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‣ Laser-driven plasma-based accelerators (LPAs):  ultra-high gradient 
(tens of GV/m) provides compact source of energetic, fs, kA 
electron beams 

• GeV electron beams in cm-scale plasmas using LPAs

‣ LPA-based linear collider design considerations

• operational plasma density

• beam distribution

• LPA staging toward high energy

‣ Beam-beam effects in LPA-based linear colliders 

• Beam-beam interaction effects determine the operational 
plasma density (determine required laser technology)

Outline
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M. Tigner, DOES ACCELERATOR-BASED PARTICLE 
PHYSICS HAVE A FUTURE? Phys. Today (2001)

§ “Livingston Plot”  Saturation of accelerator tech.
• Practical limit reached for conventional 

accelerator technology (RF metallic structures)
• Gradient limited by material breakdown

- e.g., X-band demonstration ~100 MV/m

§ Largest cost driver is acceleration
• ~50 MV/m  implies ~20 km/TeV
• Facility costs scale roughly with facility size 

(and power consumption)
• >50% cost in main linacs (e.g., ILC)

LHC

ILC

High-energy	physics	applica9on	of	LPAs
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§ Any future linear TeV (>TeV) collider is a 
massive (ultra-massive) project
• require >order of magnitude increase in 

acceleration gradient
§ Ultra-high gradient requires structures to 

sustain high fields:
• Dielectric structures: ~1 GV/m
• Plasmas: ~10 GV/m

§ High gradients require high peak power: 
• Beam driven 
• Laser driven

§ Significant progress worldwide in LPAs in 
the last 20+ years

§ Critical developments:
• Better understanding of LPA physics
• Development of laser technology (CPA) 

for high peak power delivery 

LPA	applica9on:	Lepton	Collider
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‣ Accelerating field:  characteristic size of plasma wave field, driven by the ponderomotive force 
of a resonant laser pulse with relativistic intensity (>1018 W/cm2) propagating in underdense plasma:

• E.g., for ~1018 cm-3 , gradient ~100 GV/m

‣ Bunch duration: 
• Accelerating bucket ~ plasma wavelength

• Beam charge (set by beam loading, plasma density): ~1-100 pC 
• Beam duration (set by trapping physics and density):  ~1-10 fs 

Laser-plasma	accelerators:		
compact	sources	(>10	GV/m)	of	fs	e-beams

➡ ~1-10 kA peak current

electron  
bunch

laser

Esarey, Schroeder, Leemans, Rev. Mod. Phys. (2009) 
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Electron plasma density



Laser-plasma	accelerator	(LPA)	experimental	
demonstra9on	of	GeV	electron	beam	at	LBNL	
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Plasma source:
H-discharge capillary 
number density = 3x1018 cm-3

3 cm

Leemans et al., Nature Phys. (2006); Nakamura et al., Phys. Plasmas (2007) 

1012 MeV
2.9%
30 pC
1.7 mrad

Ti:Sapphire laser:
0.8 micron wavelength
2 J pulse energy
46 fs duration
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Plasma-based linear collider concepts

Leemans & Esarey, Physics Today (2009)

Seryi et al., PAC Proc (2009)

‣ Collider based on laser-driven 
plasma acceleration: 

‣ Collider based on beam-driven 
plasma acceleration (PWFA): 



Limits to energy gain in laser-plasma accelerator (LPA): 
diffraction, dephasing, depletion

electron 
bunch

laser

8

€ 

vphase wave ≈ vgroup laser

Limits to single stage energy gain:

§ Laser Diffraction:   ~ Rayleigh range  (typically most severe)
‣  Controlled by transverse plasma density tailoring (plasma channel) and/or relativistic self-
guiding and ponderomotive self-channeling

§ Beam-Wave Dephasing:   Slippage between e-beam and plasma wave
‣ Controlled by longitudinal plasma density tailoring (plasma tapering)

§ Laser Energy Depletion:   Rate of laser energy deposition of into plasma wave

Ldeplete / n�3/2��2

vbeam

~ZR

mc2�� ⇠ q(mc!p/e)Lint

Electron plasma density



Plasma density scalings
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§ Laser-plasma interaction (depletion) length:

§ Accelerating gradient: 

§ Energy gain:

For high-energy applications, laser depletion 
(and reasonable gradient) necessitates staging 
laser-plasma accelerators   
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§ Laser duration:
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BELLA Laser Facility
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BELLA (BErkeley Lab Laser Accelerator) Facility: 
• PW-laser for laser-accelerator science
• >42 J in <40 fs (> 1PW) at 1 Hz laser and 
supporting infrastructure at LBNL
• commissioned in 2013

Leemans et al., PAC Proc. (2013) 

BELLA Laser

Compressor

off-axis paraboloid

Beam dump

Control room

~10 m9 cm long capillary discharge!

