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ATLAS calorimeter segmentation
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Quark or gluon jet?
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4 jets

Neutral 
stable  
SUSY  

particles 
(MET)

This amount of quark-jets is extremely unlikely in background processes, 

so quark-gluon discrimination is a useful selection tool!
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Boosted dijet resonances

m/2

g = E/m
f ~ 1/g = m/E m

What if you take one of those SM dijet 
resonances and Lorentz boost it?W

Ben Nachman - CERN 2017
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Heavy particles decaying 
produce boosted ‘fat’ 
jets.
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From jets to substructure
Re
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r s
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e 
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t In a previous talk we learnt 

how calorimeter deposits 
are clustered to form jet 
objects…

… and in this talk we’ll discuss 
how jet structure is recovered. 

…
like this one…

https://indico.physics.lbl.gov/indico/event/577/contribution/0/material/slides/0.pdf
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Mass-drop filtering
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Whilst C/A clusters closest deposits 
first
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Mass-drop filtering

j1

j2

Go to last clustering step and revert it. 

Call the jet with the largest mass j1.
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Mass-drop filtering

ECAL HCAL

energy deposits
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j1

j2

There must be a significant difference in 
the total jet mass and the largest jet 
mass, following splitting. If not, likely 
soft radiation. 11
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< µ

mj
total

> mj1 +mj2

So it’s not obvious what 
value mu should take. 

One third? Two thirds?

m2
j
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Mass-drop filtering

Established: a significant mass difference when jet split

Not established: how symmetric is the split?

min

⇣
pj1T

⌘2
,
⇣
pj2T

⌘2
�

m2
j

·�R2
j1,j2 > ycut

Not immediately obvious why this formula enforces the 
condition…

j1

j2
�Rj1,j2

j
m2

j ⇡ z(1� z) · p2T ·�R2
j1,j2

) �R2
j1,j2 ⇡ m

pT
p

z(1� z)

pT•
z

pT•(1-z)
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> ycut · p2T · z(1� z)

min

⇣
pj1T

⌘2
,
⇣
pj1T

⌘2
�
> ycut ·

m2
j

�R2
j1,j2

> ycut ·
m2

j · p2T · z(1� z)

m2
j

) pmin
Tsubjet

>
p
ycut · pT

p
z(1� z)

This requirement says that even the jet with the smallest pT 
must be at least ycut of the fractional total pT, where that 
fraction depends on the mass splitting. 
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Mass-drop filtering

pmin
Tsubjet

>
p
ycut · pT

p
z(1� z)

So, if this condition is not satisfied, 
remove the smaller pT jet. 
e.g. an 80 GeV W boson 
decaying to hadrons. 

 - W has pT 200 GeV. 

 - ∆R = 0.8

 - y = 9%


Which corresponds to a subset fraction of 
~ 30/200 = 15% of total jet pT. 


min

⇣
pj1T

⌘2
,
⇣
pj1T

⌘2
�
> ycut ·

m2
j

�R2
j1,j2

> 0.09 · 802

0.82
= 900

) pmin
Tsubjet

> 30 [GeV]



rcarney@lbl.gov29th Nov. ‘17

15

Mass-drop filtering
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(a) The mass-drop and symmetric splitting criteria.

(b) Filtering.

Figure 3. Diagram depicting the two stages of the mass-drop filtering procedure.

In this paper, three values of the mass-drop parameter µ
frac

are studied, as summarized

in table 1. The values chosen for µ
frac

are based on a previous study [4] which has shown

that µ
frac

= 0.67 is optimal in discriminating H ! bb̄ from background. A subsequent

study regarding the factorization properties of several groomed jet algorithms [47] found

that smaller values of µ
frac

(0.20 and 0.33) are similarly e↵ective at reducing backgrounds,

and yet they remain factorizable within the soft collinear e↵ective theory studied in that

analysis.

