2 > Ay o
~ Xn < . . 1
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For high-energy applications, laser depletion RAL 2004 s,
(and reasonable gradient) necessitates staging e e K
laser-plasma accelerators 5x101%10 5x 101810

plasma density, n, (cm-3)
Laser requirements:

] . 3
Laser energy: Ulaser X )\p X N

—1/2

—3/2

" Laser duration: Tlaser X )‘p XN

* Laser peak power: Plaser X n_l
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For high-energy applications, laser depletion RAL 2004 s,
(and reasonable gradient) necessitates staging e e K
laser-plasma accelerators 5x101%10 5x 101810

plasma density, n, (cm-3)
Laser requirements:

" |aser energy: [/ X )\3 X n_3/2
laser D W-~1 GeV W ~ 4 GeV
, —1/2 n~3x10'8cm-3 n~7x10'7cm-3
= |aser duration: Tlaser X )\p XM / Locc ~I cm % L. ~8 cm
Ulaser ~2 j Ulaser ~ |6 j
= |aser peak power: Plaser X n_1 Piaser ~100 TW Piaser ~ 0.4 PW



BELLA Laser Facility

Leemans et al., PAC Proc. (2013)

BELLA (BErkeley Lab Laser Accelerator) Facility:
* PW-laser for laser-accelerator science
e >47 | in <40 fs (> IPW) at | Hz laser and
supporting infrastructure at LBNL
e commissioned in 2013

Control room

Beam dump

Plasma source

10



Multi-GeV electron acceleration using BELLA

CCD BELLA laser
e

Magnetic spectrometer

Wedge
Calorimeter with hole ICT
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» plasma: 9 cm H-discharge capillary, on-axis density 7x10!7/cc
» laser:16 J,40 fs
» 4.25 GeV e-beam, 6% energy spread, 0.3 mrad divergence, |10 pC
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Leemans et al, Phys. Rev. Lett. (2014) electron energy
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Staged LPAs: average gradient determined by driver

in-coupling distance

Schroeder et al., PR ST-AB (2010)

laser —

Accelerating gradient: [} ~ EO — (mecwp/e) X \/ﬁ

2 Compact laser in-coupling distance
number of stages: Nstage X A enables high average accelerating gradient:
* Conventional laser optics: requires many
Length of | TeV staged-LPA linac Rayleigh ranges to reduce fluency on
optic (avoid damage)

stage coupling distance:
—5/4y\—1
Lcoupling XN / A

* Plasma mirror: relies on critical density
plasma production (high laser intensity):
laser coupling <| m

Length of staged-LPA linac [km]
)
(@)

100 10° 107 ~10°
Operational plasma density [cm-3] 12



Quasi-linear regime: positron focusing &

Accelerating
field

Plasma
density

Transverse position

Focusing
field

Longitudinal position

independent control of acceleration and focusing

» Operate in “quasi-linear” regime:

Quiver momentum weakly-relativistic a~1/

(Intensity ~ 1018 W/cm?2)

Region of acceleration/focusing for both
electrons and positrons

Stable laser propagation in plasma channel

Independent control of accelerating and
focusing forces

13
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hollow plasma channels: Excellent wakefield properties

for ultra-low emittance preservation

Drive Plasma Channel
Laser Plasma Wave

Electron AN
> ® < >
Bunch NS

Electron Bunch
Laser Pulse

» Excellent wakefield properties in plasma channel and independent control over
accelerating and focusing forces:
* Accelerating wakefield uniform in radial position
* Focusing wakefield uniform in longitudinal position (no head-to-tail variation
in focusing force) and linear in radial position
* lon motion negligible
* Mitigates Coulomb scattering

14



Beam loading Iin near-hollow plasma channels:

use shaped bunches to eliminate energy spread

» Energy spread minimized using shaped beams

15



Beam loading Iin near-hollow plasma channels:

use shaped bunches to eliminate energy spread

» Energy spread minimized using shaped beams

Ramped triangular current distribution :

I'=(14¢/Lo)ly

normalized field amplitude

Examble:
o=m/3

EzL + Ezb

normalized distance behind driver, ky (z-ct)
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Beam loading Iin near-hollow plasma channels:

use shaped bunches to eliminate energy spread

» Energy spread minimized using shaped beams

Examble:
o=m/3

Ramped triangular current distribution :

)
e
2
2
5
I'=(1+¢/Ly)Ly 3
G— ] o
O ;
R E.r
g / constant accelerating field :
» Trade-off between gradient and o E.r + Ep :
efficiency (for no induced energy spread) :
............. =
2 4 6

normalized distance behind driver, ky (z-ct)

—l
o

0.8:-
0.6:-
0.4}

0.2}

wake to beam efficiency

0.0l .
0.0 0.2 0.4 0.6 0.8 1.0

fraction of peak accel. field
15



Beam loading Iin near-hollow plasma channels:

use shaped bunches to eliminate energy spread

» Energy spread minimized using shaped beams

Ramped triangular current distribution :

I'=(14¢/Lo)ly

normalized field amplitude

» Trade-off between gradient and
efficiency (for no induced energy spread)

