Beam-beam effects in plasma acceleration-based linear collider

Carl B. Schroeder

Lawrence Berkeley National Laboratory

ICFA Mini-Workshop on Beam-Beam Effects in Circular Colliders LBNL, Berkeley, CA

6 Feb 2018

Work supported by the U.S. DOE, Office of Science, Office of High Energy Physics, under Contract No. DE-AC02-05CH11231

• F • 4 • 1 14

Outline

- Laser-driven plasma-based accelerators (LPAs): ultra-high gradient (tens of GV/m) provides compact source of energetic, fs, kA electron beams
 - GeV electron beams in cm-scale plasmas using LPAs
- LPA-based linear collider design considerations
 - operational plasma density
 - beam distribution
 - LPA staging toward high energy
- Beam-beam effects in LPA-based linear colliders
 - Beam-beam interaction effects determine the operational plasma density (determine required laser technology)

High-energy physics application of LPAs

- "Livingston Plot" Saturation of accelerator tech.
 - Practical limit reached for conventional accelerator technology (RF metallic structures)
 - Gradient limited by material breakdown
 - e.g., X-band demonstration ~100 MV/m

- Largest cost driver is acceleration
 - ~50 MV/m implies ~20 km/TeV
 - Facility costs scale roughly with facility size (and power consumption)
 - >50% cost in main linacs (e.g., ILC)

LPA application: Lepton Collider

- Any future linear TeV (>TeV) collider is a massive (ultra-massive) project
 - require >order of magnitude increase in acceleration gradient
- Ultra-high gradient requires structures to sustain high fields:
 - Dielectric structures: ~I GV/m
 - Plasmas: ~10 GV/m
- High gradients require high peak power:
 - Beam driven
 - Laser driven
- Significant progress worldwide in LPAs in the last 20+ years
- Critical developments:
 - Better understanding of LPA physics
 - Development of laser technology (CPA) for high peak power delivery

LPA application: Lepton Collider

- Any future linear TeV (>TeV) collider is a massive (ultra-massive) project
 - require >order of magnitude increase in acceleration gradient
- Ultra-high gradient requires structures to sustain high fields:
 - Dielectric structures: ~I GV/m
 - Plasmas: ~10 GV/m
- High gradients require high peak power:
 - Beam driven
 - Laser driven
- Significant progress worldwide in LPAs in the last 20+ years
- Critical developments:
 - Better understanding of LPA physics
 - Development of laser technology (CPA) for high peak power delivery

Laser-plasma accelerators: compact sources (>10 GV/m) of fs e-beams

Esarey, Schroeder, Leemans, Rev. Mod. Phys. (2009)

• Accelerating field: characteristic size of plasma wave field, driven by the ponderomotive force of a resonant laser pulse with relativistic intensity (>10¹⁸ W/cm²) propagating in underdense plasma:

$$E \sim \left(\frac{mc\omega_p}{e}\right) \approx (96 \text{ V/m}) \sqrt{n_0 [\text{cm}^{-3}]}$$

• E.g., for $\sim 10^{18}$ cm⁻³, gradient ~ 100 GV/m

• Bunch duration:

• Accelerating bucket ~ plasma wavelength

- Beam charge (set by beam loading, plasma density): ~I-100 pC
- Beam duration (set by trapping physics and density): ~1-10 fs

~I-I0 kA peak current

Laser-plasma accelerator (LPA) experimental demonstration of GeV electron beam at LBNL

Plasma-based linear collider concepts

Limits to energy gain in laser-plasma accelerator (LPA): diffraction, dephasing, depletion