9 cm

Plasma source



Mul9-GeV	electron	accelera9on	using	BELLA
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9 cm
‣ plasma:  9 cm H-discharge capillary,  on-axis density 7x1017/cc 
‣ laser:16 J, 40 fs 
‣ 4.25 GeV e-beam, 6% energy spread, 0.3 mrad divergence, 10 pC 

electron energy

di
ve

rg
en

ce

1 3 4 5 
GeV/c 

1 

0 

-1 
2 

m
ra

d 

Charge density [pC/mrad/(GeV/c)] 
10 

5 

0 

Leemans et al., Phys. Rev. Lett. (2014) 



Staged	LPAs:	average	gradient	determined	by	driver	
in-coupling	distance
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Length of 1 TeV staged-LPA linac

number of stages:
Compact laser in-coupling distance 
enables high average accelerating gradient:

• Conventional laser optics: requires many 
Rayleigh ranges to reduce fluency on 
optic (avoid damage)

• Plasma mirror: relies on critical density 
plasma production (high laser intensity): 
laser coupling <1 m

Schroeder et al., PR ST-AB (2010)

E ⇠ E0 = (mec!p/e) /
p
nAccelerating gradient:



Quasi-linear	regime:	positron	focusing	&	
independent	control	of	accelera9on	and	focusing
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‣		Operate in “quasi-linear” regime: 

• Quiver momentum weakly-relativistic a~1
(Intensity ~ 1018 W/cm2) 

• Region of acceleration/focusing for both 
electrons and positrons

• Stable laser propagation in plasma channel
• Independent control of accelerating and 

focusing forces	
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‣ Excellent wakefield properties in plasma channel and independent control over 
accelerating and focusing forces: 

• Accelerating wakefield uniform in radial position
• Focusing wakefield uniform in longitudinal position (no head-to-tail variation 
in focusing force) and linear in radial position
• Ion motion negligible
• Mitigates Coulomb scattering 
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hollow plasma channels: Excellent wakefield properties 
for ultra-low emittance preservation  

  Drive 
  Laser 

Electron 
Injector 

Plasma Channel 
Plasma  W ave 

Laser Pulse 
Electron Bunch

> > > Electron
Bunch



Beam loading in near-hollow plasma channels:  
use shaped bunches to eliminate energy spread
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‣ Energy spread minimized using shaped beams
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‣ Energy spread minimized using shaped beams

‣ Trade-off between gradient and 
efficiency (for no induced energy spread)
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‣ Energy spread minimized using shaped beams

‣ Trade-off between gradient and 
efficiency (for no induced energy spread)
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beam charge:

lower plasma density, 
higher beam charge

Nb / n�1/2
w

beam length: Lb ∼ k−1
p ∝ n−1/2

w
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‣ In quasi-linear regime, acceleration of positrons is symmetric to electrons
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Basic scalings indicate disruption small for plasma 
accelerated (ultra-short) beams
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‣ Disruption parameter:

‣ Plasma-based accelerators intrinsically produce short (< plasma skin depth) 
beams

Dx =
2reNσz

γσ∗
x(σ

∗
x + σ∗

y)

‣ Luminosity enhancement effects from beam disruption are typically 
weak D<<1 for LPA-based colliders owing to the ultrashort LPA bunch 
length (<< beam-beam lens)

P. Chen and K. Yokoya, Phys. Rev. D 38, 987 (1988)



Beamstrahlung minimization: basic scalings

18

‣ Beamstrahlung parameter: Υ = γ ⟨E + B⟩ /Ec ≈
5r2eγ

6α(σ∗
x + σ∗

y)

N

σz

P. Chen and K. Yokoya

‣ average number of beamstrahlung photons/lepton:

nγ ≈ 2 .54
(
α2/reγ

)
σzΥ(1 +Υ2/3)−1/2
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‣ Short beams save power (Y>>1):

‣ Plasma-based accelerators produce short (< plasma skin depth) beams:

L
U2
cm

∝ n3/2
γ ηwbPwall

σ∗γ5/2σ1/2
z

σz < k−1
p



Ultra-short beams can be accelerated without energy 
spread growth
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‣ Ultra-short beams are desirable, e.g., beamstrahlung suppression in colliders. 