Trimming: The trimming algorithm [7] takes advantage of the fact that contamination

from pile-up, multiple parton interactions (MPI) and initial-state radiation (ISR) in the

reconstructed jet is often much softer than the outgoing partons associated with the hard-

scatter and their final-state radiation (FSR). The ratio of the p
T

of the constituents to that

of the jet is used as a selection criterion. Although there is some spatial overlap, removing

the softer components from the final jet preferentially removes radiation from pile-up,

MPI, and ISR while discarding only a small part of the hard-scatter decay products and

FSR. Since the primary e↵ect of pile-up in the detector is additional low-energy deposits

– 10 –
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(0.20 and 0.33) are similarly e↵ective at reducing backgrounds,

and yet they remain factorizable within the soft collinear e↵ective theory studied in that

analysis.
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from pile-up, multiple parton interactions (MPI) and initial-state radiation (ISR) in the

reconstructed jet is often much softer than the outgoing partons associated with the hard-

scatter and their final-state radiation (FSR). The ratio of the p
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of the jet is used as a selection criterion. Although there is some spatial overlap, removing
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MPI, and ISR while discarding only a small part of the hard-scatter decay products and

FSR. Since the primary e↵ect of pile-up in the detector is additional low-energy deposits
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Even if every deposit makes it through 
the mass-drop cut… 

… it might not make it through filtering
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constituents of j1 and j2 are reclustered using the C/A algorithm with radius parameter Rfilt 
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Subjet algorithms: a few more
Je

t t
rim

m
in

g

in clusters of calorimeter cells, as opposed to additional energy being added to already

existing clusters produced by particles originating from the hard scattering process, this

allows a relatively simple jet energy o↵set correction for smaller radius jets (R = 0.4, 0.6)

as a function of the number of primary reconstructed vertices [48].

Figure 4. Diagram depicting the jet trimming procedure.

The trimming procedure uses a k
t

algorithm to create subjets of size R
sub

from the

constituents of a jet. Any subjets with p
Ti

/pjet
T

< f
cut

are removed, where p
Ti

is the

transverse momentum of the ith subjet, and f
cut

is a parameter of the method, which is

typically a few percent. The remaining constituents form the trimmed jet. This procedure

is illustrated in figure 4. Low-mass jets (mjet < 100 GeV) from a light-quark or gluon lose

typically 30–50% of their mass in the trimming procedure, while jets containing the decay

products of a boosted object lose less of their mass, with most of the reduction due to

the removal of pile-up or UE (see, for example, figures 29 and 32). The fraction removed

increases with the number of pp interactions in the event.

Six configurations of trimmed jets are studied here, arising from combinations of

f
cut

and R
sub

, given in table 1. They are based on the optimized parameters in ref. [7]

(f
cut

= 0.03, R
sub

= 0.2) and variations suggested by the authors of the algorithm. This

set represents a wide range of phase space for trimming and is somewhat broader than

considered in ref. [7].

Pruning: The pruning algorithm [6, 49] is similar to trimming in that it removes con-

stituents with a small relative p
T

, but it additionally applies a veto on wide-angle radiation.

The pruning procedure is invoked at each successive recombination step of the jet algo-

rithm (either C/A or k
t

). It is based on a decision at each step of the jet reconstruction

whether or not to add the constituent being considered. As such, it does not require the

reconstruction of subjets. For all studies performed for this paper, the k
t

algorithm is used

in the pruning procedure. This results in definitions of the terms wide-angle or soft that

are not directly related to the original jet but rather to the proto-jets formed in the process

of rebuilding the pruned jet.

The procedure is as follows:

• The C/A or k
t

recombination jet algorithm is run on the constituents, which were

found by any jet finding algorithm.

– 11 –

Pile-up contamination is mostly soft:

• create subjets with radius Rsub

• If subjet has fractional pT < threshold, remove it.

Light quark or gluon jets: 30-50% mass loss

Boosted decay products: <10% mass loss
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Subjet algorithms: a few more
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Pile-up contamination is mostly soft:

• recluster deposits with C/A or kT (soft first)

• at each recluster, the pT must increase by some amount  

                 OR 
new cluster must be within a given radius


• else: j2 discarded, continue

Applies wide-angle veto
Also removes small pT deposits

Figure 5. Diagram illustrating the pruning procedure.

• At each recombination step of constituents j
1

and j
2

(where pj1
T

> pj2
T

), either

pj2
T

/pj1+j2

T

> z
cut

or �R
j1,j2 < R

cut

⇥ (2mjet/pjet
T

) must be satisfied. Here, z
cut

and R
cut

are parameters of the algorithm which are studied in this paper.

• j
2

with j
1

are merged if one or both of the above criteria are met, otherwise, j
2

is

discarded and the algorithm continues.

The pruning procedure is illustrated in figure 5. Six configurations, given in table 1,

based on combinations of z
cut

and R
cut

are studied here. This set of parameters also

represents a relatively wide range of possible configurations.

