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Coherent mode 
spectrum

Q
σ
 = QRigid bunch 

model  :
Q

π
 = Q - ξ
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Coherent mode 
spectrum

Q
σ
 = QQ

π
 = Q - Yξ

 The Yokoya factor Y is usually between 1.0 and 1.3 
depending on the type of interaction                            
(Flat, round, asymmetric, long-range, …) (1)

Self-consistent 
computation :



  

(in)coherent spectrum
 The non-linearity of beam-beam 

interactions result in a strong 
amplitude detuning

 The single particles generate a 
continuum of modes, the 
incoherent spectrum

 Both the σ and π mode are 
outside the incoherent 
spectrum

→ Absence of Landau 
damping

→ Improved feedback 
efficiency to prevent 
decoherence



  

Efficiency of the feedback to 
suppress emittance growth

 When ξ >> g, the Alexahin's 
model predicts a significant 
reduction of the emittance 
growth due to decoherence 
with respect to the Lebedev's 
model

 Alexahin's formula is 
predicted to break down 
when coherent modes enter 
the incoherent spectrum (4)
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Lebedev's weak-strong model (3) : Alexahin's strong-strong model (4) :



  

Mirrored tune

 Mirroring the tune of 
the two beams 
moves all coherent 
modes inside the 
incoherent 
spectrum

0.30 / 0.320.30 / 0.32 mirrored

 Despite the strong-strong nature of the 
configuration :

 Alexahin forumla does not apply 
due to the interaction of coherent 
and incoherent spectrum

 Lebedev's weak-strong forumla is 
accurate

 In a realistic configurations, the two 
models provide upper/lower bounds 
for the emittance growth



  

Measurement at the 
LHC

 The emittance growth measured when introducing controlled noise 
on colliding bunches experiencing different gains is compatible with 
Lebedev's formula but not Alexahin's, despite the strong-strong 
configuration

 Several effects may bring the coherent modes inside the 
incoherent spectrum, even in simple configurations (11)

ΔQ~0.01

τ ~ 100 turns

τ ~ 400 turns
Lebedev

Alexahin



  

Effect of chromaticity
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Effect of chromaticity

Q'=15

Q'=10

Q'=5

COMBI Q'=10

 The measured impact of chromaticity is non-trivial

→ This experiment confirms the difficulty to achieve the S-S 
mechanism for the reduction of the emittance growth, even 
in the S-S regime

→ HL-LHC design is conservatively based on the W-S 
model 
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Identifying the noise 
source

 In the LHC the feedback is efficient at 
suppressing the emittance growth 
from other sources (PC ripple)

→ High gain favourable

 In the HL-LHC, it becomes less 
efficient due to the large tune spread, 
yet introduces the same noise

→ Low gain favourable

→ Recution of δ
BPM

 needed to 

recover the good behaviour

δ
0
 ~ 4.8·10-5

δ
BPM

~ 217·10-5 

HL-LHC
(neither CC noise, 
nor low β*/ATS 
scaling)

LHC → ~0.04 μm/h

“...Operation of the feedback in presence 
of strong non-linearities, such as 
octupoles, must be avoided...”, LHC 
design report
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Beam-beam 
instabilities

 Coherent synchrobetatron 
beam-beam modes were 
predicted based on the 
circulant matrix model and 
demonstrated 
experimentally at VEPP-
2000 (7)

(7)
 The same model including the impedance 

showed a TMCI-like instability due to 
beam-beam interaction (BBMCI) (6)
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 Stability ensured by the 
transverse feedback

 In agreement with the 
models
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Efficient 6D models

 The 6D coherent beam-beam model is based on Hirata's weak-strong 6D 
kick (10)
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Efficient 6D models

 The 6D coherent beam-beam model is based on Hirata's weak-strong 6D 
kick (10)

 The macroparticles of both beams are boosted and the moments of the 
slices are computed in the boosted frame

 Frozen model :

 Compute de moments of the 
slices once and compute their 
forces on all particles of the 
other beam

 Fast (~2s), but inaccurate for 
strong beam-beam forces

 Full model :

 Iteratively compute the 
interaction of pair of slices and 
update the moments accordingly

 Slow (~13s), but fully accurate
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Landau damping by 
synchrotron sidebands

(8) In configurations with strong 
synchrobetatron coupling (e.g. 
HL-LHC), the instability occur at 
any beam-beam tune shift

 Landau damping from the 
beam-beam induced tune 
spread is usually effective if the 
coherent modes frequency is 
within the incoherent tune 
spread and its side bands (4,9)

 Can become an issue in the 
case of head-on tune spread 
compensation with an e- lens

- - COMBI
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Limit of the frozen model
 An instability 

incompatible with the 
circulant matrix model 
arise for large beam-
beam parameters

 The frozen model does not 
accurately model the 
interaction when the kick 
modifies significantly the 
slice behaviour within a 
single interaction

 The proper behaviour is 
recovered with the full 
6D model

30 hours / sim.

15 days / sim.