Limits to single stage energy gain:

$$mc^2 \Delta \gamma \sim q(mc\omega_p/e)L_{\rm int}$$

- Laser Diffraction: ~ Rayleigh range (typically most severe)
 - Controlled by transverse plasma density tailoring (plasma channel) and/or relativistic selfguiding and ponderomotive self-channeling
- Beam-Wave Dephasing: Slippage between e-beam and plasma wave
 - Controlled by longitudinal plasma density tailoring (plasma tapering)
- Laser Energy Depletion: Rate of laser energy deposition of into plasma wave

$$L_{\rm deplete} \propto n^{-3/2} \lambda^{-2}$$

Plasma density scalings

Laser-plasma interaction (depletion) length:

$$L_{\rm acc} \sim \lambda_p^3 / \lambda_L^2 \propto n^{-3/2}$$

Accelerating gradient:

$$E \sim E_0 = (m_e c \omega_p / e) \propto \sqrt{n}$$

• Energy gain:

$$W \sim (m c \omega_p / e) L_{\rm acc} \propto 1/n$$

For high-energy applications, laser depletion (and reasonable gradient) necessitates staging laser-plasma accelerators

Plasma density scalings

Laser-plasma interaction (depletion) length:

$$L_{\rm acc} \sim \lambda_p^3 / \lambda_L^2 \propto n^{-3/2}$$

Accelerating gradient:

$$E \sim E_0 = (m_e c \omega_p / e) \propto \sqrt{n}$$

• Energy gain:

$$W \sim (m c \omega_p / e) L_{\rm acc} \propto 1/n$$

For high-energy applications, laser depletion (and reasonable gradient) necessitates staging laser-plasma accelerators

Laser requirements:

Laser energy:
$$U_{
m laser} \propto \lambda_p^3 \propto n^{-3/2}$$

- Laser duration: $au_{
m laser} \propto \lambda_p \propto n^{-1/2}$

Plasma density scalings

Laser-plasma interaction (depletion) length:

$$L_{\rm acc} \sim \lambda_p^3 / \lambda_L^2 \propto n^{-3/2}$$

Accelerating gradient:

$$E \sim E_0 = (m_e c \omega_p / e) \propto \sqrt{n}$$

Energy gain:

$$W \sim (m c \omega_p / e) L_{\rm acc} \propto 1/n$$

For high-energy applications, laser depletion (and reasonable gradient) necessitates staging laser-plasma accelerators

Laser requirements:

Laser energy:
$$U_{
m laser} \propto \lambda_p^3 \propto n^{-3/2}$$

 $au_{\text{laser}} \propto \lambda_p \propto n^{-1/2}$ Laser duration:

- Laser peak power:
$$P_{
m laser} \propto n^{-1}$$

L_{acc} ~I cm

U_{laser} ~2 J

Plaser ~100 TW

n ~ 7x10¹⁷ cm⁻³

Lacc ~8 cm

U_{laser} ~ [6]

 $P_{laser} \sim 0.4 P$

BELLA Laser Facility

Leemans et al., PAC Proc. (2013)

BELLA (BErkeley Lab Laser Accelerator) Facility:

- PW-laser for laser-accelerator science
- >42 J in <40 fs (> IPW) at I Hz laser and
- supporting infrastructure at LBNL
- commissioned in 2013

Multi-GeV electron acceleration using BELLA

- ▶ plasma: 9 cm H-discharge capillary, on-axis density 7x10¹⁷/cc
- Iaser: I 6 J, 40 fs
- ▶ 4.25 GeV e-beam, 6% energy spread, 0.3 mrad divergence, 10 pC

Staged LPAs: average gradient determined by driver in-coupling distance

Schroeder et al., PR ST-AB (2010)

10¹⁸

10¹⁷

Operational plasma density [cm-3]

-ength of staged-LPA linac [km]

10¹⁵

10¹⁶

- Operate in "quasi-linear" regime:
 - Quiver momentum weakly-relativistic *a*~1 (Intensity ~ 10¹⁸ W/cm²)
 - Region of acceleration/focusing for both electrons and positrons
 - Stable laser propagation in plasma channel
 - Independent control of accelerating and focusing forces

- Operate in "quasi-linear" regime:
 - Quiver momentum weakly-relativistic *a*~1 (Intensity ~ 10¹⁸ W/cm²)
 - Region of acceleration/focusing for both electrons and positrons
 - Stable laser propagation in plasma channel
 - Independent control of accelerating and focusing forces