‣ Trapezoidal current distribution:

EzL
Ezb

EzL + Ezb

‣ Improved efficiency achieved using bunch trains 19
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with 6 bunches:

‣ Improved efficiency achieved using bunch trains:
•  Each bunch has same charge
•  Experiences same (constant across bunch) accelerating gradient
•  Efficiency increased by number of bunches in train

with 1 bunches:

‣ Trade-off between gradient and efficiency, with 
no energy spread growth using ultra-short beams
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gradient = 0.5(peak field)

Drive laser depositing 
energy into wave
(frequency red-shifting)

“Energy-recovery” laser 
absorbing wave energy
(frequency blue-shifting)

‣ Additional laser pulse allows for no energy to remain in coherent 
plasma oscillations after energy transferred to particle beam
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Average	power	reduced	at	lower	plasma	density	
(Beamstrahlung	limits	charge/bunch)
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Charge/bunch: Laser rep rate (for fixed luminosity goal): Wall-plug power:

Schroeder et al., PR ST-AB (2010)
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3	TeV	laser-plasma	collider	example
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beam energy 1.5 TeV

energy gain/stage 5 GeV

RMS 𝛔z[micron] 8.5

𝛔x[nm]/𝛔y[nm] 18 / 0.5

Luminosity [s-1cm-2] 1E+35

laser rep rate [kHz] 84

Beamstrahlung 
parameter 16

Beamstahlung photons/e 0.81

Beamstrahlung energy 
spread 0.20

Disruption parameter 0.046

Power (LPA linacs) 407 MW

operational plasma 
density



Laser-plasma	accelerator-based	collider	concept

Leemans & Esarey, Physics Today (2009)

24

§ Plasma density scalings [minimize construction (max. 
average gradient) and operational (min. wall power) costs] 
indicates:  n ~ 1017 cm-3

§ Quasi-linear wake (a~1): e- and e+

§ Staging & laser coupling into plasma (hollow) channels:

‣ tens J laser energy/stage required

‣ energy gain/stage ~few GeV in <1m

Schroeder et al., PR ST-AB (2010)

Laser technology development required: 

§ High luminosity requires high rep-rate lasers (10’s kHz)

§ Requires development of high average power lasers (100’s kW)

§ Bandwidth (support ~100 fs duration)

§ High laser efficiency (~tens of %)
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LPA Staging exits.



Demonstra9on	of	accelera9on	in	second	independently-
powered	laser-plasma	accelerator	at	LBNL
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Steinke et al., Nature (2016)

Stage	I:	gas	jet	

mean	energy	(72±3)	MeV		

charge	(19±3)	pC		

reflected 
mode PM

	

80% throughput

@B'

@r
=

µ0I0
2⇡R2

cap

Cap 1: active plasma lens

1.5 cm, up to 3000 T/m

J. van Tilborg et al., PRL (2015)



Demonstra9on	of	accelera9on	in	second	independently-
powered	laser-plasma	accelerator	at	LBNL
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Stage	I	+	II	

reference	

Steinke et al., Nature (2016)
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Future	LPA	staging	experiments:	5	GeV	+	5	GeV
Steinke et al., Phys. Plasmas (2016)
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‣ Laser-pasma accelerators provide ultra-high gradients (compact accelerators) generating 
short  (fs) beams (high peak current)

• 4 GeV beams in 9-cm plasma using LPA at BELLA

- 10 GeV beams in <1m will be available in next (few) years

‣ Beam-beam interaction effects modify the basic scalings and determine the  operational 
plasma density (determines required laser technology, etc.)

• Basic scalings indicate ~1E17/cc operating density.

• Operating at low plasma density increases beamstrahlung effects (higher bunch charge 
and longer beams)

• Bunch charge constrained by beamstrahlung - requiring multi-bunch format or increase 
repetition frequency (power). 

• Detailed modeling still to be done (including beam shape, delivery system, etc.)

‣ Laser-plasma accelerator-based linear collider has many technical challenges and R&D for 
collider application ongoing 

• Staging LPA experiments underway at LBNL

• High peak & average power laser technology development

Summary	and	Conclusions



Many thanks to my colleagues:   
Carlo Benedetti 
Eric Esarey 
Cameron Geddes 
Wim Leemans 
Jean-Luc Vay 
       and the members of the BELLA Center

Work supported by the U.S. DOE, Office of Science, Office of High Energy Physics, 
under Contract No. DE-AC02-05CH11231

28
Office of Science