—l
o

0.8:-
0.6:-
0.4}

0.2}

wake to beam efficiency

0.0l .'
0.0 0.2 0.4 0.6 0.8 1.0

fraction of peak accel. field

Examble:
o=m/3

EzL + Ezb

normalized distance behind driver, ky (z-ct)

—1/2

beam charge: N} X N,

lower plasma density,
higher beam charge

—1/2

: —1
beam length: [, ~ kp X N,

15



Positron beams accelerated in linear regime In

hollow plasma channel

Drive Plasma Channel
Laser Plasma Wave

: \
Positron S S \W
Bunch NS

% 7 7
4 2, A

Positron Bunch

Laser Pulse

» In quasi-linear regime, acceleration of positrons is symmetric to electrons
1.0F

o
&)

|
o
o1

normalized field amplitude
|
- o

normalized distance behind driver, ky (z-ct)
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Basic scalings indicate disruption small for plasma

accelerated (ultra-short) beams

» Disruption parameter: P.Chen and K.Yokoya, Phys. Rev. D 38, 987 (1988)
2r.No .,
D, =

qou(or +op)

» Plasma-based accelerators intrinsically produce short (< plasma skin depth)
beams

» Luminosity enhancement effects from beam disruption are typically
weak D<<I for LPA-based colliders owing to the ultrashort LPA bunch
length (<< beam-beam lens)

17



Beamstrahlung minimization: basic scalings

5 N
» Beamstrahlung parameter: Y =y (E + B) /E. ~ Ga(g;e—z (7;;) O

» average number of beamstrahlung photons/lepton:

P. Chen and K.Yokoya n"}’ I~/ 254 (Q2/T€ry) O-ZT(]- _|_ TZ/S)_l/Z

18



Beamstrahlung minimization: basic scalings

512y N

» Beamstrahlung parameter: Y = Y <E T B> /EC ~ 604(0';'; —+ (TZ) O -

» average number of beamstrahlung photons/lepton:

P. Chen and K.Yokoya n"}’ I~/ 254 (Q2/T€ry) O-ZT(]- _|_ TZ/S)_l/Z
» TeV-scale colliders will operate in the high-beamstrahlung regime: Y>>

» Beamstrahlung suppressed by using short beams (in limit Y>>1):

n~ ~ 2.54 (042/7“€fy) 12/34,
0, ~= 0.722 (az/rev) 12/35,

18



Beamstrahlung minimization: basic scalings

5r§w N

» Beamstrahlung parameter: Y = Y <E T B> /EC ~ 604(0';'; —+ (TZ) O -

» average number of beamstrahlung photons/lepton:

P. Chen and K.Yokoya n"}’ I~/ 254 (a2/rery) O-ZT(]- _|_ TZ/S)_l/Z
» TeV-scale colliders will operate in the high-beamstrahlung regime: Y>>

» Beamstrahlung suppressed by using short beams (in limit Y>>1):

n, ~ 2.54 (a®/re7) T2/3¢,
0, ~= 0.722 (az/rev) 12/35,

L n%’/Qn’wvavall

—— X
U? 0*75/2(7;/2

CITl

» Short beams save power (Y>>]):

» Plasma-based accelerators produce short (< plasma skin depth) beams: g, < kgl 18



Ultra-short beams can be accelerated without energy

spread growth

» Ultra-short beams are desirable, e.g., beamstrahlung suppression in colliders.

beamstrahlung photons/electron: N~ X [:1/ 30-;/ 3

» Trapezoidal current distribution:

10 —=r/T T T T -
O. P .

o
&

normalized field amplitude
|
o o
9] o

normalized distance behind driver, ky (z-ct)

» Improved efficiency achieved using bunch trains 19



Bunch trains allows ultra-short bunches with high

efficiency, gradient, and no energy spread

with | bunches: with 6 bunches:

-: T = 0.08 Thotal = 0.5

normalized field amplitude

- Ez = ELCOS(T('/4) — EL/\/§

T 40 80  -20  —10 0
normalized distance behind driver, ky (z-ct)

» Improved efficiency achieved using bunch trains:
* Each bunch has same charge
* Experiences same (constant across bunch) accelerating gradient
* Efficiency increased by number of bunches in train

» Trade-off between gradient and efficiency, with

no energy spread growth using ultra-short beams
20
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Bunch trains allows ultra-short bunches with high

efficiency, gradient, and no energy spread

Example:
),
© kw1 = 0.1
B
o QY1 =T / 4
S .
(q) .
© with | bunches: with 6 bunches:
] -
m o
N
©
S
C
O
c
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Improved efficiency using additional laser pulses to

absorb remaining plasma wave energy

>
>
>

laser

|
O
o

normalized field amplitude
o
=)

L

o

_

<_

<_

_
53

normalized distance behind driver, ky(z-ct)
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Improved efficiency using additional laser pulses to

absorb remaining plasma wave energy

n(plasma to beam)= 0.75
gradient = 0.5(peak field)