- Operate in "quasi-linear" regime:
 - Quiver momentum weakly-relativistic *a*~1 (Intensity ~ 10¹⁸ W/cm²)
 - Region of acceleration/focusing for both electrons and positrons
 - Stable laser propagation in plasma channel
 - Independent control of accelerating and focusing forces

- Operate in "quasi-linear" regime:
 - Quiver momentum weakly-relativistic *a*~1 (Intensity ~ 10¹⁸ W/cm²)
 - Region of acceleration/focusing for both electrons and positrons
 - Stable laser propagation in plasma channel
 - Independent control of accelerating and focusing forces

- Operate in "quasi-linear" regime:
 - Quiver momentum weakly-relativistic *a*~1 (Intensity ~ 10¹⁸ W/cm²)
 - Region of acceleration/focusing for both electrons and positrons
 - Stable laser propagation in plasma channel
 - Independent control of accelerating and focusing forces

- Operate in "quasi-linear" regime:
 - Quiver momentum weakly-relativistic *a*~1 (Intensity ~ 10¹⁸ W/cm²)
 - Region of acceleration/focusing for both electrons and positrons
 - Stable laser propagation in plasma channel
 - Independent control of accelerating and focusing forces

- Operate in "quasi-linear" regime:
 - Quiver momentum weakly-relativistic *a*~1 (Intensity ~ 10¹⁸ W/cm²)
 - Region of acceleration/focusing for both electrons and positrons
 - Stable laser propagation in plasma channel
 - Independent control of accelerating and focusing forces

hollow plasma channels: Excellent wakefield properties for ultra-low emittance preservation

Excellent wakefield properties in plasma channel and independent control over accelerating and focusing forces:

- Accelerating wakefield uniform in radial position
- Focusing wakefield uniform in longitudinal position (no head-to-tail variation in focusing force) and linear in radial position
- Ion motion negligible
- Mitigates Coulomb scattering

Energy spread minimized using shaped beams

Energy spread minimized using shaped beams

Ramped triangular current distribution :

 $I = (1 + \zeta/L_b)I_b$

Energy spread minimized using shaped beams

Ramped triangular current distribution :

 $I = (1 + \zeta/L_b)I_b$

Trade-off between gradient and efficiency (for no induced energy spread)

Energy spread minimized using shaped beams

Ramped triangular current distribution :

 $I = (1 + \zeta/L_b)I_b$

Trade-off between gradient and efficiency (for no induced energy spread)

Positron beams accelerated in linear regime in hollow plasma channel

In quasi-linear regime, acceleration of positrons is symmetric to electrons

Basic scalings indicate disruption small for plasma accelerated (ultra-short) beams

Disruption parameter:

P. Chen and K. Yokoya, Phys. Rev. D 38, 987 (1988)

$$D_x = \frac{2r_e N \sigma_z}{\gamma \sigma_x^* (\sigma_x^* + \sigma_y^*)}$$

Plasma-based accelerators intrinsically produce short (< plasma skin depth) beams</p>

Luminosity enhancement effects from beam disruption are typically weak D<<I for LPA-based colliders owing to the ultrashort LPA bunch length (<< beam-beam lens)</p>

Beamstrahlung minimization: basic scalings

- Beamstrahlung parameter: $\Upsilon = \gamma \langle E + B \rangle / E_c \approx \frac{5r_e^2 \gamma}{6\alpha(\sigma_x^* + \sigma_y^*)} \frac{N}{\sigma_z}$
- average number of beamstrahlung photons/lepton:

P. Chen and K. Yokoya

$$n_{\gamma} \approx 2.54 \left(\alpha^2 / r_e \gamma \right) \sigma_z \Upsilon (1 + \Upsilon^{2/3})^{-1/2}$$