Jet finding algorithms used Grooming algorithm Configurations considered

C/A Mass-Drop Filtering µ
frac

= 0.20, 0.33, 0.67

Anti-k
t

and C/A Trimming
f
cut

= 0.01, 0.03, 0.05

R
sub

= 0.2, 0.3

Anti-k
t

and C/A Pruning
R

cut

= 0.1, 0.2, 0.3

z
cut

= 0.05, 0.1

C/A HEPTopTagger (see table 2)

Table 1. Summary of the grooming configurations considered in this study. Values in boldface are
optimized configurations reported in ref. [4] and ref. [7] for filtering and trimming, respectively.

1.2.4 HEPTopTagger

The HEPTopTagger algorithm [26] is designed to identify a top quark with a hadronically

decaying W boson daughter over a large multi-jet background. The method uses the C/A

jet algorithm and a variant of the mass-drop filtering technique described in section 1.2.3 in

order to exploit information about the recombination history of the jet. This information

– 12 –
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Jet grooming algorithms: an example

The effect of jet grooming

Computational development and future work
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Subjet algorithms: effects

in clusters of calorimeter cells, as opposed to additional energy being added to already

existing clusters produced by particles originating from the hard scattering process, this

allows a relatively simple jet energy o↵set correction for smaller radius jets (R = 0.4, 0.6)

as a function of the number of primary reconstructed vertices [48].

Figure 4. Diagram depicting the jet trimming procedure.

The trimming procedure uses a k
t

algorithm to create subjets of size R
sub

from the

constituents of a jet. Any subjets with p
Ti

/pjet
T

< f
cut

are removed, where p
Ti

is the

transverse momentum of the ith subjet, and f
cut

is a parameter of the method, which is

typically a few percent. The remaining constituents form the trimmed jet. This procedure

is illustrated in figure 4. Low-mass jets (mjet < 100 GeV) from a light-quark or gluon lose

typically 30–50% of their mass in the trimming procedure, while jets containing the decay

products of a boosted object lose less of their mass, with most of the reduction due to

the removal of pile-up or UE (see, for example, figures 29 and 32). The fraction removed

increases with the number of pp interactions in the event.

Six configurations of trimmed jets are studied here, arising from combinations of

f
cut

and R
sub

, given in table 1. They are based on the optimized parameters in ref. [7]

(f
cut

= 0.03, R
sub

= 0.2) and variations suggested by the authors of the algorithm. This

set represents a wide range of phase space for trimming and is somewhat broader than

considered in ref. [7].

Pruning: The pruning algorithm [6, 49] is similar to trimming in that it removes con-

stituents with a small relative p
T

, but it additionally applies a veto on wide-angle radiation.

The pruning procedure is invoked at each successive recombination step of the jet algo-

rithm (either C/A or k
t

). It is based on a decision at each step of the jet reconstruction

whether or not to add the constituent being considered. As such, it does not require the

reconstruction of subjets. For all studies performed for this paper, the k
t

algorithm is used

in the pruning procedure. This results in definitions of the terms wide-angle or soft that

are not directly related to the original jet but rather to the proto-jets formed in the process

of rebuilding the pruned jet.

The procedure is as follows:

• The C/A or k
t

recombination jet algorithm is run on the constituents, which were

found by any jet finding algorithm.

– 11 –
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Subjet algorithms: comparison
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Pr
un

ing Not necessarily as 

bad as it looks

PU suppression and gets rid 
of a lot of jets (up to 90%) 

PU suppression for the 
right pars

• mass range: 
threshold for 
hadronic, boosted 
object 
measurements
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Subjet algorithms: comparison

600 GeV < pT
jet < 800 GeV 

• mass range: 100% 
of top quark decay 
products merged 
within R=1.0

Mass-drop filtering reduced 
sensitivity at high PU due to 
filtering process. 

(Applying a harsher 
constraint but at a greater 
rate than trimming)

Still pretty flat Nope
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Subjet algorithms: MC & data

Impact of pile-up is very well modeled, with the slope of the dependence 
of mjet1 on NPV in data agreeing within 3% with the POWHEG+PYTHIA 1 
T prediction for both the ungroomed and trimmed jets. 


Colored points follow data - 
good!
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Different markers are 
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Subjet algorithms: v. high PU

Different markers 
are different PU 

(PV) ranges

NB: Without PU removal pre-processing.
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Subjet algorithms: dijet and boosted

~Z mass

~t mass

80 GeV

40 GeV

Discrimination at PU=10 doubles!
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Figure 5. Diagram illustrating the pruning procedure.