  

Conclusion

 In most realistic conditions (LHC) the emittance growth of colliding beams 
can be described with Lebedev's weak-strong formula, despite the strong-
strong nature of the configuration

 For the first time the model was verified experimentally in configurations 
relevant for HL-LHC and future hadron colliders (ΔQ~0.02)

 The detailed modeling of these effects requires efficient low noise 
Poisson solver → The Fast Polar Poisson Solver shows good 
performance

 The existence of mode coupling instabilities of colliding beams was 
demonstrated experimentally in the LHC

 The efficiency of the transverse feedback to suppress it was also verified

 The presence of import synchrobetatron coupling in the LHC generalises the 
instability to all beam-beam tune shifts

 Landau damping by synchrotron side bands, predicted qualitatively, can 
be quantified using macroparticle simulations
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Decoherence of the σ mode

 The single particle motion is the linear composition of the 
centroid position and the position with respect to the 
centroid position

→ The single particle motion does not change the 
coherent force

 The incoherent and coherent motion are decoupled        
→ Absence of decoherence



  

Decoherence of the π mode
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Decoherence of the π mode

 Again, the single particle motion is 'regular' with 
respect to the bunch centroid



  

Decoherence of the π mode

 Again, the single particle motion is 'regular' with 
respect to the bunch centroid

→ Absence of decoherence
 A slight emittance growth still exists due to the 

mismatch of the distribution
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2nd order effets
 When the shift of the π-mode 

exceeds the tune separation 
between the plane, the 
coupling due to the beam-
beam force is sufficient to 
break Alexahin's formula

0.30 (σ
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v
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h

 π
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2nd order effets
 When the shift of the π-mode 

exceeds the tune separation 
between the plane, the 
coupling due to the beam-
beam force is sufficient to 
break Alexahin's formula

0.30 (σ
h
) 0.32 (σ

v
)

 π
h

 π
v

 Head-on beam-beam 
interactions do not generate 
coupling at first order → 
limitation of the theoretical 
model



  

The circulant matrix 
model basis

 Polar discretisation of the longitudinal 
phase space in cells (slices and rings)

 The dynamical variables are the 
transverse positions and momentum 
(1 or 2 planes) of the cells

 The synchrotron motion corresponds 
to a rotation of the slices → circulant 
matrix

 The basis can be easily extended to 
describe several bunches per beam

 Initially developed to study the 
stabilisation of the TMCI with a 
feedback [V.V. Danilov] and for coherent 
synchrobetatron beam-beam modes in 
VEPP-2M [E.A. Perevedentsev]

x (t ) = MOne turn
t x (0)

= ∑
j

e−2 π iQ j t v j



  

The unperturbed 
circulant matrix



  

The unperturbed 
circulant matrix

Unperturbed betatron 
motion (w/o chromaticity)



  

The unperturbed 
circulant matrix

Unperturbed betatron 
motion (w/o chromaticity)

Synchrotron motion within each ring
It may be extended to include the chromatic shift 
of the betatron phase (see backup)

[V.V. Danilov]



  

The unperturbed 
circulant matrix

Unperturbed betatron 
motion (w/o chromaticity)

Synchrotron motion within each ring
It may be extended to include the chromatic shift 
of the betatron phase (see backup)

Identical synchrotron 
tune for each ring → 
the matrix can also be 
constructed with a 
different Qs for each 
ring

[V.V. Danilov]



  

The unperturbed 
circulant matrix

Unperturbed betatron 
motion (w/o chromaticity)

Synchrotron motion within each ring
It may be extended to include the chromatic shift 
of the betatron phase (see backup)

Identical synchrotron 
tune for each ring → 
the matrix can also be 
constructed with a 
different Qs for each 
ring

Uniform weight 
factor (not 
fundamental)

[V.V. Danilov]



  

The unperturbed 
circulant matrix

Unperturbed betatron 
motion (w/o chromaticity)

Synchrotron motion within each ring
It may be extended to include the chromatic shift 
of the betatron phase (see backup)

Identical synchrotron 
tune for each ring → 
the matrix can also be 
constructed with a 
different Qs for each 
ring

Uniform weight 
factor (not 
fundamental)

[V.V. Danilov]

In practice, the matrix of each beam/bunch can be build based on different parameters

For multiple identical beam / bunches : 
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(
xB 1

xB 1 '
xB 2

xB 2 '
)
t+1

=(
cos(2πQ) sin (2πQ) 0 0

−sin (2πQ) cos(2πQ) 0 0
0 0 cos (2 πQ) sin (2πQ)

0 0 −sin (2πQ) cos (2πQ)
)(

xB1

xB1 '
xB2

xB2 '
)
t



  

Example : Beam-
beam interaction

(
xB 1

xB 1 '
xB 2

xB 2 '
)
t+1

=(
cos(2πQ) sin (2πQ) 0 0

−sin (2πQ) cos(2πQ) 0 0
0 0 cos (2 πQ) sin (2πQ)

0 0 −sin (2πQ) cos (2πQ)
)(

xB1

xB1 '
xB2

xB2 '
)
t

(linearised coherent force)Δ x 'B1=
−2 r0 N

γr

1
Δ x

(1−e
−Δ x2

4σ 2

)≈k (xB1−xB2)



  

Example : Beam-
beam interaction

(
xB 1

xB 1 '
xB 2

xB 2 '
)
t+1

=(
1 0 0 0

+ k 1 − k 0
0 0 1 0

− k 0 + k 1
)⋅M lattice(

xB1

xB1 '
xB2

xB 2 '
)
t

(linearised coherent force)Δ x 'B1=
−2 r0 N

γr

1
Δ x

(1−e
−Δ x2

4σ 2

)≈k (xB1−xB2)



  

Example : Beam-
beam interaction

(
xB 1

xB 1 '
xB 2

xB 2 '
)
t+1

=(
1 0 0 0

+ k 1 − k 0
0 0 1 0

− k 0 + k 1
)⋅M lattice(

xB1

xB1 '
xB2

xB 2 '
)
t

(linearised coherent force)Δ x 'B1=
−2 r0 N

γr

1
Δ x

(1−e
−Δ x2

4σ 2

)≈k (xB1−xB2)

→ This procedure is extended to binary collision of all the cells 
(possibly including the crossing angle and the hourglass effects)



  

Effect of an electron 
lens

 In the presence 
of an electron 
lens that 
compensates 
fully the tune 
spread due to the 
beam-beam 
interactions, 
Landau damping 
is suppressed for 
the BBMCI
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