—l
o

O
&)

|
o
o

normalized field amplitude
o
&)

| plasma
: v wave
10

normalized distance behind driver, ky(z-ct)
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Improved efficiency using additional laser pulses to

absorb remaining plasma wave energy

n(plasma to beam)= 0.75
gradient = 0.5(peak field)

—l
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O
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O
o

normalized field amplitude
o
&)

| plasma
: U wave
-10b

normalized distance behind driver, ky(z-ct)
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Improved efficiency using additional laser pulses to

absorb remaining plasma wave energy

n(plasma to beam)= 0.75 “Energy-recovery” laser Drive laser depositing
gradient = 0.5(peak field) absorbing wave energy energy into wave
. (frequency blue-shifting) (frequency red-shifting)

—l
o

o
&)

|
o
o

normalized field amplitude
o
&)

| plasma
: U wave
- 10

normalized distance behind driver, ky(z-ct)

» Additional laser pulse allows for no energy to remain in coherent
plasma oscillations after energy transferred to particle beam

21



Average power reduced at lower plasma density

(Beamstrahlung limits charge/bunch)

Charge/bunch: Laser rep rate (for fixed luminosity goal): Wall-plug power:
U

NocA—Locn_l/2 fOCTL POC\/E
8

Schroeder et al., PR STAB (2010)

beamstruhlung limited beam-loading limited
: — . . . 1300
¢ ‘\ E.,=1TeV ’
A b hlung photons/e at IP: \ L= 100 cnr?
verage beamstrahlung photons/e at IF: \ n=11%

Schroeder et al., PR ST-AB (201 2) 1200

Ny X NZ/SO';/B x n~ 12

average beamstruhlung photons/e

107 1070 1077 e 12)75-
Operational plasma density [cm-3]

0

LPA-based linac wall-plug power [MW]

N
N



3 TeV laser-plasma collider example

LPA stage laser-plasma parameters.

operational plasma

Plasma density (wall), ng [em 3]
Plasma wavelength, 4, [mm]

ey dENSITY

Channel radius, r. [pm]
Laser wavelength, A [um] 1
Normalized laser strength, ao 1.2
Peak laser power, P; [TW] 50
Laser pulse duration (FWHM), 7; [fs] 130
Laser energy, U, [J] 6.5
Normalized accelerating field, E;/Ej 0.2
Peak accelerating field, E; [GV/m] 6
Laser depletion length, L4 [m] 8.7
Plasma channel length, L_[m] 1.7
Laser depletion, npq4 (¥ 20
Shaped electron/positron beam parameters.
Bunch phase (relative to peak field), ¢ n/3
Loaded gradient, E; [GV/m] 3
Beam beam current, I [kA] 3
Charge/bunch, eN, = Q [n(] 019
Length (triangular shape), Ly [pm] 36

beam energy
energy gain/stage
RMS oz[micron]
ox[nm]/ey[nm]
Luminosity [sTcm-2]

laser rep rate [kHz]

Beamstrahlung
parameter

Beamstahlung photons/e

Beamstrahlung energy
spread

Disruption parameter

Power (LPA linacs)

1.5 TeV

5 GeV

8.5

18 /0.5

1E+35

84

16

0.81

0.20

0.046

407 MW
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Laser-plasma accelerator-based collider concept

Schroeder et al., PR ST-AB (2010)

* Plasma density scalings [minimize construction (max.

average gradient) and operational (min. wall power) costs]
Leemans & Esarey, Physics Today (2009) indicates: n ~ 10!7 cm-3

* Quasi-linear wake (a~1): e- and e+

= Staging & laser coupling into plasma (hollow) channels:

» tens | laser energy/stage required
» energy gain/stage ~few GeV in <Im

L
Laser technology development required: e‘ser\

* High luminosity requires high rep-rate lasers (10’s kHz)

= Requires development of high average power lasers (100’s kW)
* Bandwidth (support ~100 fs duration)

= High laser efficiency (~tens of %)
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Demonstration of acceleration in second independently-

powered laser-plasma accelerator at LBNL

reflected

mode o Steinke et al, Nature (2016)
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Future LPA staging experiments: 5 GeV + 5 GeV

Steinke et al., Phys. Plasmas (2016)
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Summary and Conclusions

» Laser-pasma accelerators provide ultra-high gradients (compact accelerators) generating
short (fs) beams (high peak current)

* 4 GeV beams in 9-cm plasma using LPA at BELLA
- 10 GeV beams in <Im will be available in next (few) years

» Beam-beam interaction effects modify the basic scalings and determine the operational
plasma density (determines required laser technology, etc.)

* Basic scalings indicate ~|El7/cc operating density.

* Operating at low plasma density increases beamstrahlung effects (higher bunch charge
and longer beams)

* Bunch charge constrained by beamstrahlung - requiring multi-bunch format or increase
repetition frequency (power).

* Detailed modeling still to be done (including beam shape, delivery system, etc.)

» Laser-plasma accelerator-based linear collider has many technical challenges and R&D for
collider application ongoing

* Staging LPA experiments underway at LBNL

* High peak & average power laser technology development
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