• At each recombination step of constituents j
1

and j
2

(where pj1
T

> pj2
T

), either

pj2
T

/pj1+j2

T

> z
cut

or �R
j1,j2 < R

cut

⇥ (2mjet/pjet
T

) must be satisfied. Here, z
cut

and R
cut

are parameters of the algorithm which are studied in this paper.

• j
2

with j
1

are merged if one or both of the above criteria are met, otherwise, j
2

is

discarded and the algorithm continues.

The pruning procedure is illustrated in figure 5. Six configurations, given in table 1,

based on combinations of z
cut

and R
cut

are studied here. This set of parameters also

represents a relatively wide range of possible configurations.

Jet finding algorithms used Grooming algorithm Configurations considered

C/A Mass-Drop Filtering µ
frac

= 0.20, 0.33, 0.67

Anti-k
t

and C/A Trimming
f
cut

= 0.01, 0.03, 0.05

R
sub

= 0.2, 0.3

Anti-k
t

and C/A Pruning
R

cut

= 0.1, 0.2, 0.3

z
cut

= 0.05, 0.1

C/A HEPTopTagger (see table 2)

Table 1. Summary of the grooming configurations considered in this study. Values in boldface are
optimized configurations reported in ref. [4] and ref. [7] for filtering and trimming, respectively.

1.2.4 HEPTopTagger

The HEPTopTagger algorithm [26] is designed to identify a top quark with a hadronically

decaying W boson daughter over a large multi-jet background. The method uses the C/A

jet algorithm and a variant of the mass-drop filtering technique described in section 1.2.3 in

order to exploit information about the recombination history of the jet. This information

– 12 –

Subjet algorithms: summary & pars

Designed for H—>bbar, still favored for hadronic, 2-body decays.

Resilient to pile-up at lower pT. Generally less efficient at retaining signal than 
trimming, although background suppression is good!  

Trimming exhibits better performance than pruning, with superior mass resolution 
and reduced dependence on pile-up. 

Is recommended for boosted top physics analyses, where a minimum pT 
requirement of 200 GeV is typical. 

Still most favored grooming algorithm for boosted decays. 
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Jet grooming algorithms: an example

The effect of jet grooming

Computational development and future work
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Computing how is this implemented?

https://github.com/mileswu/JetSubstructureTools/blob/
master/JetSubStructureMomentTools/share/run.py

Generate pp 
interaction

Monte Carlo

Detector 

Detailed 
detector 

simulation

Event 

reconstruction

Folder: reconstruction/Jets/

Packages: 

• JetSubStructureMomentTools	 	 

• JetSubStructureUtils

Working* athena example:

(*from 2015. Packages haven’t changed too much so might work with a little fiddling)

Jet grooming takes place during 
reconstruction. The last stage in the 
simulation/processing pipeline in Athena.

Real 

Data

https://github.com/mileswu/JetSubstructureTools/blob/master/JetSubStructureMomentTools/share/run.py


What about  
novel computing techniques?
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Computing ML & jet grooming
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Boosted W

“pixel”

the Jet Image
J. Cogan et al. JHEP 02 (2015) 118

L. de Oliveira, et al., Comp. and Software for Big Science (2017) 1

N.B. this is not the only way to 
represent a jet - more on that later

DCNN, see previous talks in this seminar, more 
computationally viable options now than ever before. 

https://indico.physics.lbl.gov/indico/event/569/contribution/0/material/slides/0.pdf
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Computing ML & jet grooming

Why images?
Can directly visualize physics
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there is information encoded in the 
physical distance between pixels

g ⇢ qq

W ⇢ qq

and we can benefit from the 
extensive image processing literature

_

_
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… some learnt about 
peripheral radiation.



rcarney@lbl.gov29th Nov. ‘17

33

Su
bt

itle
Computing ML & jet groomingWhere next III: Learning directly from data

L 
= 

q/
(q

+g
)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Track Width
0 0.05 0.1 0.15

trkn

0
2
4

6
8

10
12
14

16
18

 SimulationATLAS
Discriminant for MC-Based Tagger

 = 7 TeVsPythia MC11,  
| < 0.8η R=0.4, |tanti-k

<210 GeV
T

160 GeV<p

L 
= 

q/
(q

+g
)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Track Width
0 0.05 0.1 0.15