Beamstrahlung minimization: basic scalings

- $\textbf{Beamstrahlung parameter:} \quad \Upsilon = \gamma \left\langle E + B \right\rangle / E_c \approx \frac{5r_e^2 \gamma}{6\alpha(\sigma_x^* + \sigma_y^*)} \frac{N}{\sigma_z}$
- average number of beamstrahlung photons/lepton:
 - P. Chen and K. Yokoya $n_\gamma pprox 2.54 \left(lpha^2/r_e \gamma
 ight) \sigma_z \Upsilon (1+\Upsilon^{2/3})^{-1/2}$
- TeV-scale colliders will operate in the high-beamstrahlung regime:Y>>I
- ▶ Beamstrahlung suppressed by using short beams (in limit Y>>I): $n_{\gamma} \approx 2.54 \left(\alpha^2/r_e\gamma\right) \Upsilon^{2/3}\sigma_z$ $\delta_{\gamma} \approx 0.722 \left(\alpha^2/r_e\gamma\right) \Upsilon^{2/3}\sigma_z$

Beamstrahlung minimization: basic scalings

- $\bullet \text{ Beamstrahlung parameter: } \Upsilon = \gamma \left\langle E + B \right\rangle / E_c \approx \frac{5r_e^2 \gamma}{6\alpha(\sigma_x^* + \sigma_y^*)} \frac{N}{\sigma_z}$
- average number of beamstrahlung photons/lepton:
 - P. Chen and K. Yokoya $n_\gamma pprox 2.54 \left(lpha^2/r_e \gamma
 ight) \sigma_z \Upsilon (1+\Upsilon^{2/3})^{-1/2}$
- TeV-scale colliders will operate in the high-beamstrahlung regime:Y>>I
- ▶ Beamstrahlung suppressed by using short beams (in limit Y>>1): $n_{\gamma} \approx 2.54 \left(\alpha^2/r_e\gamma\right) \Upsilon^{2/3}\sigma_z$ $\delta_{\gamma} \approx 0.722 \left(\alpha^2/r_e\gamma\right) \Upsilon^{2/3}\sigma_z$

Short beams save power (Y>>I):

$$rac{\mathcal{L}}{U_{
m cm}^2} \propto rac{n_{\gamma}^{3/2} \eta_{wb} P_{
m wall}}{\sigma^* \gamma^{5/2} \sigma_z^{1/2}}$$

Plasma-based accelerators produce short (< plasma skin depth) beams: $\sigma_z < k_{p-18}^{-1}$

Ultra-short beams can be accelerated without energy spread growth

▶ Ultra-short beams are desirable, e.g., beamstrahlung suppression in colliders.

beamstrahlung photons/electron: $n_\gamma \propto {\cal L}^{1/3} \sigma_z^{1/3}$

Trapezoidal current distribution:

Improved efficiency achieved using bunch trains

Improved efficiency achieved using bunch trains:

- Each bunch has same charge
- Experiences same (constant across bunch) accelerating gradient
- Efficiency increased by number of bunches in train

Improved efficiency achieved using bunch trains:

- Each bunch has same charge
- Experiences same (constant across bunch) accelerating gradient
- Efficiency increased by number of bunches in train

Improved efficiency achieved using bunch trains:

- Each bunch has same charge
- Experiences same (constant across bunch) accelerating gradient
- Efficiency increased by number of bunches in train

Improved efficiency achieved using bunch trains:

- Each bunch has same charge
- Experiences same (constant across bunch) accelerating gradient
- Efficiency increased by number of bunches in train

Improved efficiency achieved using bunch trains:

- Each bunch has same charge
- Experiences same (constant across bunch) accelerating gradient
- Efficiency increased by number of bunches in train

Improved efficiency achieved using bunch trains:

- Each bunch has same charge
- Experiences same (constant across bunch) accelerating gradient
- Efficiency increased by number of bunches in train

Improved efficiency achieved using bunch trains:

- Each bunch has same charge
- Experiences same (constant across bunch) accelerating gradient
- Efficiency increased by number of bunches in train

 η (plasma to beam)= 0.75 gradient = 0.5(peak field)

 η (plasma to beam)= 0.75 gradient = 0.5(peak field)

Additional laser pulse allows for no energy to remain in coherent plasma oscillations after energy transferred to particle beam

Average power reduced at lower plasma density (Beamstrahlung limits charge/bunch)

22

3 TeV laser-plasma collider example

PA stage laser-plasma parameters.	densit
Plasma density (wall), n ₀ [cm ⁻³]	10 ¹⁷
Plasma wavelength, λ_p [mm]	0.1
Channel radius, $r_c [\mu m]$	22
Laser wavelength, λ [µm]	1
Normalized laser strength, a_0	1.2
Peak laser power, PL [TW]	50
Laser pulse duration (FWHM), τ_L [fs]	130
Laser energy, U _L [J]	6.5
Normalized accelerating field, E_L/E_0	0.2
Peak accelerating field, E_L [GV/m]	6
Laser depletion length, Lpd [m]	8.7
Plasma channel length, L_c [m]	1.7
Laser depletion, η_{pd} [%]	20

Shaped electron/positron beam parameter	rs
---	----

Bunch phase (relative to peak field), φ	π/3
Loaded gradient, E_z [GV/m]	3
Beam beam current, I [kA]	3
Charge/bunch, $eN_b = Q$ [nC]	0.19
Length (triangular shape), L_b [µm]	36

beam energy	1.5 TeV
energy gain/stage	5 GeV
RMS σ z[micron]	8.5
σ x[nm]/ σ y[nm]	18 / 0.5
Luminosity [s ⁻¹ cm- ²]	1E+35
laser rep rate [kHz]	84
Beamstrahlung parameter	16
Beamstahlung photons/e	0.81
Beamstrahlung energy spread	0.20
Disruption parameter	0.046
Power (LPA linacs)	407 MW

Laser-plasma accelerator-based collider concept

Electron

⁵⁰⁰⁻¹⁰⁰⁰ m, 100 Stages

^{Laser in coupling}

 Plasma density scalings [minimize construction (max. average gradient) and operational (min. wall power) costs] indicates: n ~ 10¹⁷ cm⁻³

- Quasi-linear wake (a~I): e- and e+
- Staging & laser coupling into plasma (hollow) channels:
 - tens J laser energy/stage required
 - energy gain/stage ~few GeV in <1m</p>

Positron

⁵⁰⁰⁻¹⁰⁰⁰ m, 100 Stages

10 GeV

 $G_{a_{\mathcal{S}}}$

jet,

Laser technology development required:

- High luminosity requires high rep-rate lasers (10's kHz)
- Requires development of high average power lasers (100's kW)

C_{apillary}

- Bandwidth (support ~100 fs duration)
- High laser efficiency (~tens of %)

Leemans & Esarey, Physics Today (2009)

Laser-plasma accelerator-based collider concept

Laser-plasma accelerator-based collider concept

Demonstration of acceleration in second independentlypowered laser-plasma accelerator at LBNL

Demonstration of acceleration in second independentlypowered laser-plasma accelerator at LBNL

Steinke et al., Phys. Plasmas (2016)

Steinke et al., Phys. Plasmas (2016)

Steinke et al., Phys. Plasmas (2016)

Steinke et al., Phys. Plasmas (2016)

Summary and Conclusions

- Laser-pasma accelerators provide ultra-high gradients (compact accelerators) generating short (fs) beams (high peak current)
 - 4 GeV beams in 9-cm plasma using LPA at BELLA
 - 10 GeV beams in <1m will be available in next (few) years
- Beam-beam interaction effects modify the basic scalings and determine the operational plasma density (determines required laser technology, etc.)
 - Basic scalings indicate ~IEI7/cc operating density.
 - Operating at low plasma density increases beamstrahlung effects (higher bunch charge and longer beams)
 - Bunch charge constrained by beamstrahlung requiring multi-bunch format or increase repetition frequency (power).
 - Detailed modeling still to be done (including beam shape, delivery system, etc.)
- Laser-plasma accelerator-based linear collider has many technical challenges and R&D for collider application ongoing
 - Staging LPA experiments underway at LBNL
 - High peak & average power laser technology development

Many thanks to my colleagues:

Carlo Benedetti Eric Esarey Cameron Geddes Wim Leemans Jean-Luc Vay and the members of the BELLA Center

Work supported by the U.S. DOE, Office of Science, Office of High Energy Physics, under Contract No. DE-AC02-05CH11231

BERKELEY LAB

LAWRENCE BERKELEY NATIONAL LABORATORY