trkn
0
2
4

6
8

10
12
14

16
18

ATLAS
Discriminant for Data-Driven Tagger

 = 7 TeVs, -1 L dt = 4.7 fb∫
| < 0.8η R=0.4, |tanti-k

<210 GeV
T

160 GeV<p

For supervised learning, we depend on labels
labels usually come from simulation

What if data and simulation are very different?
…your classifier will be sub-optimal

quark gluonquark vs gluon 
jets in simulation

quark gluonquark vs gluon 
jets in data

Be
n 

N
ac

hm
an

 - 
C

ER
N

 2
01

7



rcarney@lbl.gov29th Nov. ‘17

34

Main title
Su

bt
itle

L 
= 

q/
(q

+g
)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Track Width
0 0.05 0.1 0.15

trkn

0
2
4

6
8

10
12
14

16
18

 SimulationATLAS
Discriminant for MC-Based Tagger

 = 7 TeVsPythia MC11,  
| < 0.8η R=0.4, |tanti-k

<210 GeV
T

160 GeV<p

L 
= 

q/
(q

+g
)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Track Width
0 0.05 0.1 0.15

trkn
0
2
4

6
8

10
12
14

16
18

ATLAS
Discriminant for Data-Driven Tagger

 = 7 TeVs, -1 L dt = 4.7 fb∫
| < 0.8η R=0.4, |tanti-k

<210 GeV
T

160 GeV<p

For supervised learning, we depend on labels
labels usually come from simulation

What if data and simulation are very different?
…your classifier will be sub-optimal

quark gluonquark vs gluon 
jets in simulation

quark gluonquark vs gluon 
jets in data

B

S

S

S

S

S

S

S

S

B

S

S

B

S

B

S

S

B

S

B

S

S

S

S

S

����� ������ �

S

B

S

B

B

S

B

B

S

B

B

B

B

B

B

B

S

B

B

S

B

B

B

S

B

����� ������ �

0 1

���������

Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M
1

and M
2

defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f
1

> f
2

, an optimal classifier trained to

distinguish M
1

from M
2

is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f
1

pS + (1� f
1

) pB
f
2

pS + (1� f
2

) pB
=

f
1

LS/B + (1� f
1

)

f
2

LS/B + (1� f
2

)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f
1

> f
2

, since

@LS/B
LM1/M2

= (f
1

� f
2

)/(f
2

LS/B � f
2

+ 1)2 > 0. If f
1

< f
2

, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f
1

and f
2

are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –

Solution: Train directly on 
data using mixed samples

E. Metodiev et al., JHEP 10 (2017) 174
L. Dery et al., JHEP 05 (2017) 145

Where next III: Learning directly from data
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Nearly there slide

Jet grooming algorithms: an example

The effect of jet grooming

Computational development and future work
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We’ve talked about grooming, but if you 
want to probe QCD, trimming is not 
necessarily your best choice! Optimise for 
the question you’re trying to ask.  

Optimise algorithm pars
Effort underway to re-optimize jet inputs and jet 
grooming for ATLAS Run 2 conditions


• Particle flow

• Soft Killer

•  Voronoi Subtraction

Using pile-up mitigation 

• Trimming

• Pruning

• Modified mass drop

• Soft Drop 
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Track Calo-Clusters
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Build jet inputs from combined tracker and calo information 
→ Mitigate calo angular resolution limitations to improve performance in highly-boosted 
regime: better high pT performance. 

Already done as a linear combo, this method instead builds 4-vectors from each 
detector:


ATL-PHYS-PUB-2017-015

1. Correlates tracks and calo energy deposits

2. Passes correlated objects to jet builder 

http://cds.cern.ch/record/2275636
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Penultimate slide

Like with CDS, we’re now reaching the physical limits on the resolution the 
calorimeter can provide but there is still more we can squeeze out of the detector.

 
In the high-pileup, high energy runs in HL-LHC, pile-up mitigation and careful jet 
grooming will give us the best shot at reconstructing exciting physics! 
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Summary and other topics
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• Pile-up mitigation algorithms: PUPPI, SoftKiller, PUMML

• Jet grooming in the Quark-Gluon Plasma

• Improved algorithms: soft-drop (!)

• Other jet characteristics: tau_n, d12, colour-flow

Things I didn’t talk about

• Jet grooming algorithms: mass-drop filtering, trimming, & 
pruning


• Effects of jet grooming on pile-up mitigation, boosted decay 
and dijet discrimination


• Computing implementations and DCNN ML

Things I talked about
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